56535

Трикутники

Конспект урока

Педагогика и дидактика

Мета: Систематизувати основні теоретичні положення з теми «Трикутники». Ліквідувати прогалини в знаннях, уміннях і навичках учнів; виховання активності, самостійності учнів, творчого підходу до оволодіння знаннями.

Украинкский

2014-04-07

1.02 MB

6 чел.

10-ий клас

Тема:  «Трикутники»                                                                                                                                                                   

Мета: Систематизувати основні теоретичні положення з теми « Трикутники». Ліквідувати прогалини в знаннях, уміннях і навичках учнів; виховання активності, самостійності учнів, творчого підходу до оволодіння знаннями.

Тип уроку: Урок узагальнення і систематизації знань.

                                                                  Хід уроку

І. Перевірка домашнього завдання:

Учні вдома самостійно працювали з учбовою літературою, посібниками по математиці, довідниками. Перед  учнями були поставлені запитання:

  1.  Означення трикутника. Види трикутників.
  2.  Ознаки рівності і подібності трикутників.
  3.  Рівнобедрений та рівносторонній трикутники і їх властивості.
  4.  Сума кутів трикутника. Зовнішній кут трикутника.
  5.  Прямокутний трикутник, його елементи. Ознаки рівності прямокутних трикутників.
  6.  Теорема Піфагора і її наслідки.
  7.  Теореми синусів і косинусів.
  8.  Площа трикутника. Правильний трикутник і його площа.

А також учням пропонували задачі для самостійного розв’язання:

Задача 1. В рівнобедреному трикутнику АВС:  АВ=ВС, медіана АD перпендикулярна бісектрисі СЕ. Знайти величину кути АСВ.

Задача 2. В трикутнику АВС медіана АМ перпендикулярна медіані BN. Знайти площу трикутника АВС, якщо АМ=m;  BN=n.

Задача 3. Знайти площу трикутника АВС, якщо АВ=3см;  ВС=7см, довжина медіани ВМ=4см.

Задача 4. В прямокутному трикутнику АВС із вершини С прямого кута проведена висота СD. Точка D знаходиться на відстані m і n від катетів АС і ВС відповідно. Знайти довжини катетів.

ІІ. Актуалізація опорних знань, навичок і умінь учнів по темі: «Трикутники»

Вчитель перевіряє знання учнями основних формул з даної теми

(частина учнів працює біля дошки, частина за першою партою на окремому аркуші паперу, а частина опитується усно)

   Основні формули з теми «Трикутники».

  1.  Площа трикутника                                        

   В                              1) S     =  aha = bhb =  chc

                                                    2) S     = abSin γ = bcSin α = acSinβ

       А                                  C     3) S      =, де p =

                                                    4) S     = pr, де rрадіус вписаного кола

                                                    5) S     =, де R – радіус описаного кола

                                                    6) S     = 2 SinαSinβSinγ

                                                    7) S     =

                                                    8) S     =

    2. Теорема синусів:

              =  =  - 2R;  R = , де α – кут, протилежний стороні а

    3. Теорема косинусів.

        а) =  +  – 2bcCosα;

        б) Cosα = ;

        с) Якщо α > β > γ  і Cosα = 0, то     - прямокутний;

                      -1 < Cosα < 0, то    - тупокутний;

                             Cosα > 1, то     не існує.

    4.          b 1)  = ;

            a           2) l = ab – mт;                                                      

                    m                      n                                     3) l = .

 

    5.   1) r = ;             2) R = ;             3) ha = ;

          4)  +  +  = ;        5)  =  +  -

  6. Рівносторонній трикутник.

    1) ВК =  =  = ;    В

    2) h =  = R = 3r;

    3) R = ;  r = ;    = R = 2r;                                   

    4) S   =   або S   = .               А К С

   7. Прямокутний трикутник.

                                         

                                                                                  1) =  + - Т Піфагора

                                                                                            2) Співвідношення  в прям.

                         

 b   a      a = cSina;

                             a = btga;

         b = cCosa;

 c        с =  =   

3) Середньо-пропорційні відрізки в прямокутному трикутнику:

           = ;

           = c;

           = c.                                                                      

4)   = R = ;         r – , де a і bкатети, с – гіпотенуза.

                                                 С                                  5) S = ab;      S = c

                                                                                     6) Якщо т. К – точка дотику кола,  

                                                                                         вписаного в прямокутний три-              

 кутник, ділить гіпотенузу на

    А                   m                   K        n                В відрізки m і n, то S = mn.

 III.   Мотивація навчання учнів.

        В середній школі ми вивчили і на даному етапі систематизували основні теоретичні положення теми «Трикутники». Всі вони тісно взаємозв’язані між собою і складають цілісну систему планіметрії. На цьому занятті ми ще раз переконались у широких можливостях застосування теоретичного матеріалу про трикутники до розв’язання практичних задач.

