56528

Тригонометричні функції гострого кута прямокутного трикутника

Конспект урока

Педагогика и дидактика

Мета: формування поняття тригонометричних функцій гострого кута прямокутного трикутника дослідницько-евристичним методом; розвивати уміння учнів узагальнювати результати досліджень, спостережливість, прийоми аналізу і синтезу...

Украинкский

2014-04-07

83 KB

9 чел.

Матвієнко Н.С.

   

Методична розробка  уроку геометрії на тему:

«Тригонометричні функції гострого кута прямокутного трикутника»

(Дослідницько-евристичний метод) 

8 клас

Опішнянська спеціалізована школа І-ІІІ ступенів

Зіньківської районної ради  Полтавської області


Анотація: Розробка уроку засвоєння нових знань із геометрії у 8 класі. Мета:
формування поняття тригонометричних функцій гострого кута прямокутного трикутника дослідницько-евристичним методом; розвивати уміння учнів узагальнювати результати досліджень, спостережливість, прийоми аналізу і синтезу, креативність інтелектуальної діяльності; виховувати самостійно мислячу людину шляхом створення умов для індуктивного та дедуктивного мислення.

Застосування дослідницько-евристичного методу для

вивчення тригонометричних функцій

Однією з найскладніших для сприйняття учнями 8 класу є тема: "Тригонометричні функції гострого кута прямокутного трикутника".

Якщо основна заповідь лікарів: "не нашкодь", то для нас, учителів, основне правило звучить, мабуть, "не злякай". Вперше почутий складний термін може "заблокувати" сприйняття і викликати нерозуміння на довгі роки.

Вводити поняття sinα, cos α, tg α, ctg α потрібно поетапно і детально в ході евристичної бесіди та на основі власних досліджень учнів.

Задача.  За рисунком 1 знайдіть висоту ялинки.

Рис. 1

Діти зустрічаються з проблемою – знань недостатньо для розв’язку задачі.

Формулюється мета уроку: отримати нові знання необхідні для розв’язання задач такого типу.

Учитель. Діти, яка фігура зображена Рис. 2?

Рис. 2

Учні. Кут α.

Учитель. Візьмемо довільну точку на одній із сторін кута та опустимо з неї перпендикуляр на іншу сторону кута. Яка фігура утвориться?

Рис.3

Учні.   Прямокутний  ∆АВ1С1. Рис.3.

Учитель. Чи можемо ми опустити ще один перпендикуляр В2С2?

Учні.   Так.

Рис.4

Учитель. Яка фігура утворилася? Рис. 4

Учні.   Ще один прямокутний ∆АВ2С2.

Учитель. Чи можемо ми виконати добудову, щоб отримати ще один прямокутний ∆АВ3С3?

Учні.   Звичайно, можемо.(Рис.5)

Рис.5

Учитель. Діти, зараз я вам пропоную у зошитах побудувати довільний гострий кут і опустити перпендикуляри так, як це зробили на дошці.

Учитель. Діти, катети АС1 і В1С1 однаково чи по-різному розташовані відносно кута α?

Учні.   По-різному.

Учитель. Яку назву можна підібрати для катетів АС1 і В1С1?

Вислуховуються різні версії учнів. В процесі обговорення доходимо до думки, що найкраще підходять терміни «протилежний катет» і «прилеглий катет».

Далі учитель пропонує учням взяти лінійки і на своїх малюнках, виконаних в зошитах, виміряти довжини сторін прямокутних трикутників: АС1, АС2, АС3 – прилеглі катети до кута α.

Потім учні вимірюють гіпотенузи прямокутних трикутників: АВ1, АВ2, АВ3.

Після проведених вимірювань учитель пропонує учням знайти відношення прилеглого катета до гіпотенузи з точністю до десятих.

АС1:АВ1=…; АС2:АВ2=…; АС3:АВ3=…;

Далі учитель записує на дошці результати, які отримали учні.

Учитель. Діти, всі кути, побудовані вами, мають різні градусні міри. Кожен з трьох прямокутних трикутників мають різні довжини сторін. А що спільного мають всі прямокутні трикутники, які побудовані вами в зошиті і мною на дошці?

Учні.   У них спільний кут α.

Учитель. Діти, той хто правильно зробив вимірювання і обчислення може зробити деякі висновки. Які?

Далі всі бажаючі учні висловлюють свої припущення.

Як підсумок обговорення, формується думка, що у прямокутному трикутнику відношення прилеглого катета до гіпотенузи є сталою величиною і залежить тільки від градусної міри кута, а не залежить від довжин сторін.

