56535

Трикутники

Конспект урока

Педагогика и дидактика

Мета: Систематизувати основні теоретичні положення з теми «Трикутники». Ліквідувати прогалини в знаннях, уміннях і навичках учнів; виховання активності, самостійності учнів, творчого підходу до оволодіння знаннями.

Украинкский

2014-04-07

1.02 MB

6 чел.

10-ий клас

Тема:  «Трикутники»                                                                                                                                                                   

Мета: Систематизувати основні теоретичні положення з теми « Трикутники». Ліквідувати прогалини в знаннях, уміннях і навичках учнів; виховання активності, самостійності учнів, творчого підходу до оволодіння знаннями.

Тип уроку: Урок узагальнення і систематизації знань.

                                                                  Хід уроку

І. Перевірка домашнього завдання:

Учні вдома самостійно працювали з учбовою літературою, посібниками по математиці, довідниками. Перед  учнями були поставлені запитання:

  1.  Означення трикутника. Види трикутників.
  2.  Ознаки рівності і подібності трикутників.
  3.  Рівнобедрений та рівносторонній трикутники і їх властивості.
  4.  Сума кутів трикутника. Зовнішній кут трикутника.
  5.  Прямокутний трикутник, його елементи. Ознаки рівності прямокутних трикутників.
  6.  Теорема Піфагора і її наслідки.
  7.  Теореми синусів і косинусів.
  8.  Площа трикутника. Правильний трикутник і його площа.

А також учням пропонували задачі для самостійного розв’язання:

Задача 1. В рівнобедреному трикутнику АВС:  АВ=ВС, медіана АD перпендикулярна бісектрисі СЕ. Знайти величину кути АСВ.

Задача 2. В трикутнику АВС медіана АМ перпендикулярна медіані BN. Знайти площу трикутника АВС, якщо АМ=m;  BN=n.

Задача 3. Знайти площу трикутника АВС, якщо АВ=3см;  ВС=7см, довжина медіани ВМ=4см.

Задача 4. В прямокутному трикутнику АВС із вершини С прямого кута проведена висота СD. Точка D знаходиться на відстані m і n від катетів АС і ВС відповідно. Знайти довжини катетів.

ІІ. Актуалізація опорних знань, навичок і умінь учнів по темі: «Трикутники»

Вчитель перевіряє знання учнями основних формул з даної теми

(частина учнів працює біля дошки, частина за першою партою на окремому аркуші паперу, а частина опитується усно)

   Основні формули з теми «Трикутники».

  1.  Площа трикутника                                        

   В                              1) S     =  aha = bhb =  chc

                                                    2) S     = abSin γ = bcSin α = acSinβ

       А                                  C     3) S      =, де p =

                                                    4) S     = pr, де rрадіус вписаного кола

                                                    5) S     =, де R – радіус описаного кола

                                                    6) S     = 2 SinαSinβSinγ

                                                    7) S     =

                                                    8) S     =

    2. Теорема синусів:

              =  =  - 2R;  R = , де α – кут, протилежний стороні а

    3. Теорема косинусів.

        а) =  +  – 2bcCosα;

        б) Cosα = ;

        с) Якщо α > β > γ  і Cosα = 0, то     - прямокутний;

                      -1 < Cosα < 0, то    - тупокутний;

                             Cosα > 1, то     не існує.

    4.          b 1)  = ;

            a           2) l = ab – mт;                                                      

                    m                      n                                     3) l = .

 

    5.   1) r = ;             2) R = ;             3) ha = ;

          4)  +  +  = ;        5)  =  +  -

  6. Рівносторонній трикутник.

    1) ВК =  =  = ;    В

    2) h =  = R = 3r;

    3) R = ;  r = ;    = R = 2r;                                   

    4) S   =   або S   = .               А К С

   7. Прямокутний трикутник.

                                         

                                                                                  1) =  + - Т Піфагора

                                                                                            2) Співвідношення  в прям.

                         

 b   a      a = cSina;

                             a = btga;

         b = cCosa;

 c        с =  =   

3) Середньо-пропорційні відрізки в прямокутному трикутнику:

           = ;

           = c;

           = c.                                                                      

4)   = R = ;         r – , де a і bкатети, с – гіпотенуза.

                                                 С                                  5) S = ab;      S = c

                                                                                     6) Якщо т. К – точка дотику кола,  

                                                                                         вписаного в прямокутний три-              

 кутник, ділить гіпотенузу на

    А                   m                   K        n                В відрізки m і n, то S = mn.

 III.   Мотивація навчання учнів.

        В середній школі ми вивчили і на даному етапі систематизували основні теоретичні положення теми «Трикутники». Всі вони тісно взаємозв’язані між собою і складають цілісну систему планіметрії. На цьому занятті ми ще раз переконались у широких можливостях застосування теоретичного матеріалу про трикутники до розв’язання практичних задач.

