56535

Трикутники

Конспект урока

Педагогика и дидактика

Мета: Систематизувати основні теоретичні положення з теми «Трикутники». Ліквідувати прогалини в знаннях, уміннях і навичках учнів; виховання активності, самостійності учнів, творчого підходу до оволодіння знаннями.

Украинкский

2014-04-07

1.02 MB

6 чел.

10-ий клас

Тема:  «Трикутники»                                                                                                                                                                   

Мета: Систематизувати основні теоретичні положення з теми « Трикутники». Ліквідувати прогалини в знаннях, уміннях і навичках учнів; виховання активності, самостійності учнів, творчого підходу до оволодіння знаннями.

Тип уроку: Урок узагальнення і систематизації знань.

                                                                  Хід уроку

І. Перевірка домашнього завдання:

Учні вдома самостійно працювали з учбовою літературою, посібниками по математиці, довідниками. Перед  учнями були поставлені запитання:

  1.  Означення трикутника. Види трикутників.
  2.  Ознаки рівності і подібності трикутників.
  3.  Рівнобедрений та рівносторонній трикутники і їх властивості.
  4.  Сума кутів трикутника. Зовнішній кут трикутника.
  5.  Прямокутний трикутник, його елементи. Ознаки рівності прямокутних трикутників.
  6.  Теорема Піфагора і її наслідки.
  7.  Теореми синусів і косинусів.
  8.  Площа трикутника. Правильний трикутник і його площа.

А також учням пропонували задачі для самостійного розв’язання:

Задача 1. В рівнобедреному трикутнику АВС:  АВ=ВС, медіана АD перпендикулярна бісектрисі СЕ. Знайти величину кути АСВ.

Задача 2. В трикутнику АВС медіана АМ перпендикулярна медіані BN. Знайти площу трикутника АВС, якщо АМ=m;  BN=n.

Задача 3. Знайти площу трикутника АВС, якщо АВ=3см;  ВС=7см, довжина медіани ВМ=4см.

Задача 4. В прямокутному трикутнику АВС із вершини С прямого кута проведена висота СD. Точка D знаходиться на відстані m і n від катетів АС і ВС відповідно. Знайти довжини катетів.

ІІ. Актуалізація опорних знань, навичок і умінь учнів по темі: «Трикутники»

Вчитель перевіряє знання учнями основних формул з даної теми

(частина учнів працює біля дошки, частина за першою партою на окремому аркуші паперу, а частина опитується усно)

   Основні формули з теми «Трикутники».

  1.  Площа трикутника                                        

   В                              1) S     =  aha = bhb =  chc

                                                    2) S     = abSin γ = bcSin α = acSinβ

       А                                  C     3) S      =, де p =

                                                    4) S     = pr, де rрадіус вписаного кола

                                                    5) S     =, де R – радіус описаного кола

                                                    6) S     = 2 SinαSinβSinγ

                                                    7) S     =

                                                    8) S     =

    2. Теорема синусів:

              =  =  - 2R;  R = , де α – кут, протилежний стороні а

    3. Теорема косинусів.

        а) =  +  – 2bcCosα;

        б) Cosα = ;

        с) Якщо α > β > γ  і Cosα = 0, то     - прямокутний;

                      -1 < Cosα < 0, то    - тупокутний;

                             Cosα > 1, то     не існує.

    4.          b 1)  = ;

            a           2) l = ab – mт;                                                      

                    m                      n                                     3) l = .

 

    5.   1) r = ;             2) R = ;             3) ha = ;

          4)  +  +  = ;        5)  =  +  -

  6. Рівносторонній трикутник.

    1) ВК =  =  = ;    В

    2) h =  = R = 3r;

    3) R = ;  r = ;    = R = 2r;                                   

    4) S   =   або S   = .               А К С

   7. Прямокутний трикутник.

                                         

                                                                                  1) =  + - Т Піфагора

                                                                                            2) Співвідношення  в прям.

                         

 b   a      a = cSina;

                             a = btga;

         b = cCosa;

 c        с =  =   

3) Середньо-пропорційні відрізки в прямокутному трикутнику:

           = ;

           = c;

           = c.                                                                      

4)   = R = ;         r – , де a і bкатети, с – гіпотенуза.

                                                 С                                  5) S = ab;      S = c

                                                                                     6) Якщо т. К – точка дотику кола,  

                                                                                         вписаного в прямокутний три-              

 кутник, ділить гіпотенузу на

    А                   m                   K        n                В відрізки m і n, то S = mn.

 III.   Мотивація навчання учнів.

        В середній школі ми вивчили і на даному етапі систематизували основні теоретичні положення теми «Трикутники». Всі вони тісно взаємозв’язані між собою і складають цілісну систему планіметрії. На цьому занятті ми ще раз переконались у широких можливостях застосування теоретичного матеріалу про трикутники до розв’язання практичних задач.

