5725

Выбор редуктора и расчет зубчатой передачи

Курсовая

Производство и промышленные технологии

Инженер-конструктор является творцом новой техники, и уровнем его творческой работы в большей степени определяются темпы научно-технического прогресса. Деятельность конструктора принадлежит к числу наиболее сложных проявлений человеческого...

Русский

2012-12-18

204 KB

12 чел.

Введение

Инженер-конструктор является творцом навой техники, и уровнем его творческой работы в большей степени определяются темпы научно-технического прогресса. Деятельность конструктора принадлежит к числу наиболее сложных проявлений человеческого разума. Решающая роль успеха при создании новой техники определяется тем, что заложено на чертеже конструктора. С развитием науки и техники проблемные вопросы решаются с учетом все возрастающего числа факторов базирующихся на данных различных наук. При выполнении проекта используются математические модели, базирующиеся на теоретических и экспериментальных исследованиях, относящихся к объемной и контактной прочности, материаловедению, теплотехнике, гидравлике, теории упругости, строительной механике. Широко используются сведения из курсов сопротивления материалов, теоретической механике, машиностроительного черчения и т.д. Все это способствует развитию самостоятельности и творческого подхода к поставленным проблемам.

В настоящее время в Республике Беларусь отсутствует собственное производство редукторов общего назначения. Между тем в республике имеется ряд разработок, которые позволили бы организовать такое производство.

При выборе типа редуктора для привода рабочего органа (устройства) необходимо учитывать множество факторов, важнейшими из которых являются: значение и характер изменения нагрузки, требования к долговечности, надежность, КПД, масса и габаритные размеры, требования к уровню шума, стоимость изделия, эксплуатационные расходы.

Из всех видов передачи зубчатые передачи имеют наименьшие габариты, массу, стоимость и потери на трение. Коэффициент потери одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 0,01. зубчатые передачи в сравнении с другими механическими передачами обладают большей надежностью в работе, постоянством передаточного отношения из-за отсутствия проскальзывания, возможностью применения в широком диапазоне скоростей и передаточных отношений. Эти свойства обеспечили большое распространение зубчатых передач, они применяются для мощностей, начиная от ничтожно малых (в приборах) до измеряемых десятками тысяч киловатт. Передаваемые моменты достигают 5*106 Н*м. Диаметры колес, например в передачах на гребной винт судовых установок, доходят до 6 м.

К недостаткам зубчатых передач могут быть отнесены требования высокой точности изготовления и шум при работе со значительными скоростями.

Одной из целей выполненного проекта является развитие инженерного мышления, в том числе умение использовать предыдущий опыт, моделировать используя аналоги. Для курсового проекта предпочтительны объекты, которые не только хорошо распространены и имеют большое практическое значение, но и не подвержены в обозримом будущем моральному старению.

Существуют различные типы механических передач: цилиндрические и конические, с прямыми зубьями и косозубые, гипоидные, червячные, глобоидные, одно- и много поточные и т.д. Это рождает вопрос о выборе наиболее рационального варианта передачи. При выборе типа передачи руководствуются показателями, среди которых основными являются КПД, габаритные размеры, масса, плавность работы и вибронагруженность, технические требования, предпочитаемое количество изделий.

При выборе типов передач, вида зацепления, механических характеристик материалов необходимо учитывать, что затраты на материалы составляют значительную часть стоимости изделия: в редукторах общего назначения – 85%, в дорожных машинах – 75%, в автомобилях – 10% и т.д.

Поиск путей снижения массы проектируемых объектов является важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов. Большая часть вырабатываемой в настоящее время энергии приходится на механические передачи, поэтому их КПД в известной степени определяет эксплуатационные расходы.

Наиболее полно требования снижения массы и габаритных размеров удовлетворяет привод с использованием электродвигателя и редуктора с внешним зацеплением.

1 Технические данные

Спроектировать привод цепного конвейера.

