56535

Трикутники

Конспект урока

Педагогика и дидактика

Мета: Систематизувати основні теоретичні положення з теми «Трикутники». Ліквідувати прогалини в знаннях, уміннях і навичках учнів; виховання активності, самостійності учнів, творчого підходу до оволодіння знаннями.

Украинкский

2014-04-07

1.02 MB

6 чел.

10-ий клас

Тема:  «Трикутники»                                                                                                                                                                   

Мета: Систематизувати основні теоретичні положення з теми « Трикутники». Ліквідувати прогалини в знаннях, уміннях і навичках учнів; виховання активності, самостійності учнів, творчого підходу до оволодіння знаннями.

Тип уроку: Урок узагальнення і систематизації знань.

                                                                  Хід уроку

І. Перевірка домашнього завдання:

Учні вдома самостійно працювали з учбовою літературою, посібниками по математиці, довідниками. Перед  учнями були поставлені запитання:

  1.  Означення трикутника. Види трикутників.
  2.  Ознаки рівності і подібності трикутників.
  3.  Рівнобедрений та рівносторонній трикутники і їх властивості.
  4.  Сума кутів трикутника. Зовнішній кут трикутника.
  5.  Прямокутний трикутник, його елементи. Ознаки рівності прямокутних трикутників.
  6.  Теорема Піфагора і її наслідки.
  7.  Теореми синусів і косинусів.
  8.  Площа трикутника. Правильний трикутник і його площа.

А також учням пропонували задачі для самостійного розв’язання:

Задача 1. В рівнобедреному трикутнику АВС:  АВ=ВС, медіана АD перпендикулярна бісектрисі СЕ. Знайти величину кути АСВ.

Задача 2. В трикутнику АВС медіана АМ перпендикулярна медіані BN. Знайти площу трикутника АВС, якщо АМ=m;  BN=n.

Задача 3. Знайти площу трикутника АВС, якщо АВ=3см;  ВС=7см, довжина медіани ВМ=4см.

Задача 4. В прямокутному трикутнику АВС із вершини С прямого кута проведена висота СD. Точка D знаходиться на відстані m і n від катетів АС і ВС відповідно. Знайти довжини катетів.

ІІ. Актуалізація опорних знань, навичок і умінь учнів по темі: «Трикутники»

Вчитель перевіряє знання учнями основних формул з даної теми

(частина учнів працює біля дошки, частина за першою партою на окремому аркуші паперу, а частина опитується усно)

   Основні формули з теми «Трикутники».

  1.  Площа трикутника                                        

   В                              1) S     =  aha = bhb =  chc

                                                    2) S     = abSin γ = bcSin α = acSinβ

       А                                  C     3) S      =, де p =

                                                    4) S     = pr, де rрадіус вписаного кола

                                                    5) S     =, де R – радіус описаного кола

                                                    6) S     = 2 SinαSinβSinγ

                                                    7) S     =

                                                    8) S     =

    2. Теорема синусів:

              =  =  - 2R;  R = , де α – кут, протилежний стороні а

    3. Теорема косинусів.

        а) =  +  – 2bcCosα;

        б) Cosα = ;

        с) Якщо α > β > γ  і Cosα = 0, то     - прямокутний;

                      -1 < Cosα < 0, то    - тупокутний;

                             Cosα > 1, то     не існує.

    4.          b 1)  = ;

            a           2) l = ab – mт;                                                      

                    m                      n                                     3) l = .

 

    5.   1) r = ;             2) R = ;             3) ha = ;

          4)  +  +  = ;        5)  =  +  -

  6. Рівносторонній трикутник.

    1) ВК =  =  = ;    В

    2) h =  = R = 3r;

    3) R = ;  r = ;    = R = 2r;                                   

    4) S   =   або S   = .               А К С

   7. Прямокутний трикутник.

                                         

                                                                                  1) =  + - Т Піфагора

                                                                                            2) Співвідношення  в прям.