IV.  Розв’язання задач.

      1. В трикутнику одна із сторін 56 см, а друга ділиться точкою дотику вписаного в нього кола на відрізки 32 см і 28 см. Знайти площу трикутника.

                                                                        Розв’язання:

                                                                       Нехай АВС – даний за умовою;   

                      B                                              т. М,К,Р – точки дотику;

  P   K                           АВ = 56 см; ВК = 32 см; СК = 28 см.    

    A C         Знайдемо S АВС.

За властивістю дотичних СМ = СК = 28 см; ВР = ВК = 32 см.

Тоді АР = АМ = 56 – 32 = 24(см); АС = АМ + МС = 24 + 28 = 52(см).                                                                    =  = 1344().

Відповідь: .

       2. Дві сторони трикутника дорівнюють 35 і 45 см, а бісектриса кута між ними 12 см. Знайти      площу трикутника.

 Розв’язання

Нехай в АВС:АВ = 35 см; ВС = 14 см; АВК = КВС = a;

 ВС – бісектриса АВС.

     Знайти S ABC. В

        

        35  14sin2a = 35  12sina + 12 14 sina;

        35  14sin2a = 35  12sina + 12 14 sina; А К        С

       35 14 2sina cosa = 12 sina 49;

       35 14 2 cosa = 12 49

        5 2   cosa = 3

        cosa = ;

Sina =  =  = ; Sin2a = 2sina cosa = 2  = ;                                                      = АВ ВС sinABC =  35 14  = 235()

Відповідь: S = 235,2 .

3. Сторони трикутника дорівнюють 78 см, 75 см, 51 см. Знайти площі частин трикутника, на які ділить його бісектриса меншого кута.

      Розв’язання

  Так як в трикутнику проти мен-

 шого кута лежить меншого сто-

             B                                                         рона, то нехай ВСА – менший,

   M                                                                  тоді АВ = 51 см; ВС = 75 см; АС =78 см.

 K

 C

A

За властивістю бісектриси кута трикутника:

 =  =  = . ВК + АК = 51 см.

АК + АК = 51; АК = 26 см; ВК = 26 см.

Проведемо СМ  АВ.

СМ =  =  =  =  = 72 (см).

= KB CM =   75 25 = 900 (; 

= AK CM =   29 72 = 939(.

Відповідь: 900  і 936 .

4. Довести, що сума відстаней від любої точки, взятої всередині правильного трикутника до сторін цього являється постійною величиною, яка не залежить від положення цієї точки.

 B  Розв’язання:

                                     =  +  +  =

                                                      = a = a = a;

A                                                     C                     + + = .

                                                         А це значить, що сума відстаней від                                  

точки до сторін є величина постійна.

V. Написанная тестової самостійної роботи.

     Варіанти тестової перевірки знань учнів по темі «Трикутники».

    Варіант І

1. Катети прямокутного трикутника дорівнюють 6 см і 8 см. Знайти радіус вписаного кола. (2 бали)

2. В трикутнику сторони дорівнюють 29 см, 6  см і 25 см. Знайти найбільшу висоту. (2 бали)

3. Сторони трикутника дорівнюють 12 см, 14 см і 16 см. На які відрізки ділить бісектриса сторону, що дорівнює 14 см. (2 бали)

4. Катет прямокутного трикутника дорівнює 13 см. Висота, проведена до гіпотенузи дорівнює 12 см. Знайти гіпотенузу. (3 бали)

5. Сторона трикутника дорівнює 28 см, а дві інші утворюють кут   60° і їх різниця дорівнює 20 см. Знайти сторони трикутника. (3 бали)

Варіант ІІ

1. Катети прямокутного трикутника дорівнюють 3 см і 4 см. Знайти R                (2 бали)

2. Сторони трикутника дорівнюють 25 см, 29 см і 36 см. Знайти меншу висоту.  (2 бали)

3. Висоти трикутника дорівнюють 4 см, 6 см і 8 см. Знайти радіус вписаного кола.(2 бали)

4. Знайти сторону трикутника, якщо протилежний її кут дорівнює 30°, а

R = 4см. (3 бали)

5. Катети відносяться до гіпотенузи як 5:12, Rr = 9 см. Знайти периметр.   (3 бали)

VI. Домашнє завдання.

     Підготуватись до семінару. Клас поділено на 4 групи. Кожна група готує реферат на одну із тем:

1) «Властивості бісектриси, висоти і медіани трикутника.»

2) «Рівнобедрений трикутник і його властивості.»

3) «Прямокутний трикутник. Вписане й описане коло.»

4) «Доведення різноманітних властивостей трикутника.»