Разработать:

1 Общий вид

2 Редуктор

3 Приводной вал со звездочками и подшипниками

4 Плиту и раму

5 Рабочие чертежи деталей

1.1 Схема привода

              А

           

           3

                                                                          

                                                                           4                       5

                                                                         

                                           Вид А                                                

                                                                                            1

                                                                           2

  1.  электродвигатель
  2.  муфта упругая
  3.  редуктор
  4.  цилиндрическая открытая зубчатая передача
  5.  приводной вал со звездочками

1.2 Исходные данные    

  1.  Тяговое усиление цепи                  F=80 кH
  2.  Скорость движения ленты            V=0.3 м/c
  3.  Число зубьев звездочки                 Z=11
  4.  Шаг цепи                                         P=250 мм
  5.  Срок службы редуктора                 5 лет

    6.  Работа двухсменная             

 2 Кинематический и энергетический расчет механического привода

2.1 Общий КПД привода

 ,где:                              

-КПД червячной передачи (таб. 2.1.[1])

-КПД цилиндрической передачи

-КПД упругой муфты

-КПД подшипников качения

2.2 Мощность потребляемая рабочим органом

2.3 Требуемая мощность электродвигателя

2.4 Частота вращения рабочего органа

Желаемая частота вращения вала электродвигателя

где: -ориентированное передаточное число привода

 где,

- передаточное число червячной передачи

- передаточное число цилиндрической передачи

2.5 Подбор электродвигателя

По ГОСТ 19523-81 выбираем электродвигатель типа ИА 1325ВУЗ, у которого

2.6 Передаточное число привода

Так же

Должна выполняться проверка

110,007110

2.7 Частоты вращения валов

В результате выполняется проверка  

2.8 Угловые скорости валов

    

    

2.9 Мощности передаваемые валами привода

 

2.10 Крутящие моменты на валах привода

Все найденные значения параметров элементов привода заносим в таблицу.

N вала   частота вращения  угловая скорость  мощность  крутящий момент

                n,                                            Р, кВт            Т, Нм              

1                     720                         75,36                     4                      53

2                  26,182                       2,74                      3,2                   1167,9   

3                    6,545                       0,685                   3,104                4531,39  

3 Расчет редуктора

3.1 Выбор материала

В первом приближении оцениваем скорость скольжения

По рекомендации §9,7 и таблиц 9 и [2] назначаем материал колеса БРА Ж9-4. У данного материала σ=200МПа ; σ=400МПа. Материал червяка сталь 40Х, закалка до 54HRC, витки после термообработки нужно шлифовать и полировать. При этом [σ]=300-25=214,69 МПа. По рекомендации §9.1[2] назначаем q’=16 так же принимаем z1=2, тогда z2=z1U=55>28. В рекомендуемых пределах.

3.2 Определяем межосевое расстояние

Определяем модуль упругости  где, - модули упругости материалов червяка колеса. , тогда межосевое расстояние

Межосевое расстояние округляем по ряду 40 и принимаем  

По формуле 9.3[2] определяем модуль

Округляем до стандартного ближайшего значения m=5. Далее находим необходимый коэффициент смещения  

3.3 Проверка скорости скольжения

   где - угол подъема винтовой линии, его можно найти из выражения [2]  по формуле 9.8 [2]

Было принято 3,4 м/c –материал БРАЖ9-4 сохраняем. Сохраняем и [σ].

3.4 Проверка прочности по контактным напряжениям

Прочность проверяем по формуле 9.16[2]  

Где α=20 ;   где - коэффициент динамической нагрузки.  - коэффициент концентрации нагрузки. -коэффициент учитывающий уменьшение длинны контактной линии.  -торцовый коэффициент перекрытия в средней плоскости червячного колеса.

,тогда:

Прочность соблюдается

3.5 Проверка прочности на изгиб

Используем формулу 9.21

     Ширину червячного колеса определяем из выражения b=0.75d. Для определения диаметра окружности вершин определим

 

По формуле §9.7 и таб. 9.4[2] определяем допускаемые напряжения изгиба.

Зная все составляющие, проверяем прочность на изгиб.

Ранее было принято . Таким образом запасы прочности достаточно большие.

3.6 Определение основных размеров

  диаметр окружности впадин червяка.

По таб. 9.1[2] ширина червяка:

Учитывая примечание таб. 9.1[2] принимаем   

Определяем размеры колеса.

4 Расчет валов

4.1 Проектный расчет валов

Определяем расстояние между опорами.

 

длинна ступицы червячного колеса

Х=10 мм – зазор между зубчатыми колесами и внутренними стенками корпуса редуктора.

W=100 мм – ширина стенки корпуса в месте установки подшипников. Определяем исходя из передаваемого момента Т2=1167,9 Нм. Определяем диаметр вала под шестерней.

Принимаем диаметр вала под подшипниками  

4.2 Проверочный расчет тихоходного вала   

Определяем силы в зацеплении.

Определим реакции в эпюрах и строим эпюры изгибающих моментов, а также эпюры крутящих моментов.

Рассмотрим реакции от сил , действующих в вертикальной плоскости.

