56524

Решение простейших тригонометрических уравнений

Конспект урока

Педагогика и дидактика

Решить уравнение Решение. Решить уравнение Решение. Решить уравнение Решение. Ответ: уравнение не имеет решений Учащиеся уровня А заполняют карточки с подсказками.

Русский

2014-04-07

782 KB

4 чел.

10 класс

Тема урока:  Решение простейших тригонометрических уравнений.

 Уравнения   .

Цель урока:  доказать формулы корней уравнений ; формировать у     учащихся умения и навыки применения формул при решении простейших     тригонометрических уравнений; показать возможности компьютера в процессе    изучения алгебры; развивать у учащихся интерес к математике, логическое    мышление, умение самостоятельно добывать знания.

Тип урока:  урок усвоения знаний и умений.

Оборудование:  персональные компьютеры, компьютерная программа «Курс математики     для школьников и абитуриентов» (автор Л.Я.Боревский),

      карточки - путеводители у каждого учащегося.

Ход урока:

І. Организационный момент.

ІІ. Проверка домашнего задания.

  1.  Фронтальный опрос класса.

  1.  Какую тему мы изучаем?
  2.  Какие тригонометрические функции вы знаете?
  3.  Дайте определение арксинуса.
  4.  Вычислите:

  1.  Дайте определение арккосинуса.

  1.  Вычислите:

  1.  Найдите область определения функции:

  1.  ;   2)   ;  3)   ;
  2.  ;   5)   ;   6)   

  1.  Решите уравнения:

1) ;            2)   ;            3)   ;            4)   

  1.  По три человека из каждой группы (уровень Б) проверяют правильность выполнения заданий из домашней работы с помощью компьютера. Учащиеся получают карточки с указанием пути.

№ 11.47

Найти область определения функции

Решение.

Находим область определения внешней функции арктангенс:

Находим область определения внутренней функции корень квадратный:

Ответ:

№ 11.49

Найти область определения функции

Решение.

Находим область определения внешней функции корень арифметический :

Ответ:

№ 11.53

Найти область определения функции

Решение.

Находим область определения внешней функции арксинус :

Ответ:

№ 11.57

Решить уравнение  

Решение.

Ответ:

№ 11.61

Решить уравнение  

Решение.

Ответ:

№ 11.63

Решить уравнение  

Решение.

Ответ: уравнение не имеет решений

Учащиеся уровня А заполняют карточки с подсказками.

х

0

arcsin x

Подсказка.

Укажи точку на единичной окружности

х

0

arccos x

Подсказка.

Укажи точку на единичной окружности

ІІІ. Мотивация учебного процесса.

В ІХ веке узбекский математик Мухамед аль-Хорезми написал книгу об уравнениях и их свойствах, которая называлась «Китаб аль-джебр аль-укабала». Конечно же это были простейшие уравнения. Позже эту книгу перевели на латынь, взяв для названия только ее второе слово, которое стали писать Algebr. Отсюда и пошло название науки об уравнениях – алгебра. И правда, какой бы раздел алгебры мы с вами не изучали, обязательным является решение уравнений. Вспомните, какие уравнения вы умеете решать? Какой раздел алгебры мы изучаем? Что мы уже знаем? Приходим к выводу, что учащиеся уже готовы решать тригонометрические уравнения. Какое же уравнение можно назвать тригонометрическим?

 

О п р е д е л е н и е. Тригонометрическими уравнениями называются уравнения, в которых     переменная входит только под знак тригонометрической функции.

Сегодня на уроке мы должны научиться решать простейшие тригонометрические уравнения вида  . (Записываем в тетради тему урока)

IV. Восприятие и осмысление материала о решении уравнения  .

  1.  Изложение нового материала (слайды демонстрируем на интерактивной доске)

   

Решим с помощью единичной окружности уравнение .

Найдем решение уравнения  для случая  .

 

  1.  Нарисуем единичную окружность и отметим на ней ось синусов  (синий отрезок).

  1.  Отложим на оси синусов заданное число а  (красна точка).

  1.  Проведем горизонтальную пунктирную прямую через отмеченную точку а.  Эта прямая пересечет единичную окружность в двух точках (зеленые точки).

  1.  Соединим центр окружности с двумя точками пересечения и получим два центральных угла.

  1.  По определению синуса угла, синусы этих углов равны заданному числу а.

  1.  Отметим на единичном круге область центральных углов , в которой определен арксинус (желтая дуга).

  1.  Замечаем, что один из углов попадает в область определения арксинуса и, следовательно, частное решение для этого случая будет иметь вид . Для получения общего решения надо добавить период синуса.

.

  1.  Второй частный ответ получим в силу симметрии тоже легко: .

И опять  для получения второго общего решения надо добавить период синуса.

.

Таким образом, общий ответ записываем в виде совокупности:

Хотя этот ответ абсолютно правильный в математике принято записывать его в хитром, но зато более лаконичном виде:

.