   І розв’язує серію задач підібраних вчителем із основної і додаткової літератури.

Оформлюють свої розв’язання задач учні на окремих аркушах паперу. Паралельно до цього учні виконують творче завдання; скласти власну з даної теми, або перетворити одну із відомих задач.


Тестові завдання з теми «Трикутники»

1. Властивості медіан трикутника.

2. Радіус кола, описаного навколо прального трикутника

  а) R = ; б) R = ;         в) R = а; г) R = .

3. Ортоцентр трикутника – це

            точка перетину медіан трикутника;

 точка перетину висот трикутника;

точка перетину бісектрис трикутника;

точка перетину серединних перпендикулярів.

4. Центр кола, описаного навколо трикутника

          точка перетину медіан трикутника;

                точка перетину бісектрис трикутника;

                точка перетину серединних перпендикулярів до сторін трикутника;

  точка перетину висот трикутника.

 5. Радіус кола, вписаного в трикутник

        а) r = ;      б) r = а;  в) r = ;  г) r = .


 
О         

     

 

 О         

     


 

А также другие работы, которые могут Вас заинтересовать

80014. ФЕНОМЕН FANFICTION В СЕТЕВОЙ ЛИТЕРАТУРЕ: «НИЗОВАЯ СЛОВЕСНОСТЬ» В СЕТЕВЫХ ПУБЛИКАЦИЯХ 576.5 KB
  Выявление и описание особенностей субкультуры литературных фанатов как молодежной субкультуры; Описание вторичного творчества как культурного и литературного феномена, его видов и тенденций; Практическое взаимодействие феномена с правовой и профессиональной литературной деятельностью.
80015. Разработка зарядного устройства для зарядки распространенных типов бытовых аккумуляторов (NiCd, NiMH, VRLA, Li-ion, Li-pol) 6.86 MB
  Аккумуляторы имеют большое значение в современной жизни. Быстрое развитие электроники делает все большее количество бытовой техники портативной, появляются новые устройства, растет потребность в компактных переносных устройствах.
80016. Технологическая подготовка производства фюзеляжа самолета легкого типа из ПКМ 4.49 MB
  В данном дипломном проекте рассматривается легкий двухместный самолет, который предназначен, в основном, для выполнения учебно – тренировочных и туристических полетов. Фюзеляж композитной конструкции представляет собой усиленный монокок, подкрепленный поперечным силовым набором – шпангоутами.
80017. Проектирование и разработка информационной системы учёта реализации торгового оборудования 1.69 MB
  Одним из показателей характеризующих работу предприятия является товарооборот, который представляет собой планово организационный процесс обращения средств производства, от которого во многом зависят и другие экономические показатели.
80018. Характеристика деятельности прокурора в области гражданского и арбитражного судопроизводства 372 KB
  Когда интересы государства и общества требуют их эффективной защиты участие прокурора в гражданском и арбитражном судопроизводстве является весомым вкладом в укрепление законности в стране. Участие прокурора в гражданском и арбитражном судопроизводстве следует рассматривать как дополнительную гарантию...
80019. Разработка решения для централизованного мониторинга ресурсов ЕИС кафедры ИКТ 3.56 MB
  В данной работе разработано решение для централизованного мониторинга единой информационной среды кафедры ИКТ. Данное решение содержит: компонент для сбора данных о состоянии системных ресурсов серверов, средство для быстрого конфигурирования, систему для визуализации данных, средство слежения...
80020. Проект сервисного центра по обслуживанию и ремонту легковых автомобилей отечественного производства 1.11 MB
  В дипломном проекте представлен план сервисного центра, которое предусматривает выполнение комплекса мероприятий, направленных на повышение технико-экономического уровня производства и отдельных элементов производственно – технической базы...
80021. Специфіка розробки програмного забезпечення 55.5 KB
  Творчість в програмуванні починається з визначення цілей програми і закінчується тільки тоді, коли в її вихідному коді, написаному на якій-небудь мові програмування, поставлена остання крапка з комою. Спроби розділяти програмістів на творчу еліту, архітекторів і проектувальників, і нетворчих програмістів-кодерів не мають під собою підгрунття
80022. ОПТИМИЗАЦИЯ РАЗДЕЛЕНИЯ И ИДЕНТИФИКАЦИЯ КАТИОННЫХ И АМФОТЕРНЫХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ В СЫРЬЕ И МОЮЩИХ СРЕДСТВАХ МЕТОДАМИ ТСХ И ВЭЖХ 11.92 MB
  Катионные поверхностно-активные вещества (КПАВ) и амфотерные поверхностно-активные вещества (АМФПАВ) широко используются в различных моющих, антистатических и антисептических средствах. Природные и синтетические ПАВ являются обязательными компонентами большинства современных технологических процессов и препаратов.