Сума проекций   

Сумма моментов  

Выражаем В1

В1=Fr/2-Fad/2l=11646.06/2-13250.073/2×0.2=5581.22 H

Реакция от сил Ft и Fм действующих в горизонтальной плоскости

A2+B2+Fм-Ft=0

Сумма моментов

 

4.3 Расчет вала на усталостную прочность

Сечение I-I под шестерней и сечение II-II рядом с подшипником. Для I-I сечения изгибающий момент:

По таб. 15.1[2], для шпоночного паза - эффективные коэффициенты концентрации напряжений при изгибе и кручении.

По графику рис. 15.5[2] определяем масштабный фактор Кd=0,62

По графику рис. 15.5[2] для шлифованного вала эффективный коэффициент концентрации напряжения .

По формулам 15.4[2] с учетом 15.5 принимаем по формуле 15.6  ,

-коэффициенты, корректирующие влияние постоянной составляющей цикла напряжений на сопротивление усталости.

где  амплитуды постоянных составляющих циклов напряжений.  

Запас сопротивлений усталости только по изгибу.

 

Запас сопротивлений усталости только по кручению.

Определим запас сопротивления усталости.

Определяем запас сопротивления усталости II-II сечения, для этого определим изгибающий момент.

Напряжение изгиба.

Напряжение кручения.

Принимаем радиус галтели r=2 мм

Определим запас сопротивления усталости, но сначала  найдем   

r/d=0,002/0.07=0.3

- коэффициенты концентрации напряжения при изгибе и кручении.

 

 

Больше напряжено I-I сечение.

4.4 Расчет вала на статическую прочность

Проверяем статическую прочность при нагрузках – формула 15.8[2]. При

перегрузках напряжения удваиваются и для I-I сечения  

 

Определим допускаемое напряжение.

Тогда эквивалентные напряжения.

Условие прочности выполняется.

4.5 Проверка жесткости вала

Прогиб в верхней плоскости от силы Fr 

 

От момента Ма прогиб равен нулю. Прогиб в горизонтальной плоскости от силы Fr и Fм

 

Суммарный прогиб равен

Допускаемый прогиб равен

Условие прочности и жесткости выполняется.

5 Выбор подшипников качения

Частота вращения вала в месте установки подшипников

допускается двукратные перегрузки, температура подшипника t<100 C.

Реакции опор:

 

Учитывая сравнительно небольшую силу Fa, предварительно назначаем шариковые радиальные подшипники узкой средней серии, условное обозначение 314

5.1 Проверочный расчет подшипников качения левой опоры

-эквивалентная нагрузка

где: Fa/C0=0,021 => l=0,21

Исходя из условия Fa/VFr=0,067<l=0,21

Выбираем Х=1 ; Y=1 – коэффициент радиальной и осевой нагрузок.

- коэффициент безопасности, - температурный коэффициент.

Найдем динамическую грузоподъемность, если а1=1 – коэффициент учитывающий вероятность безотказной работы а2=1 ир=3

 

Паспортное значение С превышает потребное. Целесообразно замена подшипника на легкую серию, условное обозначение 214 у которого С=618000 Н. Проверяем расчет Fa/C0=0,035 ; l=0,23. Т.к. Fa/VFr по прежнему меньше l, дальнейший расчет сохраняется.

5.2 Проверка подшипников качения по статической грузоподъемности  

По формуле 16.33[2] Х0=0,6 ; Y0=0,5 – коэффициенты радиальной и осевой статических нагрузок. Учтем также двукратную нагрузку

Р0=2(Х0Fr+Y0Fa)=2(0,6 19933,894+0,5 1325)=25245,67 Н<C0=37500 H

Условие соблюдается.

6 Расчет открытой зубчатой передачи

6.1 Подбор материала колес

Ст.5 , твердость 170НВ ,  , термообработка – нормализация.

Контактные

Изгибные     

Допускаемые изгибные напряжения

где: YA- коэффициент, учитывающий влияние двустороннего приложения нагрузки

       YN- коэффициент долговечности

6.2 Расчет модуля

- коэффициент учитывающий форму зуба. Расчет производят для элемента пары “шестерня-колесо”, у которого меньшая величина

- коэффициент ширины шестерни относительно ее диаметра

- коэффициент, учитывающий неровность распределения нагрузки по ширине венца

- коэффициент внешней диаметрической нагрузки.

            

Принимаем  в соответствии с ГОСТом.