IV.  Розв’язання задач.

      1. В трикутнику одна із сторін 56 см, а друга ділиться точкою дотику вписаного в нього кола на відрізки 32 см і 28 см. Знайти площу трикутника.

                                                                        Розв’язання:

                                                                       Нехай АВС – даний за умовою;   

                      B                                              т. М,К,Р – точки дотику;

  P   K                           АВ = 56 см; ВК = 32 см; СК = 28 см.    

    A C         Знайдемо S АВС.

За властивістю дотичних СМ = СК = 28 см; ВР = ВК = 32 см.

Тоді АР = АМ = 56 – 32 = 24(см); АС = АМ + МС = 24 + 28 = 52(см).                                                                    =  = 1344().

Відповідь: .

       2. Дві сторони трикутника дорівнюють 35 і 45 см, а бісектриса кута між ними 12 см. Знайти      площу трикутника.

 Розв’язання

Нехай в АВС:АВ = 35 см; ВС = 14 см; АВК = КВС = a;

 ВС – бісектриса АВС.

     Знайти S ABC. В

        

        35  14sin2a = 35  12sina + 12 14 sina;

        35  14sin2a = 35  12sina + 12 14 sina; А К        С

       35 14 2sina cosa = 12 sina 49;

       35 14 2 cosa = 12 49

        5 2   cosa = 3

        cosa = ;

Sina =  =  = ; Sin2a = 2sina cosa = 2  = ;                                                      = АВ ВС sinABC =  35 14  = 235()

Відповідь: S = 235,2 .

3. Сторони трикутника дорівнюють 78 см, 75 см, 51 см. Знайти площі частин трикутника, на які ділить його бісектриса меншого кута.

      Розв’язання

  Так як в трикутнику проти мен-

 шого кута лежить меншого сто-

             B                                                         рона, то нехай ВСА – менший,

   M                                                                  тоді АВ = 51 см; ВС = 75 см; АС =78 см.

 K

 C

A

За властивістю бісектриси кута трикутника:

 =  =  = . ВК + АК = 51 см.

АК + АК = 51; АК = 26 см; ВК = 26 см.

Проведемо СМ  АВ.

СМ =  =  =  =  = 72 (см).

= KB CM =   75 25 = 900 (; 

= AK CM =   29 72 = 939(.

Відповідь: 900  і 936 .

4. Довести, що сума відстаней від любої точки, взятої всередині правильного трикутника до сторін цього являється постійною величиною, яка не залежить від положення цієї точки.

 B  Розв’язання:

                                     =  +  +  =

                                                      = a = a = a;

A                                                     C                     + + = .

                                                         А це значить, що сума відстаней від                                  

точки до сторін є величина постійна.

V. Написанная тестової самостійної роботи.

     Варіанти тестової перевірки знань учнів по темі «Трикутники».

    Варіант І

1. Катети прямокутного трикутника дорівнюють 6 см і 8 см. Знайти радіус вписаного кола. (2 бали)

2. В трикутнику сторони дорівнюють 29 см, 6  см і 25 см. Знайти найбільшу висоту. (2 бали)

3. Сторони трикутника дорівнюють 12 см, 14 см і 16 см. На які відрізки ділить бісектриса сторону, що дорівнює 14 см. (2 бали)

4. Катет прямокутного трикутника дорівнює 13 см. Висота, проведена до гіпотенузи дорівнює 12 см. Знайти гіпотенузу. (3 бали)

5. Сторона трикутника дорівнює 28 см, а дві інші утворюють кут   60° і їх різниця дорівнює 20 см. Знайти сторони трикутника. (3 бали)

Варіант ІІ

1. Катети прямокутного трикутника дорівнюють 3 см і 4 см. Знайти R                (2 бали)

2. Сторони трикутника дорівнюють 25 см, 29 см і 36 см. Знайти меншу висоту.  (2 бали)

3. Висоти трикутника дорівнюють 4 см, 6 см і 8 см. Знайти радіус вписаного кола.(2 бали)

4. Знайти сторону трикутника, якщо протилежний її кут дорівнює 30°, а

R = 4см. (3 бали)

5. Катети відносяться до гіпотенузи як 5:12, Rr = 9 см. Знайти периметр.   (3 бали)

VI. Домашнє завдання.

     Підготуватись до семінару. Клас поділено на 4 групи. Кожна група готує реферат на одну із тем:

1) «Властивості бісектриси, висоти і медіани трикутника.»

2) «Рівнобедрений трикутник і його властивості.»

3) «Прямокутний трикутник. Вписане й описане коло.»

4) «Доведення різноманітних властивостей трикутника.»

   І розв’язує серію задач підібраних вчителем із основної і додаткової літератури.