Учитель. Діти, те що ми з вами щойно досліджували на уроці, ще 2000 років назад робив давньогрецький астроном і математик Гіпарх (близько 150р. до н.е.). Гіпарх побудував малюнок, провів вимірювання та обчислення, отримав отакі результати і зрозумів, що це відкриття. «Оскільки це відкриття,- подумав учений,- то йому треба підібрати назву».

Учитель. Діти, а як би ви назвали відношення прилеглого катета до гіпотенузи у прямокутному трикутнику?

Всі бажаючі учні висловлюють свої варіанти, вчитель підтримує обговорення.

Учитель. Так, дійсно, по-різному можна назвати це відношення, та найбільш влучним  для цього відкриття став термін «косинус». Отже, косинусом гострого кута прямокутного трикутника називається відношення прилеглого катета до гіпотенузи.

Учитель. Діти, у прямокутному трикутнику є не тільки прилеглий катет до кута α, а є ще катет протилежний до даного кута. Тому ми продовжуємо дослідження.

Далі вчитель пропонує виміряти довжини катетів В1С1, В2С2, В3С3 – протилежних до кута α і знайти відношення протилежних катетів до гіпотенузи.

Через деякий час учні озвучують свої результати і переконуються, що і ці відношення у кожного учня є сталими.

Учитель. Отже, відношення протилежного катета до гіпотенузи у прямокутному трикутнику є величиною сталою і залежить тільки від градусної міри кута.Тому це також відкриття, а, отже, і йому треба дати назву.

Після пропозицій учнів учитель підсумовує обговорення і вводить поняття синуса α.

 Учитель. Незалежно від Гіпарха аналогічні дослідження проводили індійські астрономи. Термін «sinus» хоч і був введений латинською мовою у ΧІІ ст. (більше 1000 років підбирали остаточну назву), але переклали його з індійської «архадживе», що означає половина хорди.

  Учитель. Термін «косинус» походить від скорочення двох слів «sinus complementi» - синус доповнення.

Далі учитель звертається до учнів із запитанням:

Учитель. Діти, чи можливо знайти інші відношення у побудованих прямокутних трикутниках?

Учні пропонують кілька варіантів, з яких учитель зупиняється на відношенні протилежного катета до прилеглого катета.

Учні вже готові самостійно знайти відношення і зробити висновок про те, що і ці величини рівні між собою. Після цього учитель вводить поняття  тангенса α. Аналогічно вводиться поняття  котангенса α.

 Учитель. Термін «тангенс» був введений у 1583 році німецьким математиком Т. Фінком (1561-1656). Латинське слово «тангенс» означає той, що дотикається. Термін «котангенс» походить, як і косинус, від словосполучення «tangens complementi».

Учитель. Діти, сьогодні на уроці ми з вами весь час вимірювали різні елементи трикутника. В математиці є цілий розділ, який вивчає відношення різних елементів трикутника і зв’язки між ними. Цей розділ називається – тригонометрія. Термін «тригонометрія», який походить від грецьких слів «тригон» - трикутник і «метрео» - вимірюю і означає в перекладі «вимірювання трикутників», був запропонований у 1595році німецьким математиком В. Б. Пітіском (1561 – 1613).

Учитель. Косинус, синус, тангенс, котангенс – це основні тригонометричні відношення, які частіше називають тригонометричні функції, допомагатимуть нам на наступних уроках знаходити будь-які невідомі елементи прямокутних трикутників.   

Література:

1. Водопьянова Ю. Активные методы обучения подростков как одна из форм личностно ориентированного подхода в учебно-воспитательном процессе: на материале естественнонаучных дисциплин: автореф. … канд. пед. наук: 13.00.01. М., 2005. 23 с.

2. Гейхман Л. К. Обучение общению во взаимодействии: интерактивный подход // Образование и наука. 2002. № 3. С. 134–139.

3. Голубкова О. А. Использование активных методовобучения в учебном процессе: учебно-методическое пособие. СПб., 1998. 42 с.

4. Еримбетова С., Маджуга А. Г., Ахметжан Б. Использование интерактивных (диалоговых) технологий обучения в процессе творческого саморазвития личности учащегося // Вестник высшей школы «Альма-Матер». 2003. № 11. С. 48–52.

5.Мерзляк А.Г., Полянський В.Б., Якір М.С. Геометрія: Підруч.  для 8 кл. з поглибленим вивченням математики. – Х.:Гімназія, 2008. – 240с.