6.3 Выбор основных параметров передачи

Определим диаметры зубчатых колес:

делительные

вершин зубьев

Межосевое расстояние

Ширины венцов зубчато колеса  ; шестерни

6.4 Проверка расчетных напряжений изгиба

- окружная сила в зацеплении

- окружная скорость колес

Удельная окружная диаметрическая сила

- коэффициент, учитывающий влияние вида зубчатой передачи и модификации профиля на динамическую нагрузку.

- коэффициент, учитывающий влияние разности шагов зацепления зубьев шестерни и колеса.

- удельная расчетная окружная сила.

- коэффициент, учитывающий динамическую нагрузку в зацеплении.

- удельная расчетная окружная сила при изгибе зуба.

Расчетные напряжения изгиба зуба.

7 Расчет шпоночных соединений

Рассчитываем шпонку, находящуюся на выходном конусе тихоходного вала.

 

тогда произведем расчет шпоночного соединения на смятие.

8 Выбор муфт

Муфты выбираем исходя из значений допускаемых крутящих моментов. Для соединения редуктора с валом электродвигателя принимаем муфту типа МУВП ГОСТ 20884-93 с крутящим моментом 0,55 . Так как в этом случаи электродвигатель является фланцевым, то муфта выбирается одна.

9 Смазка редуктора

Смазка осуществляется окунанием зубьев червячного колеса в масленую ванну. Оптимальный уровень масла составляет 4m (модуля) от начала червяка. Для смазки червячной передачи принимается масло повышенной вязкости. Вязкость масла рекомендуется выбирать в зависимости от скорости скольжения. Принимаем индустриальное масло ИОН ГОСТ 10799-75. Смазка подшипников качения осуществляется из общих масленых ванн соответственно.      

Заключение

При выполнении курсового проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение.

Целью данного проекта является проектирование привода цепного конвейера, который состоит как из  простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, технологических, экономических и других нормативов.

В ходе решения поставленной передо мной задачей, была освоена методика выбора элементов привода, получены навыки проектирования, позволяющие обеспечить необходимый технический уровень, надежность и долгий срок службы механизма.

Опыт и навыки, полученные в ходе выполнения курсового проекта,  будут востребованы при выполнении, как курсовых проектов, так и дипломного проекта.

Можно отметить, что спроектированный редуктор обладает хорошими свойствами по всем показателям. Это видно из следующего:

  1.  Для изготовления червячного колеса назначаем материал БРАЖ9-4. У которой . Для изготовления червяка используем сталь 40Х, закалка 54HRC, витки нужно шлифовать и полировать. Данные материалы обладают удовлетворительными свойствами.
  2.  По результатам расчета на контактную выносливость действующие напряжения в зацеплении меньше допускаемых напряжений.
  3.  По результатам расчета по напряжениям изгиба действующие напряжения изгиба меньше допускаемых напряжений. Допускается перегрузка.
  4.  Расчет вала показал, что запас прочности больше допускаемого.
  5.  Необходимая динамическая грузоподъемность подшипников качения меньше паспортной.
  6.  При расчете был выбран электродвигатель модели 4А132S1343, который удовлетворяет требования.

 

 

     

Список использованных источников

  1.  Глаголев В.Б. “Детали машин. Проектирование механизмов и машин”. Методические указания по выполнению расчетно-графической работы №2 для студентов – Могилев: МГТУ. 2001-25с
  2.  Иванов М.И. “Детали машин”. Учебник для студентов вузов/под редакцией В.А. Филогенова. в-е изд. перераб – М: Высшая школа 1998-383с.
  3.  Детали машин проектирование : Учеб. пособ/ Л.В. Курмаз, А.Т. Скобейда – Мн : УП “Технопринт”,2001-290с.   


 

