57348

Металлы. Особенности строения атома. Сплавы. Коррозия металлов. Щелочные и щелочноземельные металлы. Алюминий. Соединения алюминия. Железо. Соединения Железа

Конспект урока

Педагогика и дидактика

6 элементов в группе щелочных металлов литий натрий калий рубидий цезий франций 6 в группе щёлочноземельных металлов магний кальций стронций барий радий 38 в группе переходных металлов скандий титан ванадий хром марганец железо кобальт никель медь...

Русский

2014-04-11

363.5 KB

3 чел.

Урок 5-6. Металлы. Особенности строения атома. Сплавы. Коррозия металлов. Щелочные и щелочноземельные металлы. Алюминий. Соединения алюминия. Железо. Соединения Железа.

Мета́ллы (от лат. metallum — шахта, рудник) — группа элементов, обладающих свойствами: высокой тепло- и электропроводностью, положительным температурным коэффициентом сопротивления, высокой пластичностью и металлическим блеском.

Из 118[1] химических элементов к металлам относят:

6 элементов в группе щелочных металлов (литий, натрий, калий, рубидий, цезий, франций)

6 в группе щёлочноземельных металлов (магний, кальций, стронций, барий, радий…),

38 в группе переходных металлов (скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк, золото, серебро, кадмий, ртуть, иттрий, цирконий, ниобий, молибден…)

11 в группе лёгких металлов,

7 в группе полуметаллов,

14 в группе лантаноиды + лантан,

14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,

Таким образом, к металлам, возможно, относится 96 элементов из всех открытых.

Характерные свойства металлов

  •  Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
  •  Хорошая электропроводность
  •  Возможность лёгкой механической обработки (см.: пластичность; однако некоторые металлы, например германий и висмут, непластичны)
  •  Высокая плотность (обычно металлы тяжелее неметаллов)
  •  Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
  •  Большая теплопроводность
  •  В реакциях чаще всего являются восстановителями

  •  Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью.
  •  Температуры плавления металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам).
  •  В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22.6 г/см³ — ровно в два раза выше плотности свинца).
  •  Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются.
  •  Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов.
  •  Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.
  •  Гладкая поверхность металлов отражает большой процент света — это явление называется металлическим блеском. Однако в порошкообразном состоянии большинство металлов теряют свой блеск; алюминий и магний, тем не менее, сохраняют свой блеск и в порошке.
  •  Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.
  •  

Реакции с простыми веществами

  •  С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:

оксид лития
пероксид натрия

надпероксид калия

  •  С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:


При нагревании:

  •  С серой реагируют все металлы, кроме золота и платины:

Железо взаимодействует с серой при нагревании, образуя сульфид:

  •  С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:


  •  С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.



С кислотами металлы реагируют по-разному. Металлы, стоящие в электрохимическом ряду активности металлов (ЭРАМ) до водорода, взаимодействуют практически со всеми кислотами.

Происходит реакция замещения, которая также является окислительно-восстановительной:

Взаимодействие серной кислоты H2SO4 с металлами

Окисляющие кислоты могут взаимодействовать и с металлами, стоящими в ЭРАМ после водорода:

Очень разбавленная кислота реагирует с металлом по классической схеме:

При увеличении концентрации кислоты образуются различные продукты:

Реакции для азотной кислоты (HNO3)

При взаимодействии с активными металлами вариантов реакций ещё больше:

Свойства некоторых металлов.

На́трий — элемент главной подгруппы первой группы, третьего периода ПС, с атомным номером 11. Обозначается символом Na (лат. Natrium). Простое вещество натрий (CAS-номер: 7440-23-5) — мягкий щелочной металл серебристо-белого цвета.

Натрий (а точнее, его соединения) использовался с давних времён. Например, сода (натрон), встречается в природе в водах натронных озёр в Египте. Природную соду древние египтяне использовали для бальзамирования, отбеливания холста, при варке пищи, изготовлении красок и глазурей. Плиний Старший пишет, что в дельте Нила соду (в ней была достаточная доля примесей) выделяли из речной воды. Она поступала в продажу в виде крупных кусков, из-за примеси угля окрашенных в серый или даже чёрный цвет.

Название «натрий» происходит от латинского слова natrium (ср. др.-греч. νίτρον), которое было заимствовано из среднеегипетского языка (nr), где оно означало среди прочего: «сода», «едкий натр»[2].

, так как сода применялась в то время в качестве лекарства от головной боли[4].

Натрий впервые был получен английским химиком Хемфри Дэви в 1807 году электролизом твердого NaOH.

В организме натрий находится большей частью снаружи клеток (примерно в 15 раз больше чем в цитоплазме). Эту разницу поддерживает натрий-калиевый насос, который откачивает попавший внутрь клетки натрий.

Совместно с калием натрий выполняет следующие функции:

  •  Создание условий для возникновения мембранного потенциала и мышечных сокращений.
  •  Поддержание осмотической концентрации крови.
  •  Поддержание кислотно-щелочного баланса.
  •  Нормализация водного баланса.
  •  Обеспечение мембранного транспорта.
  •  Активация многих энзимов.