                         

 b   a      a = cSina;

                             a = btga;

         b = cCosa;

 c        с =  =   

3) Середньо-пропорційні відрізки в прямокутному трикутнику:

           = ;

           = c;

           = c.                                                                      

4)   = R = ;         r – , де a і bкатети, с – гіпотенуза.

                                                 С                                  5) S = ab;      S = c

                                                                                     6) Якщо т. К – точка дотику кола,  

                                                                                         вписаного в прямокутний три-              

 кутник, ділить гіпотенузу на

    А                   m                   K        n                В відрізки m і n, то S = mn.

 III.   Мотивація навчання учнів.

        В середній школі ми вивчили і на даному етапі систематизували основні теоретичні положення теми «Трикутники». Всі вони тісно взаємозв’язані між собою і складають цілісну систему планіметрії. На цьому занятті ми ще раз переконались у широких можливостях застосування теоретичного матеріалу про трикутники до розв’язання практичних задач.

IV.  Розв’язання задач.

      1. В трикутнику одна із сторін 56 см, а друга ділиться точкою дотику вписаного в нього кола на відрізки 32 см і 28 см. Знайти площу трикутника.

                                                                        Розв’язання:

                                                                       Нехай АВС – даний за умовою;   

                      B                                              т. М,К,Р – точки дотику;

  P   K                           АВ = 56 см; ВК = 32 см; СК = 28 см.    

    A C         Знайдемо S АВС.

За властивістю дотичних СМ = СК = 28 см; ВР = ВК = 32 см.

Тоді АР = АМ = 56 – 32 = 24(см); АС = АМ + МС = 24 + 28 = 52(см).                                                                    =  = 1344().

Відповідь: .

       2. Дві сторони трикутника дорівнюють 35 і 45 см, а бісектриса кута між ними 12 см. Знайти      площу трикутника.

 Розв’язання

Нехай в АВС:АВ = 35 см; ВС = 14 см; АВК = КВС = a;

 ВС – бісектриса АВС.

     Знайти S ABC. В

        

        35  14sin2a = 35  12sina + 12 14 sina;

        35  14sin2a = 35  12sina + 12 14 sina; А К        С

       35 14 2sina cosa = 12 sina 49;

       35 14 2 cosa = 12 49

        5 2   cosa = 3

        cosa = ;

Sina =  =  = ; Sin2a = 2sina cosa = 2  = ;                                                      = АВ ВС sinABC =  35 14  = 235()

Відповідь: S = 235,2 .

3. Сторони трикутника дорівнюють 78 см, 75 см, 51 см. Знайти площі частин трикутника, на які ділить його бісектриса меншого кута.

      Розв’язання

  Так як в трикутнику проти мен-

 шого кута лежить меншого сто-

             B                                                         рона, то нехай ВСА – менший,

   M                                                                  тоді АВ = 51 см; ВС = 75 см; АС =78 см.

 K

 C

A

За властивістю бісектриси кута трикутника:

 =  =  = . ВК + АК = 51 см.

АК + АК = 51; АК = 26 см; ВК = 26 см.

Проведемо СМ  АВ.

СМ =  =  =  =  = 72 (см).

= KB CM =   75 25 = 900 (; 

= AK CM =   29 72 = 939(.

Відповідь: 900  і 936 .

4. Довести, що сума відстаней від любої точки, взятої всередині правильного трикутника до сторін цього являється постійною величиною, яка не залежить від положення цієї точки.

 B  Розв’язання:

                                     =  +  +  =

                                                      = a = a = a;

A                                                     C                     + + = .

                                                         А це значить, що сума відстаней від                                  

точки до сторін є величина постійна.

V. Написанная тестової самостійної роботи.

     Варіанти тестової перевірки знань учнів по темі «Трикутники».

