56546

Розв’язування прямокутних трикутників

Конспект урока

Педагогика и дидактика

Мета уроку. Узагальнення, систематизація та закріплення знань про теорему Піфагора, розв’язування прямокутних трикутників; застосування набутих знань і вмінь у практичній діяльності.

Украинкский

2014-04-07

74 KB

7 чел.

Тема уроку. Розв’язування прямокутних трикутників

Мета уроку. Узагальнення, систематизація та закріплення знань про теорему Піфагора, розв’язування прямокутних трикутників; застосування набутих знань і вмінь у практичній діяльності.

Розвиток вмінь аналізувати, робити висновки, знаходити власні способи розв’язання.

Формування компетентностей: соціальних (розвиток пізнавальної активності учнів, робота в команді, усвідомлення власного внеску в спільну роботу, вміння брати відповідальність), комунікативних (формування власної точки зору, розвиток культури мовлення, вміння доводити власну позицію). Виховування активності, уваги, кмітливісті, самостійністі.

Прищеплення інтересу до математики.

Тип уроку. Урок узагальнення і систематизації знань

                    Світ, що нас оточує, - це світ геометрії.                                                     Т                  Тож давайте його пізнавати!

                                                               Піфагор

І. Організаційна частина

ІІ. Повідомлення теми і мети уроку

Сьогодні ми проведемо підсумковий урок з теми „ Розв’язування прямокутних трикутників ”.

ІІІ. Актуалізація опорних знань

Повторимо матеріал, вивчений на уроках. Проведемо гру. (діти поділені на групи за їх бажанням) Наша гра математична.

Можливо, сьогодні, ви щось дізнаєтесь і нове.

Знайомтеся з капітанами груп:        1.

                                                           2.

                                                           3.

                                                           4.

Щоб провести І конкурс, необхідно з’ясувати, кому першому обирати тему.

Гравцям необхідно дати відповідь на одне запитання. Хто дасть точнішу відповідь, той завдання обирає першим.

Отже:  1.В якому році Піфагор був олімпійським чемпіоном?   (548 р. до н.е.), або

2. Скільки століть минуло з життя Піфагора?”         ( 27 століть)

(гравці записують відповідь на аркушах і одночасно показують)

Отже, у наступному конкурсі першим тему буде обирати __________________ , другим ___________________,

третім ______________________, четвертим _____________________

Пропонуємо такі теми: „Піфагор і його теорема”, „Співвідношення між сторонами і кутами ”,  „Історія математики”, „Сюрприз”, „Розв’язування трикутників”

Піфагор і його теорема

1 В якому столітті жив Піфагор?            (VІ ст. до н.е.)         .

2. Ім’я якого відомого математика складається з трьох складів: перший склад – число, другий – нота, третій – одне з імен давньоєгипетського бога Сонця?                          (Пі-фа-гор)

3. Як інакше називають єгипетський трикутник?             (Піфагоровим)

4. З якого виду спорту Піфагор був олімпійським чемпіоном?     (з кулачного бою на олімпіаді в 548 р. до н.е.)

5. Який нещасний випадок стався на цій олімпіаді в 548 р. до н.е.?    (спостерігаючи за боєм на трибуні помер відомий математик Фалес)

6. Що ви знаєте про числа 5, 6, 7, 8, 9, 13, 17?       (Піфагорійці вважали, що 5 символізує колір, 6- холод, 7 – розум, здоров’я та світло, 8 – кохання та дружбу, 9 – постійність, 13 і 17 – ненависні числа)

7. Що ви можете сказати про множину ірраціональних чисел?   (цей вид чисел відкрив Піфагор, шукаючи діагональ квадрата зі стороною 1)

8. Скільки століть минуло з життя Піфагора?          (27)

9. Що ви знаєте про Піфагорові числа?           (це трійки чисел, що задовольняють рівняння а222 , де а, в, с – взаємно прості: 3,4,5;  5,12,13; 8,15,17 і т. д.)

10. Які математичні твердження належать Піфагору?        (Суми послідовних непарних чисел, починаючи з одиниці, є точними квадратами. Всяке непарне число є різницею квадратів)

Співвідношення між сторонами і кутами

1.Косинусом гострого кута прямокутного трикутника називається ...