IV.  Розв’язання задач.

      1. В трикутнику одна із сторін 56 см, а друга ділиться точкою дотику вписаного в нього кола на відрізки 32 см і 28 см. Знайти площу трикутника.

                                                                        Розв’язання:

                                                                       Нехай АВС – даний за умовою;   

                      B                                              т. М,К,Р – точки дотику;

  P   K                           АВ = 56 см; ВК = 32 см; СК = 28 см.    

    A C         Знайдемо S АВС.

За властивістю дотичних СМ = СК = 28 см; ВР = ВК = 32 см.

Тоді АР = АМ = 56 – 32 = 24(см); АС = АМ + МС = 24 + 28 = 52(см).                                                                    =  = 1344().

Відповідь: .

       2. Дві сторони трикутника дорівнюють 35 і 45 см, а бісектриса кута між ними 12 см. Знайти      площу трикутника.

 Розв’язання

Нехай в АВС:АВ = 35 см; ВС = 14 см; АВК = КВС = a;

 ВС – бісектриса АВС.

     Знайти S ABC. В

        

        35  14sin2a = 35  12sina + 12 14 sina;

        35  14sin2a = 35  12sina + 12 14 sina; А К        С

       35 14 2sina cosa = 12 sina 49;

       35 14 2 cosa = 12 49

        5 2   cosa = 3

        cosa = ;

Sina =  =  = ; Sin2a = 2sina cosa = 2  = ;                                                      = АВ ВС sinABC =  35 14  = 235()

Відповідь: S = 235,2 .

3. Сторони трикутника дорівнюють 78 см, 75 см, 51 см. Знайти площі частин трикутника, на які ділить його бісектриса меншого кута.

      Розв’язання

  Так як в трикутнику проти мен-

 шого кута лежить меншого сто-

             B                                                         рона, то нехай ВСА – менший,

   M                                                                  тоді АВ = 51 см; ВС = 75 см; АС =78 см.

 K

 C

A

За властивістю бісектриси кута трикутника:

 =  =  = . ВК + АК = 51 см.

АК + АК = 51; АК = 26 см; ВК = 26 см.

Проведемо СМ  АВ.

СМ =  =  =  =  = 72 (см).

= KB CM =   75 25 = 900 (; 

= AK CM =   29 72 = 939(.

Відповідь: 900  і 936 .

4. Довести, що сума відстаней від любої точки, взятої всередині правильного трикутника до сторін цього являється постійною величиною, яка не залежить від положення цієї точки.

 B  Розв’язання:

                                     =  +  +  =

                                                      = a = a = a;

A                                                     C                     + + = .

                                                         А це значить, що сума відстаней від                                  

точки до сторін є величина постійна.

V. Написанная тестової самостійної роботи.

     Варіанти тестової перевірки знань учнів по темі «Трикутники».

    Варіант І

1. Катети прямокутного трикутника дорівнюють 6 см і 8 см. Знайти радіус вписаного кола. (2 бали)

2. В трикутнику сторони дорівнюють 29 см, 6  см і 25 см. Знайти найбільшу висоту. (2 бали)

3. Сторони трикутника дорівнюють 12 см, 14 см і 16 см. На які відрізки ділить бісектриса сторону, що дорівнює 14 см. (2 бали)

4. Катет прямокутного трикутника дорівнює 13 см. Висота, проведена до гіпотенузи дорівнює 12 см. Знайти гіпотенузу. (3 бали)

5. Сторона трикутника дорівнює 28 см, а дві інші утворюють кут   60° і їх різниця дорівнює 20 см. Знайти сторони трикутника. (3 бали)

Варіант ІІ

1. Катети прямокутного трикутника дорівнюють 3 см і 4 см. Знайти R                (2 бали)

2. Сторони трикутника дорівнюють 25 см, 29 см і 36 см. Знайти меншу висоту.  (2 бали)

3. Висоти трикутника дорівнюють 4 см, 6 см і 8 см. Знайти радіус вписаного кола.(2 бали)

4. Знайти сторону трикутника, якщо протилежний її кут дорівнює 30°, а

R = 4см. (3 бали)

5. Катети відносяться до гіпотенузи як 5:12, Rr = 9 см. Знайти периметр.   (3 бали)

VI. Домашнє завдання.

     Підготуватись до семінару. Клас поділено на 4 групи. Кожна група готує реферат на одну із тем:

1) «Властивості бісектриси, висоти і медіани трикутника.»

2) «Рівнобедрений трикутник і його властивості.»

3) «Прямокутний трикутник. Вписане й описане коло.»

4) «Доведення різноманітних властивостей трикутника.»

   І розв’язує серію задач підібраних вчителем із основної і додаткової літератури.

Оформлюють свої розв’язання задач учні на окремих аркушах паперу. Паралельно до цього учні виконують творче завдання; скласти власну з даної теми, або перетворити одну із відомих задач.


Тестові завдання з теми «Трикутники»

1. Властивості медіан трикутника.

2. Радіус кола, описаного навколо прального трикутника

  а) R = ; б) R = ;         в) R = а; г) R = .