Ка́лий — элемент главной подгруппы первой группы, четвёртого периода ПС, с атомным номером 19. Обозначается символом K (лат. Kalium). Простое вещество калий (CAS-номер: 7440-09-7) — мягкий щелочной металл серебристо-белого цвета.

  •  В природе калий встречается только в соединениях с другими элементами, например, в морской воде, а также во многих минералах. Очень быстро окисляется на воздухе и очень легко вступает в химические реакции, особенно с водой, образуя щёлочь. Во многих отношениях химические свойства калия очень близки к натрию, но с точки зрения биологической функции и использования их клетками живых организмов они всё же отличаются.

В свободном состоянии не встречается. Калий входит в состав сильвина KCl, сильвинита KCl·NaCl, карналлита KCl·MgCl2·6H2O, каинита KCl·MgSO4·6H2O, а также присутствует в золе некоторых растений в виде карбоната K2CO3 (поташ). Калий входит в состав всех клеток

Калий — важнейший биогенный элемент, особенно в растительном мире. При недостатке калия в почве растения развиваются очень плохо, уменьшается урожай, поэтому около 90 % добываемых солей калия используют в качестве удобрений.

Ка́льций — элемент главной подгруппы второй группы, четвёртого периода ПС, с атомным номером 20. Обозначается символом Ca (лат. Calcium). Простое вещество кальций (CAS-номер: 7440-70-2) — мягкий, химически активный щёлочноземельный металл серебристо-белого цвета.

Название элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень».

Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад.

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca[Al2Si2O8].

В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.

Довольно широко распространены такие минералы кальция, как кальцит CaCO3, ангидрит CaSO4, алебастр CaSO4·0.5H2O и гипс CaSO4·2H2O, флюорит CaF2, апатиты Ca5(PO4)3(F,Cl,OH), доломит MgCO3·CaCO3. Присутствием солей кальция и магния в природной воде определяется её жёсткость.

В биосфере

Соединения кальция находятся практически во всех животных и растительных тканях (см. тж. ниже). Значительное количество кальция входит в состав живых организмов. Так, гидроксиапатит Ca5(PO4)3OH, или, в другой записи, 3Ca3(PO4)2·Са(OH)2 — основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция — около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Биологическая роль

Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть содержится в скелете и зубах в виде фосфатов

Ионы кальция также служат одним из универсальных вторичных посредников и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов и др.

Желе́зо — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия).

Простое вещество железо (CAS-номер: 7439-89-6) — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Собственно, железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.

В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре — 4,65 % (4-е место после O, Si, Al[2]). Считается также, что железо составляет бо́льшую часть земного ядра.

Минералы железа

В земной коре железо распространено достаточно широко — на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало — в кислых и средних породах.

Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe2O4, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O).

  •  Сидерит — FeCO3 — содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом. Плотность равна 3 г/см³ и твёрдость 3,5—4,5 по шкале Мооса.
  •  Марказит — FeS2 — содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов с плотностью 4,6—4,9 г/см³ и твёрдостью 5—6 по шкале Мооса.
  •  Лёллингит — FeAs2 — содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов. Плотность равна 7—7,4 г/см³, твёрдость 5—5,5 по шкале Мооса.
  •  Миспикель — FeAsS — содержит 34,3 % железа. Встречается в виде белых моноклинных призм с плотностью 5,6—6,2 г/см³ и твёрдостью 5,5—6 по шкале Мооса.
  •  Мелантерит — FeSO4·7H2O — реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие. Плотность равна 1,8—1,9 г/см³.
  •  Вивианит — Fe3(PO4)2·8H2O — встречается в виде сине-серых или зелено-серых моноклинных кристаллов с плотностью 2,95 г/см³ и твёрдостью 1,5—2 по шкале Мооса.

Железо — один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.

  •  Железо является основным компонентом сталей и чугунов — важнейших конструкционных материалов.
  •  Железо может входить в состав сплавов на основе других металлов — например, никелевых.
  •  Магнитная окись железа (магнетит) — важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
  •  Ультрадисперсный порошок магнетита используется во многих черно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
  •  Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
  •  Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
  •  Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
  •  Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
  •  Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Биологическое значение железа

В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (около 0,02 %), из которых 78 % являются главным действующим элементом гемоглобина крови, остальное входит в состав ферментов других клеток, катализируя процессы дыхания в клетках. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).

Обычно железо входит в ферменты в виде комплекса, называемого гемом. В частности, этот комплекс присутствует в гемоглобине — важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол, в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК.

Неорганические соединения железа встречается в некоторых бактериях, иногда используется ими для связывания азота воздуха.

В организм животных и человека железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, свёкла). Интересно, что некогда шпинат ошибочно был внесён в этот список (из-за опечатки в результатах анализа — был потерян «лишний» ноль после запятой).

Алюминий

Алюми́ний — элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 13. Обозначается символом Al (лат. Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий (CAS-номер: 7429-90-5) — лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al со следами 26Al, радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при бомбардировке ядер аргона протонами космических лучей.