2.Тангенсом гострого кута прямокутного трикутника називається ...

3.Синусом гострого кута прямокутного трикутника називається ...

4.Котангенсом гострого кута прямокутного трикутника називається ...

5.Як змінюється синус і тангенс при зростанні гострого кута?

6.Сторона, прилегла до прямого кута прямокутного трикутника...

7.Відрізок прямої, перпендикулярної до даної прямої, який має одним із своїх   кінців точку перетину прямих...

8.Відношення протилежного катета до прилеглого у прямокутному трикутнику...

9.Відношення прилеглого катета до протилежного у прямокутному трикутнику...

10.Відношення прилеглого катета до гіпотенузи у прямокутному трикутнику...

                                             

Сюрприз

  1.  Трикутник, що має прямий кут…
  2.  Ромб, у якого всі кути рівні…
  3.  Трикутник, у якого дві сторони рівні…
  4.  Відрізок, що сполучає середини бічних сторін трапеції…
  5.  Твердження, що  потребує доведення…
  6.  Промінь, який виходить з вершини кута і ділить його навпіл…
  7.  Прямокутник, у якого всі сторони рівні…
  8.  Відрізок, що сполучає дві точки на колі…
  9.  Прямі, які не перетинаються…
  10.  Прямі, які перетинаються під прямим кутом…

Розв’язування прямокутних трикутників

  1.  Катет, протилежний куту α, дорівнює...
  2.  Гіпотенуза дорівнює...
  3.  Перпендикуляр опущений з вершини трикутника на протилежну сторону називається...
  4.  Трикутник зі сторонами 3, 4, 5...
  5.  Катет прямокутного трикутника є середнім пропорційним між ...
  6.  Катет, прилеглий до кута α, дорівнює...
  7.  Сторона прямокутного трикутника, що лежить проти прямого кута...
  8.  Сума гострих кутів прямокутного трикутника...
  9.  Катет прямокутного трикутника, протилежний гострому куту в 30о  ...
  10.  Висота прямокутного трикутника є середнім пропорційним між...

                                   

Історія математики

1. Ім’ям якого вченого називається геометрія, що вивчається в школі?  (Евкліда)

2. Чиїм іменем названа теорема, яка допомагає розв’язувати прямокутні трикутники?  (Піфагора)

3. У Росії у 1703 році вийшли підручник арифметики. Назвіть автора цього підручника.   (Магницький)

4. Назвіть ім’я жінки, учениці Піфагора       (Теано)

5. Кого із вчених називають „королем математики”?          (Гауса)

6. Ім’ям якого вченого названі координати х і у на площині?  (Рене Декарт)

7. Кого із вчених називають „батьком алгебри”?           (Вієта)

8. Назвіть вченого, який довів ознаки рівності трикутників, теорему про пропорційний поділ.   (Фалес)

9. Хто перший запропонував нумерацію крісел за рядами і місцями?   (Рене Декарт)

10. Назвіть першу російську жінку-математика.   (С. Ковалевська)

ІІ. Переходимо до ІІ конкурсу – конкурсу ораторів.

За одну хвилину довести справедливість твердження „Теорема Піфагора – одна з основних теорем геометрії”

( виступи учнів) 

Підведення підсумку. (слово учителя) Теорема Піфагора має велике значення: вона використовується на кожному кроці, той факт, що існує близько 500 різних доказів цієї теореми доводить велику кількість її реальних реалізацій. Відкриття теореми Піфагором оточене ореолом красивих легенд. Прокл, коментуючи останнє продовження першої книги “Начал” Евкліда, пише: “Якщо послухати тих, хто повторює давні легенди, то доводиться сказати, що ця теорема  походить від Піфагора; розповідають, що він у честь цього відкриття приніс у жертву бика”. Дехто розповідає, що він приніс у жертву не одного бика, а цілу сотню.

ІV. Використання знань на практиці

ІІІ. Переходимо до наступного конкурсу „Практикум” (групи одержують завдання і виконують)

 1. У прямокутному трикутнику катети відносяться як 12 до 5, а гіпотенуза 39см. Знайти катети.