    Варіант І

1. Катети прямокутного трикутника дорівнюють 6 см і 8 см. Знайти радіус вписаного кола. (2 бали)

2. В трикутнику сторони дорівнюють 29 см, 6  см і 25 см. Знайти найбільшу висоту. (2 бали)

3. Сторони трикутника дорівнюють 12 см, 14 см і 16 см. На які відрізки ділить бісектриса сторону, що дорівнює 14 см. (2 бали)

4. Катет прямокутного трикутника дорівнює 13 см. Висота, проведена до гіпотенузи дорівнює 12 см. Знайти гіпотенузу. (3 бали)

5. Сторона трикутника дорівнює 28 см, а дві інші утворюють кут   60° і їх різниця дорівнює 20 см. Знайти сторони трикутника. (3 бали)

Варіант ІІ

1. Катети прямокутного трикутника дорівнюють 3 см і 4 см. Знайти R                (2 бали)

2. Сторони трикутника дорівнюють 25 см, 29 см і 36 см. Знайти меншу висоту.  (2 бали)

3. Висоти трикутника дорівнюють 4 см, 6 см і 8 см. Знайти радіус вписаного кола.(2 бали)

4. Знайти сторону трикутника, якщо протилежний її кут дорівнює 30°, а

R = 4см. (3 бали)

5. Катети відносяться до гіпотенузи як 5:12, Rr = 9 см. Знайти периметр.   (3 бали)

VI. Домашнє завдання.

     Підготуватись до семінару. Клас поділено на 4 групи. Кожна група готує реферат на одну із тем:

1) «Властивості бісектриси, висоти і медіани трикутника.»

2) «Рівнобедрений трикутник і його властивості.»

3) «Прямокутний трикутник. Вписане й описане коло.»

4) «Доведення різноманітних властивостей трикутника.»

   І розв’язує серію задач підібраних вчителем із основної і додаткової літератури.

Оформлюють свої розв’язання задач учні на окремих аркушах паперу. Паралельно до цього учні виконують творче завдання; скласти власну з даної теми, або перетворити одну із відомих задач.


Тестові завдання з теми «Трикутники»

1. Властивості медіан трикутника.

2. Радіус кола, описаного навколо прального трикутника

  а) R = ; б) R = ;         в) R = а; г) R = .

3. Ортоцентр трикутника – це

            точка перетину медіан трикутника;

 точка перетину висот трикутника;

точка перетину бісектрис трикутника;

точка перетину серединних перпендикулярів.

4. Центр кола, описаного навколо трикутника

          точка перетину медіан трикутника;

                точка перетину бісектрис трикутника;

                точка перетину серединних перпендикулярів до сторін трикутника;

  точка перетину висот трикутника.

 5. Радіус кола, вписаного в трикутник

        а) r = ;      б) r = а;  в) r = ;  г) r = .


 
О         

     

 

 О         

     


 