По распространённости в земной коре Земли занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры[3].

В природе алюминий в связи с высокой химической активностью встречается почти исключительно в виде соединений. Некоторые из них:

  •  Бокситы — Al2O3 · H2O (с примесями SiO2, Fe2O3, CaCO3)
  •  Нефелины — KNa3[AlSiO4]4
  •  Алуниты — (Na,K)2SO4·Al2(SO4)3·4Al(OH)3
  •  Глинозёмы (смеси каолинов с песком SiO2, известняком CaCO3, магнезитом MgCO3)
  •  Корунд (сапфир, рубин, наждак) — Al2O3
  •  Полевые шпаты — (K,Na)2O·Al2O3·6SiO2, Ca[Al2Si2O8]
  •  Каолинит — Al2O3·2SiO2 · 2H2O
  •  Берилл (изумруд, аквамарин) — 3ВеО · Al2О3 · 6SiO2
  •  Хризоберилл (александрит) — BeAl2O4.
  •  
  •  Легенда из «Historia naturalis» гласит, что однажды к римскому императору Тиберию (42 год до н. э. — 37 год н. э.) пришёл ювелир с металлической, небьющейся обеденной тарелкой, изготовленной якобы из глинозёма — Al2O3. Тарелка была очень светлой и блестела, как серебро. По всем признакам она должна быть алюминиевой. При этом ювелир утверждал, что только он и боги знают, как получить этот металл из глины. Тиберий, опасаясь, что металл из легкодоступной глины может обесценить золото и серебро, приказал на всякий случай отрубить ювелиру голову. Данная легенда сомнительна, так как самородный алюминий в природе не встречается в силу своей высокой активности и во времена Римской империи не могло быть технических средств, которые позволили бы извлечь алюминий из глинозёма.
  •  Лишь почти через 2000 лет после Тиберия, в 1825 году, датский физик Ганс Христиан Эрстед получил несколько миллиграммов металлического алюминия, а в 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей пленкой оксида алюминия.

PAGE   \* MERGEFORMAT 1


 

А также другие работы, которые могут Вас заинтересовать

67227. КУЛЬТУРА СРЕДНИХ ВЕКОВ 46.5 KB
  Основной очаг народной культуры – деревня. Любой слой культуры в чистом виде не существует. Фольклор даже в пределах одной национальной культуры представлен широким многообразием форм. Это объясняется: зависимостью народной культуры от особенностей природной среды и стойких местных традиций...
67228. Туберкулез. Заболеваемость и смертность. Этиология и патогенез 184.5 KB
  Цель лекции: Познакомить студентов с этиологией патогенезом классическими формами туберкулеза и их морфологической характеристикой. Развернутый план лекции: Основные вопросы темы: Туберкулез. Клинико-морфологические формы туберкулеза.
67229. Задачи и особенности объектно-ориентированного проектирования программных средств 177.5 KB
  Объектно-ориентированное проектирование ООП предназначено организовывать программные системы с большими базами данных на основе описаний объектов реального мира важных для пользователей. Объектно-ориентированное проектирование представляет собой стратегию в рамках которой...
67230. ПРАВОВЫЕ СИСТЕМЫ И ПРАВОВЫЕ СЕМЬИ 123 KB
  Для обозначения связи этих факторов развития общества с правовым регулированием в его исторической перспективе необходим раздел правоведения занимающийся изучением не только и не столько внутренней структуры системы права сколько выяснением закономерного места последнего в общем контексте...
67231. ВЫВИХИ 84.5 KB
  Знать: механизм диагностику принципы лечения вывихов Уметь: оказать помощь при вывихах на догоспитальном этапе Иметь представление о способах вправления вывихов и последующей реабилитации больных Учебная комната перевязочная операционный блок. Определение и классификация вывихов...
67232. Розвиток культури України в умовах державної незалежності 211.5 KB
  Значно ускладнилася в ці роки ситуація на міжнародній арені, особливо після знищення радянським винищувачем південнокорейського пасажирського літака "Боїнг-747". Негативні явища в економіці СРСР і в його зовнішній політиці протягом 20 років (1965-1985 pp.) політичного консерватизму...
67233. Организация деятельности маркетинговых служб 177 KB
  Организация деятельности маркетинговых служб Процесс управления маркетингом состоит из: анализа рыночных возможностей; отбора целевых рынков; разработки комплекса маркетинга; претворения в жизнь маркетинговых мероприятий. Сегмент рынка состоит из потребителей одинаково реагирующих...
67234. Безопасность в чрезвычайных ситуациях 22.11 KB
  Классификация чрезвычайных ситуаций Существуют различные классификации чрезвычайных ситуаций. В первый из названных типов входят социально-политические конфликты а в последний три класса чрезвычайных ситуаций стихийные бедствия техногенные технологические катастрофы...
67235. Историческая типологизация культуры 31.5 KB
  Историческая типологизация культуры Предполагает выделение в истории человечества определенных историко-культурных эпох с целью анализа изменения культуры. Историко-культурная эпоха это длительный период доминирования сходных культурных форм выделяемый на основе таких признаков...