2. Висоти двох вертикальних стовпів дорівнюють 5м і 12,5м. Відстань між ними 10м. Знайти найменшу довжину троса, яким можна з’єднати верхні кінці стовпів?

3. У трикутнику АВС висота ВD поділяє сторону АС на відрізки АD і DС.

ВC =6см, ∟А=30 о, ∟СВD=45 о. Знайдіть сторону АС трикутника.

             

4. З точки, що знаходиться на відстані 8см від прямої, проведено до неї дві

похилі, які утворюють з прямою кути  45 о і 60 о . Знайдіть відстань між

основами похилих. Скільки розв’язків має задача?

(Діти готують відповіді, доповідають про кількість зроблених задач)

ІV. Переходимо до наступного конкурсу ”Чи правильно що...”

Кожна  група відповідає на п’ять запитань, які починаються словами „Чи правильно що...”

Залишається відповісти: „так” чи „ні”

Запитання

1. Чи правильно, що теорема в перекладі з грецької мови означає ”вистава” ? (так)

2. Чи правильно, що катетом називали висоту прямокутного трикутника ? (так, в середні віка, інші сторони – гіпотенуза і основа)

3. Чи правильно, що cos 40 о <  sin 70 о ?           (так)

4. Чи правильно, що центр кола, описаного навколо прямокутного трикутника є серединою гіпотенузи?     (так)

5. Чи правильно, що   tg 90о не існує?                               (так)

6. Чи правильно, що Шарль Перро написав казку „Кохання циркуля і лінійки”? (так)

7. . Чи правильно, що sin 25о  <    cos 50 о ?       (так)

8. Чи правильно, що числа 3 і 5, 11 і 13, 17 і 19 називаються братами?   (ні, їх називають числами - близнюками)

9. Чи правильно, що знак „=” запропонував в 1557 році англійський математик Рекорд?      (так)

10. Чи правильно, що sin 75о  <    sin 50 о ?               (ні)

11. Чи правильно, що sin2В + cos2В = 1?    (так)

12. Чи правильно, що один лікоть - 75см?       (ні, один лікоть – це 46см)

    13. Чи правильно, що гіпотенуза в перекладі з грецької мови означає „натягнута”?  (так)

    14. Чи правильно, що  cos 40 о <   sin 50 о ?          (ні)

    15. Чи правильно, що за допомогою мотузок, довжиною 3, 4, 5 одиниць одержували прямі кути при побудові піраміди фараона Хеопса?   (ні)

    16. Чи правильно, що sin 60о = 0,5         (ні)

    17. Чи правильно, що cos 40 о < cos 20 о ?             (так)

    18. Чи правильно, що брати Грімм написали казку „Незвичайні пригоди трикутника”?   (ні)

    19. Чи правильно, що sin2В + cos2 А = 1?                     (ні)

    20. Чи правильно, що саме Пушкін написав” Натхнення потрібне в геометрії, як і в поезії”?       (так)

V.  Підведення підсумку уроку

1. Сьогодні ми проводимо останній урок з даної теми. Я хочу кожній групі запропонувати розгадати кросворд і знайти слово, з якого ми починали вивчення даної теми. (Роздати заготовлені кросворди)

          1. Назва прямокутного трикутника зі сторонами 3, 4, 5.

          2. Учений, ім’ям якого названа теорема про суму квадратів катетів прямокутного трикутника.

          3. Острів, на якому народився цей учений.

          4. Катет, який не лежить проти даного кута.

          5. Там Піфагор прожив 12 років.

          6. Сторона прямокутного трикутника, яка лежить проти прямого кута.

          7. Кількість биків, принесена Піфагором у жертву богам після доведення теореми.

1

2

3

4

5

6

7

2. Що нового на уроці ви дізнались?

3. Хотілося закінчити урок, згадавши вчення Піфагора, адже воно так нам необхідне в житті.

  •  Твори велике, не обіцяючи великого
  •  Нічому не дивуйся
  •  Тимчасова невдача краща від тимчасової удачі
  •  Не заплющуй очі, коли хочеш спати, не проаналізувавши своїх учинків за минулий день
  •  Живи з людьми так, щоб твої друзі не стали недругами, а недруги стали друзями
  •  Не роби нічого ганебного ні в присутності інших, ні таємно. Першим твоїм законом повинна бути повага до самого себе
  •  Лише неблагородна людина здатна в очі хвалити, а поза очі злословити
  •  Усе в світі підкоряється числам

VІ. Завдання додому

Повторити тему »Теорема Піфагора», підготуватись до контрольної роботи, довиконувати завдання з практикуму.