 

А также другие работы, которые могут Вас заинтересовать

78269. Тахеометрическая съемкаемка 9. 163.31 KB
  При производстве тахеометрической съемки используют геодезический прибор тахеометр предназначенный для измерения горизонтальных и вертикальных углов длин линий и превышений. Для выполнения тахеометрической съемки используются также тахеометры с номограммным определением превышений и горизонтальных проложений линий. Производство тахеометрической съемки Тахеометрическая съемка выполняется с пунктов съемочного обоснования их называют станциями.
78270. Состав камеральных работ 166.31 KB
  Стороны угла проектируют на лимб с использованием подвижной визирной плоскости зрительной трубы. Она образуется визирной осью трубы при её вращении вокруг горизонтальной оси. Данную плоскость поочередно совмещают со сторонами угла ВА и ВС последовательно направляя визирную ось зрительной трубы на точки А и С...
78271. Определение положения точек земной поверхности, системы координат 125.83 KB
  Определение положения точек земной поверхности системы координат Топографическое изучение земной поверхности заключается в определении положения ситуации и рельефа относительно математической поверхности Земли т. в определении пространственных координат характерных точек необходимых и достаточных для моделирования местности. Модель местности может быть представлена в виде геодезических чертежей изготовление которых называют картографированием и аналитически в виде совокупности координат характерных точек. Для построения моделей...
78272. Масштабы топографических карт планов 25.89 KB
  Масштаб карты это отношение длины отрезка на карте к его действительной длине на местности. Масштаб от немецкого мера и Stb палка отношение длины отрезка на карте плане аэро или космическом снимке к его действительной длине на местности. Именованный словесный масштаб вид масштаба словесное указание того какое расстояние на местности соответствует 1 см на карте плане снимке. Так как длины линий на местности принято измерять в метрах а на картах и планах в сантиметрах то масштабы удобно выражать в словесной форме...
78273. Нивелирование трассы 50.9 KB
  Закрепление трассы по высоте Вдоль всей разбитой на местности трассы но за пределами зоны работ закрепляются точки называемые реперами. Чтобы не пропустить пикеты и плюсовые точки нивелировщик должен иметь пикетажный журнал трассы. За связующие точки принимают пикеты или плюсовые точки но чтобы расстояние между ними не более 150 м а превышения несколько меньше длины рейки. Нивелирование трассы Отсчеты по рейкам установленным на связующие точки берут в следующей последовательности: 1 по черной стороне рейки на заднюю точку Зч; 2 по...
78274. Условные знаки. Классификация топографических (картографических) условных 37.03 KB
  Условные знаки. Классификация топографических картографических условных знаков Топографические картографические условные знаки символические штриховые и фоновые условные обозначения объектов местности применяемые для их изображения на топографических картах. Для топографических условных знаков предусмотрена общность обозначений по начертанию и цвету однородных групп объектов при этом основные знаки для топографических карт разных стран не имеют между собой особых различий...
78275. Рельеф местности и его изображение на топографических картах и планах 396.95 KB
  Основные формы рельефа и их элементы; характерные точки и линии. При проектировании и строительстве железных автомобильных и других сетей необходимо учитывать характер рельефа горный холмистый равнинный и др. Рельеф земной поверхности весьма разнообразен но все многообразие форм рельефа для упрощения его анализа типизировано на небольшое количество основных форм...
78276. Ориентирование направлений 97.22 KB
  При этом положение линии определяют с помощью соответствующих углов ориентирования: дирекционного угла истинного или магнитного азимута. В этом случае положение линии местности относительно осевого меридиана определяет угол ориентирования называемый дирекционным рис. Дирекционные углы Для линии ОА её дирекционным углом в точке О является горизонтальный угол αО между северным направлением осевого меридиана и направлением линии. Таким образом дирекционным углом является угол в горизонтальной плоскости отсчитываемый от северного направления...
78277. Определение прямоугольных координат точек 475.32 KB
  Определение прямоугольных координат точек. Широта φ это угол образованный нормалью данной точки к плоскости эллипсоида и плоскостью экватора. Долгота λ это двугранный угол образованный плоскостью нулевого гринвичского меридиана и плоскостью меридиана в данной точке М Широта и долгота полностью не отражают положение точки в пространстве необходимо знать 3ю координату высоту. Х Y Система плоских прямоугольных координат Гаусса-Крюгера Для того чтобы воспользоваться прямоугольной системой координат необходимо земной эллипсоид...