3. Ортоцентр трикутника – це

            точка перетину медіан трикутника;

 точка перетину висот трикутника;

точка перетину бісектрис трикутника;

точка перетину серединних перпендикулярів.

4. Центр кола, описаного навколо трикутника

          точка перетину медіан трикутника;

                точка перетину бісектрис трикутника;

                точка перетину серединних перпендикулярів до сторін трикутника;

  точка перетину висот трикутника.

 5. Радіус кола, вписаного в трикутник

        а) r = ;      б) r = а;  в) r = ;  г) r = .


 
О         

     

 

 О         

     


 

А также другие работы, которые могут Вас заинтересовать

40991. Проектирование 2-х этажного пятикомнатного жилого дома 121 KB
  Однако на сегодняшний день ситуация на рынке малоэтажного строительства еще весьма неоднозначна. С одной стороны, есть огромный неудовлетворенный потенциальный спрос на загородное жилье у горожан, уставших от городского шума, плохой экологии и тесноты. С другой стороны, наблюдается явное несоответствие спроса и предложения на рынке.
40992. ПЛАНУВАННЯ НАВЧАЛЬНОГО ПРОЦЕСУ З ІНОЗЕМНОЇ МОВИ 153 KB
  Система планування в середній школі охоплює послідовне планування в межах усього курсу навчання чвертей циклу уроків та окремого уроку виходячи з конкретних цілей кожного відрізка навчального процесу. Вчитель повинен усвідомити призначення кожного елемента уроку його взаємодію з іншими елементами уроку. Підготовча робота вчителя до уроку здійснюється послідовно і включає: аналіз змісту матеріалу визначення типу уроку формулювання цілей уроку поетапний розподіл навчального матеріалу визначення часу на його опрацювання розробку...
40993. ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРОИЗВОДСТВА КАРТОФЕЛЯ НА ПРИМЕРЕ СПК «КУШЛИКИ» 1.33 MB
  Дать организационно-экономическую характеристику СПК «Кушлики»; изучить экономическую эффективность отрасли картофелеводства и пути его повышения; дать характеристику экономической эффективности картофелеводства на примере СПК «Кушлики»; предложить мероприятия по повышению экономической эффективности производства картофеля.
40994. Міжнародні фінансові потоки 105.5 KB
  Офшорні зони в системі світових фінансових центрів. Міжнародні фінансові потоки Міжнародні фінансові потоки являють собою сукупність фінансових операцій об’єктом яких є грошовий капітал. Типи міжнародних фінансових потоків можна класифікувати за такими ознаками: вид економічної діяльності згідно зі структурою платіжного балансу економічні взаємовідносини між нерезидентами строки виконання фінансових операцій форма власності щодо джерел фінансових потоків. Основними каналами руху фінансових потоків є: валютнокредитне і розрахункове...
40995. Міжнародний валютний ринок 238 KB
  Особливість цього ринку полягає в тому що він: нематеріальний; не має конкретного місцезнаходження єдиного центру; механізм його функціонування – обмін валюти однієї країни на валюту іншої країни; існує цілковита свобода моментального відкриття чи закриття будьякої позиції можливість торгувати 24 години на добу в режимі on lin; є міжбанківським ринком; має гнучку систему організації торгівлі та гнучку стратегію оплати за укладення угоди; є одним з найліквідніших ринків завдяки можливості роботи на ньому з різними валютами;...
40996. ТАБЛИЧНЫЙ ПРОЦЕССОР MS EXCEL 260 KB
  Отменить объединение ячеек: меню ФОРМАТ – Ячейки – вкладка Выравнивание – снять переключатель Объединение ячеек. В левой части строки формул находится поле имени в котором высвечивается адрес или имя активной ячейки. Ссылка – способ указания адреса имени ячейки. Адрес и содержимое текущей ячейки выводится в строке формул.
40997. ОСНОВНІ СВІТОГЛЯДНІ СИСТЕМИ УКРАЇНСЬКОГО ФОЛЬКЛОРУ 118 KB
  Складність її вирішення криється у значному часовому проміжкові що віддаляє нас від того періоду життя суспільства коли виникали перші уявлення та вірування пов'язані з ними ритуальні та магічні дії що становлять основу народної творчості. Вивчення історичних зв'язків давніх епох та народів виходить поза межі окреслені фольклористикою але в них можна знайти пояснення багатьох елементів та рис пов'язаних з виникненням усної народної творчості. Людина уявляючи себе дублікатом зовнішнього світу робить все те що відбувається у...
40999. Кар'єра як стратегія трудового життя. Планування і розвиток кар’єри 67 KB
  Ринок праці в сучасних економічних умовах характеризується високою конкуренцією і пред'являє до людини жорсткі вимоги: наявності не тільки відповідної кваліфікації, але і досвіду роботи, комунікабельності та новаторського мислення. Все це ускладнює процес працевлаштування навіть для висококласних професіоналів.