56527

Розв’язування тригонометричних рівнянь

Конспект урока

Педагогика и дидактика

Розглянемо такі тригонометричні рівняння. Рівняння які зводяться до квадратних відносно тригонометричної функції. Рівняння які розвязуються за допомогою рівності однойменних тригонометричних функцій. Лінійні рівняння відносно синуса і косинуса.

Украинкский

2014-04-07

2.9 MB

17 чел.

Тема: Розвязування тригонометричних рівнянь.

Дидактична мета: узагальнення і систематизація знань учнів по розв’язуванню різних типів тригонометричних рівнянь.

Виховна мета: розвивати логічне мислення, формувати вміння переносити набуті знання у нові ситуації, підтримувати в учнів бажання займатись математикою і самостійно здобувати нові знання.

Тип уроку: узагальнення і систематизації знань.

Обладнання: таблиці «Загальні розв'язки найпростіших тригонометричних рівнянь», «Основні тотожності і співвідношення обернених тригонометричних функцій».

Структура уроку-семінару

  1.  Вступне слово вчителя.
  2.  Виступи учнів. Узагальнення і систематизація знань по розв’язуванню різних типів тригонометричних рівнянь.
  3.  Колективні обговорення.
  4.  Домашнє завдання.
  5.  Підсумок семінару.

Хід семінару

І. Вчитель повідомляє тему і мету семінару та питання, які виносяться на семінарське заняття. На попередніх уроках ми розв’язували різні типи тригонометричних рівнянь, які зводяться до найпростіших. Оскільки вивчення розділу завершується, то виникає необхідність систематизувати вивчені прийоми розв’язування тригонометричних рівнянь. Загального методу розв’язування тригонометричних рівнянь не існує. Розглянемо такі тригонометричні рівняння.

1. Рівняння, які зводяться до квадратних відносно тригонометричної функції.

2. Розвязування однорідних тригонометричних рівнянь.

3. Рівняння, які розв’язуються за допомогою рівності однойменних тригонометричних функцій.

4. Лінійні рівняння відносно синуса і косинуса.

5. Тригонометричні рівняння, які розв’язуються за допомогою формул додавання та формул пониження степеня.

6. Рівняння із змінною у знаменнику.

7. Розв'язування тригонометричних рівнянь за допомогою перетворень добутків тригонометричних функцій у суму.

ІІ. Актуалізація опорних знань

(фронтальне опитування)

  1.  Яке рівняння називається тригонометричним?
  2.  Який алгоритм розв’язування тригонометричних рівнянь?

а) встановлюють ОДЗ даного рівняння;

б) здійснюють послідовно перетворення від даного рівняння до рівняння, розв’язування якого очевидне;

в) знаходять корені одержаного рівняння;

г) перевіряють, чи є знайдені корені коренями даного рівняння.

  1.  За таблицею «Загальні розв'язки найпростіших тригонометричних рівнянь» повторити розв’язання рівнянь (таблиця 1).

Чи функції  обмежені?

  1.  Повторити основні тригонометричні формули.
  2.  Повторити основні тригонометричні тотожності і співвідношення тригонометричних функцій, які використали при розв’язуванні тригонометричних рівнянь(таблиця 2).
  3.  Чи змінюється при перетвореннях тригонометричних рівнянь ОДЗ невідомого?

Таблиця 1

Рівняння

Загальні розв'язки рівняння

Обмеження

Таблиця 2

Тотожність

Область визначення

ІІІ. Виступи учнів

Перший учень. Розглянемо рівняння, які зводяться до квадратних відносно однієї їз тригонометричних функцій. Рівняння виду:

Розв’язати рівняння

№1.

Розв’язання. Нехай , тоді , матимемо

отже

 

                    

- рівняння не має коренів, оскільки .

Відповідь: .

№2.

Розв'язання.

Нехай , тоді , матимемо

отже

;    

;    .

Відповідь: , .

Другий учень. Розв’язування однорідних тригонометричних рівнянь.

а) рівняння виду  називається однорідним тригонометричним рівнянням першого степеня відносно  і . Воно розв’язується діленням обох частин на . Тоді одержимо рівняння

б) рівняння виду  називається однорідним рівнянням другого степеня відносно  і ,  або які-небудь два з них відмінні від нуля. Якщо , розділимо обидві частини рівняння на ,

Якщо ж , то матимемо рівняння

Розв’язати рівняння

№1. .

Розв’язання. Оскільки  (бо тоді повинна виконуватись рівність , але косинус і синус не можуть одночасно дорівнювати нулю), то поділимо обидві частини рівняння на (або ).

Нехай , тоді , матимемо

Отже

;    .

;    

Відповідь:

№2.

Розв'язання.

або

або ;    .

Відповідь:

Третій учень. Рівняння, які розв’язуються за допомогою рівності однойменних тригонометричних функцій. Це рівняння виду

Розглянемо таблицю

Рівняння

Загальний розв'язок рівняння

Обмеженість

Розв’язати рівняння

№1.

Розв'язання.

 

 

 

Або можна розв’язати так:

 або

,  або ,

.

Відповідь:

№2.