Теперь убедимся, что эта хитрая формула дает тот же ответ, который мы получили так просто. Для этого рассмотрим два случая:

  1.  При четном

;

;

.

Итак, мы пришли к первому из полученных нами решений.

  1.  При нечетном

;

        ;

       .

Итак, мы пришли ко второму из полученных нами решений.

Для случая  мы уравнение решили. Ясно, что для области  мы получим точно такой же ответ. А вот если  или , то решение не существует, поскольку значения синуса ограничены отрезком .

Пример 1

Решить уравнение .

Решение.

Ответ:  .

Пример 2

Решить уравнение .

Решение.

Ответ:

Пример 3

Решить уравнение

Решение.

Так как , то уравнение  решений  не имеет.

Ответ: решений нет.

Рассмотрим частные случаи решения уравнения по таблице, предложенной каждому учащемуся в карточке-путеводителе.

Уравнение

Уравнение не имеет решений, так как

Уравнение не имеет решений, так как

Частные случаи

                         

                                          

                                  

                              

         

                    

                                                      

 

                                   

                                            

  1.  Работа в малых группах.

Каждая малая группа получает задание и обсуждает его решение в течение 1 – 2 минут. По истечении времени лист с решением сдается учителю. После чего учащиеся объединяются в новые группы и обсуждают решения заданий в других группах.

В это же время по два человека из каждой группы решают задания на компьютере.

№ 11.01

Решить уравнение

№ 11.02

Решить уравнение

№ 11.03

Решить уравнение

V. Восприятие и осмысление материала о решении уравнения

  1.  Предлагаем учащимся уровня А изучить теорию с помощью компьютера. Учащиеся получают карточки с указанием пути.

  1.  Учащиеся уровня Б пишут математический диктант. Один ученик работает у переносной доски.

Математический диктант

  1.  Начертите единичную окружность.
  2.  Выделите синим цветом ось косинусов.
  3.  Выберите на оси косинусов точку  красным цветом.
  4.  Через точку а  проведите вертикальную пунктирную черту и обозначьте точки пересечения ее с окружностью в І четверти , в ІV четверти .
  5.  Запишите значение центрального угла , которое соответствует точке .
  6.  Запишите значение центрального угла , которое соответствует точке .
  7.  Начертите три единичные окружности и покажите частные случаи решения уравнения  при .

Учащиеся, изучающие теорию с помощью компьютера, возвращаются в группы.

Проверяем выполнение математического диктанта с помощью интерактивной доски и таблицы в карточке-путеводителе

Уравнение

Уравнение не имеет решений, так как

Уравнение не имеет решений, так как

       

Частные случаи

                         

                                          

                           

                              

         

                                                

                                  

                                  

                       

                                                        

3.    По три человека с каждой группы за компьютером решают упражнения  №№ 11.07, 11.09, 11.11.   Остальные учащиеся работают в тетрадях.

№ 11.07

Решить уравнение

№ 11.09

Решить уравнение

№ 11.11

Решить уравнение

  1.  
  2.  
  3.  
  4.  

VІ. Подведение итогов урока (по интерактивной технологии «Микрофон»)

  1.  Что нового вы узнали на уроке?
  2.  Как записывают общее решение уравнения ?
  3.  Как записывают общее решение уравнения ?
  4.  Зачем определяют частные случаи решения простейших тригонометрических уравнений?
  5.  Что понравилось (не понравилось) на уроке?

VII. Домашнее задание

  1.  

Карточка-путеводитель . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

       Не пугайтесь слова «аркус»

                 «arcus» – это лиш дуга

Тема урока:  «Решение простейших тригонометрических уравнений.

 Уравнения »

Цель урока:  научиться решать простейшие тригонометрические уравнения

Решение устных упражнений

  1.  
  2.  

  1.  

  1.  
  2.  

  1.  

Проверка домашнего задания

  1.  

  1.  
  2.  

  Работаем на компьютере

  1.  

  1.  

Компьютер 1 –  № 11.47                    Компьютер 3 –  № 11.53                    Компьютер 5 –  № 11.61

Компьютер 2 –  № 11.49                    Компьютер 4 –  № 11.57                    Компьютер 6 –  № 11.63

            Заполняем карточки с подсказками.

х

0

arcsin x

Подсказка.

Укажи точку на единичной окружности

х

0

arccos x

Подсказка.