Оформлюють свої розв’язання задач учні на окремих аркушах паперу. Паралельно до цього учні виконують творче завдання; скласти власну з даної теми, або перетворити одну із відомих задач.


Тестові завдання з теми «Трикутники»

1. Властивості медіан трикутника.

2. Радіус кола, описаного навколо прального трикутника

  а) R = ; б) R = ;         в) R = а; г) R = .

3. Ортоцентр трикутника – це

            точка перетину медіан трикутника;

 точка перетину висот трикутника;

точка перетину бісектрис трикутника;

точка перетину серединних перпендикулярів.

4. Центр кола, описаного навколо трикутника

          точка перетину медіан трикутника;

                точка перетину бісектрис трикутника;

                точка перетину серединних перпендикулярів до сторін трикутника;

  точка перетину висот трикутника.

 5. Радіус кола, вписаного в трикутник

        а) r = ;      б) r = а;  в) r = ;  г) r = .


 
О         

     

 

 О         

     


 

А также другие работы, которые могут Вас заинтересовать

37794. СОБСТВЕННОСТЬ И ТИПЫ ЭКОНОМИЧЕСКИХ СИСТЕМ 85 KB
  Собственность выражает характер присвоения ресурсов, произведённого продукта, доходов, самого процесса производства в хозяйстве. Присваивать, быть собственником - это значит относиться к объектам экономических отношений, как к своим...
37795. Цифровая система передачи ИКМ 30 6.04 MB
  НАЗНАЧЕНИЕ И СОСТАВ АППАРАТУРЫ ИКМ30 Аппаратура ИКМ30 предназначена для формирования абонентских и соединительных линий ГТС и пригородной связи и позволяет организовать до 30 каналов ТЧ по парам низкочастотного симметричного кабеля с бумажной изоляцией типов Т и ТПП с диаметром жил 05 и 07 мм при однокабельном и двухкабельном вариантах работы. На стандартной стойке с размерами 2600х600х225 мм размещается до четырех комплектов АЦО обеспечивая при этом организацию 120 каналов ТЧ. Основные электрические характеристики аппаратуры ИКМ30...
37796. Знакомство с диалоговой оболочкой пакета прикладных программ IMDS 642 KB
  Цель: научиться основным приемам работы с пакетом программ IMDS (введение структуры и параметров модели, задания режимов интегрирования модели, задание выходных блоков, сохранение файлов структуры и результатов расчетов) при моделировании силовой части электропривода постоянного тока независимого возбуждения.
37797. Ознакомится с назначением и принципом работы выпрямительных и сглаживающих устройств, используемых в источниках питания электронных цепей 91 KB
  Схема однополупериодного выпрямителя. Рассчитать коэффициент пульсации и сглаживания для однополупериодного выпрямителя со сглаживающим резистивноемкостным фильтром. Схема однополупериодного выпрямителя со сглаживающим резистивноемкостным фильтром. Рассчитать коэффициент пульсации и сглаживания для однополупериодного выпрямителя со сглаживающим индуктивноемкостным фильтром.
37799. Побудова корпоративної комп’ютерної мережі з доступом до ресурсів Internet 57 KB
  Мета роботи: Вивчити основні принципи побудови корпоративних компютерних мереж на основі комутаторів Fst Ethernet маршрутизуючого комутатора 3го рівня Fst Ethernet програмного маршрутизатора на базі ПК з операційною системою FreeBSD 8.1 принципи організації доступу корпоративної компютерної мережі до ресурсів Internet через апаратний маршрутизатор Fst Ethernet отримати практичні навики по налаштуванню та діагностуванню роботи корпоративної компютерної мережі створенню та використанню спільних ресурсів. Завдання: Дослідити...
37800. Робота з базами даних в мережі 88.5 KB
  Робота з базами даних в мережі. Вивчення архітектури мережевих баз даних. Архітектура серверних баз даних. Оскільки настільні СУБД такі як dBse Prdox FoxPro ccess не містять спеціальних додатків і сервісів для роботи в мережі щоб керувати даними а використовують для цієї цілі файлові сервіси операційної системи вся реальна обробка даних в таких СУБД здійснюється клієнтськими додатками і будьякі бібліотеки доступу до даних в цьому випадку також знаходяться в адресному просторі клієнтського додатку.
37801. Амплитудные детекторы радиосигналов 374 KB
  Приводятся теоретические сведения о принципах детектирования амплитудно модулированных сигналов процессах происходящих при детектировании АМ сигналов основные соотношения и рекомендации по выбору параметров элементов детекторов. В работе изучается влияние элементов принципиальных схем детекторов на характеристики детектирования и на выходные сигналы.1 Определение детектора и процесса детектирования. Процесс детектирования радиосигналов определяется как обратный процессу получения модулированных колебаний радиосигналов.