Розв’язання:  

 тоді

               

                  k

                       k

Відповідь: , k

Четвертий учень. Рівняння лінійні відносно .

Рівняння виду  де a,b,cсталі коефіцієнти, називається лінійним відносно .

Дане рівняння можна розв’язувати різними способами. (Декілька учнів розв’язують рівняння на дошці різними способами)

а) За допомогою введення допоміжного аргументу, замінюємо вираз  на  для цього обидві частини рівняння

 ділимо на

Нехай  тоді .

Розв’язати рівняння

№1.

Розв’язання.

, , матимемо .

Відповідь:

б) зведення рівняння до однорідного відносно синуса і косинуса

Розв'язати рівняння

№2.

Розв'язання. , матимемо

Відповідь:

в) за допомогою універсальної підстановки

№3.

Розв'язання.

При цій підстановці може бути втрата коренів. Перевіряємо чи буде

 розв'язком даного рівняння:

 є розв'язком рівняння.

Відповідь: ,

г) №5

Піднесемо обидві частини рівняння до квадрату. При цьому можлива поява сторонніх коренів і тому треба виконати перевірку:

Розв’язання.

Запишемо

Перевірка: якщо , то

не є коренем рівняння.

Якщо , то

Отже,  - корінь рівняння.

Якщо , то

Отже,  - корінь рівняння.

Якщо , то

.

Отже,  не є коренем рівняння.

Відповідь:

П’ятий учень. Тригонометричні рівняння, які розв’язуються за допомогою формул додавання, та формул пониження степеня.

Розв’язати рівняння

№1. .

Розв’язання.

Відповідь:

Шостий учень. Рівняння із змінною у знаменнику.

Розв’язати рівняння

№1.

Розв'язання.

Якщо k – парне, тобто  то знаменник рівняння дорівнює нулю, якщо

k – непарне, тобто , тоді

Відповідь: .

Сьомий учень. Розв’язування тригонометричних рівнянь перетворенням добутків тригонометричних функцій.

Розв’язати рівняння

№1.

Розв’язання. Обидві частини даного рівняння перетворимо у суму

 Розв'яжемо сукупність рівнянь

При  якщо  Оскільки, всі значення  містяться у множині розв’язків , то розв'язком даного рівняння буде

Відповідь:

IV. Домашнє завдання

№212(1,2), №213(1), №215(1,2), ст.38.

Мерзляк А.Г. Алгебра і початки аналізу. 10 кл. збірник задач і контрольних робіт/А.Г. Мерзляк, В.Б. Полонський, Ю.М. Рабінович, М.С. Якір. – Х.: Гімназія, 2012. – 144с.

V. Підсумок семінару.

Вчитель оголошує оцінки учням. Учні діляться враженнями про позитивні і негативні сторони у виступах учнів. Далі вчитель зупиняється тому, що нового дізналися учні на цьому уроці та як здійснювалось практичне застосування вивченої теорії до розв’язування тригонометричних рівнянь, а деяким учням пропонується повторити ще раз окремі формули тригонометрії.

Для підготовки до семінару були запропоновані такі тригонометричні рівняння:

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  
  9.  1)

2)

3)

4)

     III. 1)

           2)

3)

     IV. 1)

2)

3)

4)

5)

      V. 1) cos4

2)

3)

4)

5)

     VI. 1)

2)

3)

4)

    VII. 1)

2)

3)

   VIII. 1)

2)

     IX. 1)


 

А также другие работы, которые могут Вас заинтересовать

63806. Поликлиника 35.5 KB
  Кабинет доврачебного приема Отделение профилактики в крупных поликлиниках. Лечебно-профилактическое отделение: кабинеты участковых терапевтов; подростковый кабинет; специальные кабинеты неврологический лор и др.
63808. Стационарная помощь 32 KB
  Обеспеченность койками должна быть 134 на 10000 населения к 2000 году планировалось до 148 коек в мире 45 коек развитые страны 130 140 коек на 10000 населения. По мощности определяется количеством коек: первой категории 8001000 коек.
63810. Основные показатели деятельности поликлиники 29 KB
  Организация работы поликлиники оценивается по показателям характеризующим: динамику посещений отношение числа посещений поликлиники в данном году к числу посещений в прошлом году умноженное на 100; структуру посещений по поводу заболеваний или с профилактической целью...
63811. Диспансеризация городского населения. Виды диспансеров. Основные направления их работы 24 KB
  Под диспансеризацией понимается активное динамическое наблюдение за состоянием здоровья определенных контингентов населения здоровых и больных взятие этих групп населения на учет с целью раннего выявления заболеваний...
63813. Организация скорой медицинской помощи 33 KB
  Организация скорой медицинской помощи Первые станции СМП появились в нач. Сейчас СМП претерпела изменения. СМП врачи скорой помощи. В крупных городах в 70 е гг неотложную помощь и СМП объединили.
63814. Организация и управление лечебно-профилактической помощью сельскому населению 28 KB
  К функциям земского самоуправления относилась и организация мед. В 1936 году медицинская организация Лиги наций признала что наиболее удобной формой помощи сельскому населению является сельский врачебный участок.