А также другие работы, которые могут Вас заинтересовать

81546. Повреждение мембран в результате перекисного окисления липидов. Механизмы защиты от токсического действия кислорода: неферментативные (витамины Е, С, глутатион и др.) и ферментативные (супероксиддисмутаза, каталаза, глутатионпероксидаза) 114.75 KB
  Активация перекисного окисления характерна для многих заболеваний: дистрофии мышц болезнь Дюшенна болезни Паркинсона при которых ПОЛ разрушает нервные клетки в стволовой части мозга при атеросклерозе развитии опухолей. Изменение структуры тканей в результате ПОЛ можно наблюдать на коже: с возрастом увеличивается количество пигментных пятен на коже особенно на дорсальной поверхности ладоней. Этот пигмент называют липофусцин представляющий собой смесь липидов и белков связанных между собой поперечными ковалентными связями и...
81547. Биотрансформация лекарственных веществ. Влияние лекарств на ферменты, участвующие в обезвреживании ксенобиотиков 105.66 KB
  Гидрофобные соединения легко проникают через мембраны простой диффузией в то время как лекарственные вещества нерастворимые в липидах проникают через мембраны путём трансмембранного переноса при участии разных типов транслоказ. Следующие этапы метаболизма лекарственного вещества в организме тоже определяются его химическим строением гидрофобные молекулы перемещаются по крови в комплексе с альбумином кислым агликопротеином или в составе липопротеинов. В зависимости от структуры лекарственное вещество может поступать из крови в клетку...
81548. Основы химического канцерогенеза. Представление о некоторых химических канцерогенах: полициклические ароматические углеводороды, ароматические амины, диоксиды, митоксины, нитрозамины 135.77 KB
  В покоящихся клетках ДНК двухспиральна и азотистые основания защищены от воздействия повреждающих агентов. Первичные или вторичные эпоксиды обладая высокой реакционной способностью могут взаимодействовать с нуклеофильными группами в молекуле ДНК. Метаболизм нитрозаминов микросомальной системой окисления приводит к образованию иона метилдиазония который способен метилировать ДНК клеток индуцируя возникновение злокачественных опухолей лёгких желудка пищевода печени и почек Основным продуктом взаимодействия нитрозаминов с ДНК клетки...
81549. Особенности развития, строения и метаболизма эритроцитов 107.69 KB
  Эритроциты - высокоспециализированные клетки, которые переносят кислород от лёгких к тканям и диоксид углерода, образующийся при метаболизме, из тканей к альвеолам лёгких. Транспорт О2 и СО2 в этих клетках осуществляет гемоглобин, составляющий 95% их сухого остатка. Организм взрослого человека содержит около
81550. Транспорт кислорода и диоксида углерода кровью. Гемоглобин плода (HbF) и его физиологическое значение 152.69 KB
  Поэтому в легочных капиллярах происходит насыщение крови кислородом а в тканевых капиллярах где парциальное давление кислорода резко снижено осуществляется отдача кислорода тканям. Содержание гемоглобина в крови здорового человека составляет...
81551. Полиморфные формы гемоглобинов человека. Гемоглобинопатии. Анемические гипоксии 135.14 KB
  Гемоглобинопатии. Анемические гипоксии Гемоглобины взрослого человека В эритроцитах взрослого человека гемоглобин составляет 90 от всех белков данной клетки. Гемоглобин А основной гемоглобин взрослого организма составляет около 98 от общего количества гемоглобина тетрамер состоит из 2 полипептидных цепей α и 2 β 2α2β.
81552. Биосинтез гема и его регуляция. Нарушения синтеза тема. Порфирии 175.5 KB
  Нарушения синтеза тема. В костном мозге гем необходим для синтеза гемоглобина в ретикулоцитах в гепатоцитах для образования цитохрома Р450. Первая реакция синтеза гема образование 5аминолевулиновой кислоты из глицина и сукцинилКоА идёт в матриксе митохондрий где в ЦТК образуется один из субстратов этой реакции сукцинилКоА. В цитоплазме проходят промежуточные этапы синтеза гема: соединение 2 молекул 5аминолевулиновой кислоты в молекулу порфобилиногена дезаминирование порфобилиногена с образованием гидроксиметилбилана...
81553. Распад гема. Обезвреживание билирубина. Нарушения обмена билирубина—желтухи: гемолитическая, обтурационная, печеночно-клеточная. Желтуха новорожденных 167.22 KB
  Обезвреживание билирубина. Нарушения обмена билирубина желтухи: гемолитическая обтурационная печеночноклеточная. Биливердин восстанавливается до билирубина NDPHзависимым ферментом биливердинредуктазой. При распаде 1 г гемоглобина образуется 35 мг билирубина а в сутки у взрослого человека примерно 250350 мг билирубина.
81554. Диагностическое значение определения билирубина и других желчных пигментов в крови и моче 102.49 KB
  Так при выраженной гемолитической желтухе сопровождающейся повышением концентрации непрямого билирубина неизбежно страдают различные органы в том числе и печень что может вносить элементы паренхиматозной желтухи т. повышение в крови и моче прямого билирубина. При подпечёночной механической желтухе например при раке головки поджелудочной железы неизбежен повышенный гемолиз как следствие раковой интоксикации и как следствие повышение в крови как прямого так и непрямого билирубина.