А также другие работы, которые могут Вас заинтересовать

36902. Изучение среды и простейших элементов 405.5 KB
  Домашнее задание выполняется по различным вариантам. В данном варианте меняется только цвет фона всей формы и цвет фона окна Text3. Варианты индивидуальных заданий. Разработать Windowsприложение вычисления значения функции у средствами Visul Bsic Вариант №1 у = b^2 c^2 t^2 Вариант №2 y = bc^3 c t^2 Вариант №3 y = b^3 c t^2 Вариант №4 y = c3 t c^2 Вариант №5 y = c^2 b t^2 Вариант №6 y = tk^5 c b^3 Вариант №7 y = c^3 t^2 b^5 Вариант №8 y = c^2 t b^2 Вариант №9 y = c^3 t b^2...
36903. Разработка приложений с разветвляющимися алгоритмами 359 KB
  Lbel1 Cption При х = Lbel2 Cption Функция вычисляется по формуле: Lbel3 Cption Получен результат Y = Lbel4 Cption Lbel5 Cption Лабораторная работа 2.Вариант 37 Text1 Text Text2...
36904. Изучение основных явлений поляризации света 483 KB
  Изучение основных явлений поляризации света. Цель работы: Получение и исследование поляризованного света и исследование свойств обыкновенных и необыкновенных лучей полученных с помощью двояко преломляющего кристалла. Принципиальная схема установки или её главных узлов: 1 упражнение: 2 упражнение: ИС источник света; ИС источник света; П поляроид 1поляризатор; Д...
36905. Изучение физических явлений, лежащих в основе работы полупроводникового фотоэлемента с запирающим слоем, определение зависимости фототока от освещенности, снятие ширины запрещенной зоны полупроводника 713 KB
  Цель работы: Изучение физических явлений лежащих в основе работы полупроводникового фотоэлемента с запирающим слоем определение зависимости фототока от освещенности снятие ширины запрещенной зоны полупроводника. На рисунке выше Ес энергия дна свободной зоны Ев энергия потолка валентной зоны; Fм Fп уровни Ферми металла и полупроводника Ам Ап работы выхода электрона из металла и полупроводника. Если уровень Ферми изолированного металла Fм лежит выше уровня Ферми полупроводника Fп т. Ам Ап то в первый момент их...
36906. Измерение холловской разности потенциалов в полулроводниковой пластине и определение концентрации, подвижности и знака носителей заряда, участвующих в токе 294.5 KB
  Эффект Холла в полупроводниках. Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Эффект Холла заключается в возникновении поперечной разности потенциалов при пропускании тока через металлическую или полупроводниковую пластинку помещенную в магнитное поле направленное под некоторым углом к направлению тока. Классическая...
36907. Подтверждение боровской теории строения водородоподобных атомов 255.5 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: В основе теории Бора лежат следующие постулаты: Первый постулат Бора постулат стационарных состояний: существуют некоторые стационарные состояния атома находясь в которых он не излучает энергии. Второй постулат Бора правило квантования орбит утверждает что в стационарном состоянии атома электрон двигаясь по круговой орбите должен иметь квантованные значения момента импульса удовлетворяющие условию где п = 1; 2;...
36908. Изучение процессов генерации и рекомбинации неравновесных носителей заряда в твердых телах при возбуждении их светом, экспериментальная проверка кинетики затухания рекомбинационной люминесценции при наличии центров захвата(ловушек) 658 KB
  Таблицы и графики Результаты измерений и расчетов: tc I1 мА I2 мА I3 мА I4 мА I5 мА Icp мА y = 10 0292 0284 0305 0293 0290 0293 0306 15 0264 0260 0265 0263 0261 0263 0379 20 0237 0238 0241 0243 0235 0239 0446 25 0220 0219 0216 0225 0228 0222 0501 30 0210 0209 0210 0203 0220 021 0543 35 0196 0192 0190 0195 0193 0193 061 40 0187 0185 0180 0179 0182 0183 0653 50 0170 0165 0165 0167 0170 0167 073 60 0158 0154 0156 0153 0154 0155 0796 70 0149 0147 0143 0144 0146...
36909. Кластерный анализ. Агломеративные методы 16.97 KB
  В качестве выбора нового расстояния между кластерами рассмотреть: 1Метод дальнего соседа 2Метод ближнего соседа. 3 Используем метод дальнего соседа. 4 Используем метод ближнего соседа. Решение поставленной задачи: 1Центрируем и нормируем: 2Рассчитаем матрицу расстояний: 1 2 3 4 5 6 Далее поскольку матрицы будут симметричными будут записаны полученные данные только над главной диагональю 3По методу...
36910. МОДЕЛИРОВАНИЕ ЗВЕНЬЕВ АВТОМАТИЧЕКСКИХ СИСТЕМ 346.5 KB
  1 Безынерционное звено Рис. 2 Интегрирующее звено Рис. 3 Апериодическое звено 1 порядка Рис. 4 Колебательное звено Переходные ht и передаточные Wp характеристики звеньев имеют вид: Безынерционное звено Wp=k Интегрирующее звено Wp=k p Апериодическое звено Wp=k Tp1 Колебательное звено Wp=k1 T2p22k2Tp1...