 

А также другие работы, которые могут Вас заинтересовать

36506. Якісне пояснення температурної залежності теплоємності газів на підставі квантових уявлень 630.47 KB
  Звідки може брати енергію осцилятор Він її отримує при зіткненнях. Але прийняти будьяку енергію осцилятор не може. Він приймає енергію тільки кратну і переходить на один із наступних енергетичних рівнів на рисунку. Наша молекула зможе прийняти необхідну енергію лише від молекули із заштрихованої області.
36507. Потік газових молекул на стінку. Закон косинусу 191.07 KB
  Закон косинусу У багатьох задачах потрібно враховувати кількість молекул що падає на стінку посудини. На стінку впадуть лише ті молекули напрямки яких направлені у бік виділеної ділянки. Нам необхідно знати розподіл молекул за напрямками швидкостей.
36508. Молекулярні пучки. Зміна кількості молекул у пучці 188.18 KB
  Зміна кількості молекул у пучці внаслідок зіткнень з молекулами газу Нехай маємо джерело молекулярного пучка. Нагадаю : молекулярний пучок це вузький різко окреслений струмінь атомів що рухаються в одному напрямку і не взаємодіють між собою. Молекулярний пучок рухається у газі вздовж осі .
36509. УПРАВЛЕНИЕ КАЧЕСТВОМ НА ПРОИЗВОДСТВЕ 211 KB
  В промышленно развитых странах во многих фирмах и компаниях функционируют системы качества, успешно обеспечивающие высокое качество и конкурентоспособность выпускаемой продукции. В большей части эти системы аналогичны отечественным комплексным системам управления качеством продукции
36510. Теплопровідність газів 248.36 KB
  Вони нагріті до різних температур і ці температури підтримуються сталими. Зміна температури вздовж осі характеризується градієнтом температури. Закон дає звязок між кількістю тепла і градієнтом температури. Кількість тепла пропорційна градієнту температури; як можна було б очікувати пропорційна площі площадки .
36511. Загальне рівняння для явищ переносу 184.28 KB
  Запишемо кількість молекул які налітають за одиницю часу на площадку із швидкостями у інтервалі і у межах полярних кутів . Тому записуючи кількість молекул ми додаємо ще два імовірнісні множники . Позначимо кількість величини що переноситься зліва направо через площадку тими молекулами які летять у межах кутів з відстані . Ця кількість буде визначатись добутком значення величини що переносить кожна молекула на кількість молекул : .
36512. Ергодична гіпотеза 175.19 KB
  3 Фазові перетворення ІІ роду. Поглянемо на класифікацію фазових перетворень І і ІІ роду не з точки зору наявності чи відсутності теплообміну а з точки зору стрибкоподібної зміни параметрів стану речовини. Фазові перетворення при яких перші похідні функції змінюються стрибкоподібно називаються фазовими перетвореннями І роду. Фазові перетворення при яких перші похідні функції залишаються неперервними а другі похідні тієї ж функції змінюються стрибкоподібно називаються фазовими перетвореннями ІІ роду.
36513. Закон зростання ентропії. Обчислення зміни ентропії при різних процесах 162.99 KB
  Обчислення зміни ентропії при різних процесах Якщо термодинамічна система адіабатно ізольована то і зміна ентропії у результаті протікання оборотних процесів а під час необоротних процесів які власне тільки і існують у природі як показує досвід і теорія ентропія зростає. Рівність має місце лише для оборотних процесів за означенням ентропії. Властивість зростати притаманна ентропії так само як енергії зберігатись.
36514. Об’єднана формула Максвелла-Больцмана розподілу молекул за швидкостями 177.18 KB
  Потенціальна енергія молекули залежить від її положення . Зміна потенціальної енергії спричиняє зміну і кінетичної енергії молекул оскільки . Але середня кінетична енергія не змінюється а отже не змінюється і температура газу оскільки вона є мірою кінетичної енергії молекул газу.