Укажи точку на единичной окружности

Изучаем новую тему

О п р е д е л е н и е. Тригонометрическими уравнениями называются _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

Изучаем теорию     (решение уравнений вида )

                                                                                                         Опорный конспект

Уравнение

Уравнение не имеет решений, так как

Уравнение не имеет решений, так как

Частные случаи

                         

                                          

                                  

                              

         

                    

                                                      

 

                                   

                                            

Приводим примеры    (решение уравнений вида )

Работаем в группах

По два человека из каждой группы решают задания на компьютере: № 11.01, № 11.02, № 11.03

Изучаем теорию     (решение уравнений вида )

 Изучаем теорию с помощью компьютера:

Пишем математический диктант

                                                                                                         Опорный конспект

Уравнение

Уравнение не имеет решений, так как

Уравнение не имеет решений, так как

       

Частные случаи

                         

                                          

                           

                              

         

                                                

                                  

                                  

                       

                                                        

Решаем упражнения   (решение уравнений вида )

Решаем уравнения с помощью компьютера:

Записываем решение в тетрадь:

  1.  
  2.  
  3.  
  4.  

Домашнее задание

  1.  

  1.  
  2.  


 

А также другие работы, которые могут Вас заинтересовать

68277. ГРА ЯК ЗАСІБ РОЗВИТКУ ПІЗНАВАЛЬНОЇ ДІЯЛЬНОСТІ У СЛАБОЗОРИХ ДІТЕЙ 144.5 KB
  У Національній доктрині розвитку освіти в Україні у XXI столітті наголошується на необхідності посилення уваги на освіті дітей з відхиленнями психофізичного розвитку забезпечення їхнього повноцінного життя соціального захисту створення умов для належної реабілітації.
68278. УПРАВЛІННЯ ЕКОНОМІЧНИМ ПОТЕНЦІАЛОМ ПІДПРИЄМСТВ ЗАЛІЗНИЧНОГО ТРАНСПОРТНОГО МАШИНОБУДУВАННЯ 719 KB
  Стабілізація вітчизняної економіки та поступове збільшення економічного потенціалу держави безпосередньо пов’язані зі стабільним розвитком промисловості. Недосконала законодавча база, непропорційна система оподаткування, нерозвинена виробнича інфраструктура ззовні, а також неефективне...
68279. Методи та ярусно-паралельні моделі прискореної обробки напівтонових зображень 517 KB
  Метою дисертаційної роботи є розробка моделей і методів інтелектуальної прискореної обробки напівтонових зображень які здатні аналізувати інформацію про розмір зображення та завантаженість потоків для рівномірного адаптивного розподілення завдань по потоках.
68280. Формування та механізми функціонування партійної системи Європейського Союзу 185 KB
  Прямим наслідком цього є поява та функціонування наднаціональної політичної системи Європейського Союзу ЄС яка тісно повязана з національними політичними системи основним джерелом її легітимності. Політичні партії є одними з важливих елементів політичної системи демократичного суспільства...
68281. ЕВОЛЮЦІЯ ПОЛІТИКИ ТАЙВАНЮ ЩОДО КНР 151.5 KB
  Зростання економічної й політичної могутності Китайської Народної Республіки КНР безперечно є однією з найважливіших ознак сучасних міжнародних відносин. Феномен зростання Китаю зокрема спричинює зміни в політиці Тайваню щодо КНР адже для Китайської Республіки КР на Тайвані політика щодо зростаючого...
68282. ФОРМУВАННЯ СИСТЕМИ ОЦІНЮВАННЯ ІНТЕЛЕКТУАЛЬНОЇ ВЛАСНОСТІ В УКРАЇНІ 238.5 KB
  В умовах переходу економіки України до інноваційної моделі розвитку та постійного зростання інтелектуальної складової у кінцевій продукції найважливіших галузей національного господарства масштаби та якісний рівень обєктів інтелектуальної власності як обєктів майна субєктів господарювання...
68283. ПРОБЛЕМИ НАЦІОНАЛЬНОЇ БЕЗПЕКИ В РЕГІОНАЛЬНІЙ ПОЛІТИЦІ АРЄ 160.5 KB
  Оскільки АРЄ діє на міжнародній арені як передусім регіональна держава, для адекватного аналізу безпекових пріоритетів країни основну увагу необхідно зосереджувати саме на регіональному рівні зовнішньої політики Єгипту, де зосереджено основні безпекові інтереси, та звідки походить більшість загроз безпеці країни.
68284. Пряма та непряма реваскуляризація при стегно-підколінно-гомілковій оклюзії в умовах хронічної критичної ішемії 327 KB
  Відсутність комплексних досліджень стосовно зясування основних патогенетично обґрунтованих критеріїв застосування аутовени низхідної артерії коліна реваскуляризуючої остеоперфорації трансплантації кісткового мозку великогомілкової кістки при лікуванні хворих на хронічну...
68285. ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ФІНІШНОЇ ОБРОБКИ ВНУТРІШНІХ ЦИЛІНДРИЧНИХ ПОВЕРХОНЬ ДЕТАЛЕЙ РЕДУКТОРІВ 725.5 KB
  Створення сучасних високонадійних машин і систем вимагає застосування ефективних технологій механічної обробки деталей які забезпечують необхідну точність якість і продуктивність їх обробки.