57498

Показательные уравнения и методы их решения

Конспект урока

Педагогика и дидактика

Цели урока. Систематизировать способы решения показательных уравнений; Расширить и углубить знания учащихся о методах решения показательных уравнений; Усиливать мотивацию обучения за счёт изобразительных средств обучения

Русский

2014-04-12

1.55 MB

15 чел.

Тема. Показательные уравнения и методы их решения.

Тип урока. Системно – обобщающий.

Цели урока.

Обучающие :

  •  Систематизировать способы решения показательных уравнений;
  •  Расширить и углубить знания учащихся о методах решения показательных уравнений;
  •  Усиливать мотивацию обучения за счёт изобразительных средств обучения

           ( презентация);

  •  Осуществлять контроль с обратной связью и оценкой результата.

Развивающие:

  •  Развивать у учащихся творческие способности, внимание, навыки поисковой работы;
  •  Самоконтроль, познавательную активность;
  •  Формировать умение обобщать и делать выводы;
  •  Правильно формулировать свои мысли;
  •  Умения работать с дополнительной литературой.

Воспитательные:

  •  Формировать умения сотрудничества в ходе общей обучающей деятельности;
  •  Формировать навыки индивидуальной и коллективной работы;
  •  Стимулировать учащихся к самооценке образовательной деятельности.

Оборудование урока:  компьютер, презентация к уроку, раздаточный печатный материал.

Время: 3 модуля по 30 минут.

Ход урока.

I .Организационный момент. (2 мин)

 

Формулирую тему и цели урока.  Ученики всего класса записывают число и тему урока в тетрадях. Проверяю состав групп, на которые класс был разбит на предыдущем уроке.

II.  Устный счет. (5 - 7минут)

   

1.Какая из данных функций является показательной:

А

Б

В

Г

у = sin

у = 

у =

у = πх

2.Какие из заданных функций  являются возрастающими, убывающими?

А

Б

В

Г

у = (0,18)х

у = х

у =х

у = πх

3.  Через какую из приведенных точек проходит график функции у = 2х + 1?

А

Б

В

Г

( 3; 3)

( 3; 8)

( 3; 9)

( 4; 8)

4.  При каких значениях а верно равенство:   3а = .

А

Б

В

Г

-

другой ответ

5.  Решите уравнения.

  1.  3х7х = ;                      х = 3
  2.  5х = 5;                            х = 5/3
  3.  3х = ;                                 х = 4/3
  4.  3х• = .                   х = - 3

6.  Найдите ординату точки А (sin 30; у), принадлежащей графику функции

     у = 9 х.

7.  Точка М ( х; 16sin ) принадлежит графику функции у = 2х. Найдите х.

Ответы.

1

2

3

4

5

6

7

ответ

Г

В, Г

А, Б

В

В

3, , , - 3

3

3

III.  .Актуализация опорных  знаний учащихся (30 мин). 

Обращаю  внимание учащихся на то, что  показательные уравнения входят в задания ВНО. Представители каждой группы с помощью презентации домашнего задания показывают теоретические и практические знания при решении показательных  уравнений.

Задание 1 группы:

Определение. Показательными называются уравнения, содержащие   неизвестное в   показателе степени.

Основные методы решения показательных уравнений.

  1.  Простейшие показательные уравнения имеют вид  а= b (a > 0, a).

При b0, уравнение а= b не имеет решений. При b > 0 данное уравнение решается путём логарифмирования обеих частей уравнения по основанию a;  В результате получается уравнение равносильное данному:

 log а= logb ;  х = logb.

Пример1.  Решите уравнение:  8= - 8

Данное уравнение решений не имеет, т.к. – 8 < 0, а показательная функция принимает только положительные значения.

 Пример2.    Решить уравнение :  8х = 3.

Прологарифмируем уравнение по основанию 8, получим:

  log8= log3;   х log8 =  log3;   х =  log3;                  Ответ: log3.

Пример 3.  Решить уравнение:    = 16.

Число 16 можно представить виде 24, тогда   = 24,    х2 – х – 2 = 4,

  х2 – х – 6 = 0,   х1,2 = 0,5  = 0,5 ;   х1 = 3;   х2 = - 2.              

                                                                                                Ответ: 3; - 2.

Пример 4.   Решить уравнение:   4х = 82х – 3.

Приведём обе части уравнения к основанию 2:  4х = ( 22)х = 2;  82х – 3 =

= ( 23)2х – 3 = 26х – 9. Получим  2 = 26х – 9, 2х = 6х – 9,  4х = 9,  х = 2,25.

                                                                                                 Ответ:  2,25.

                          

Задание 2 группы:

1. Решение показательных уравнений методом уравнивания показателей, т.е. преобразование данного уравнения к виду а, а затем к виду

 f(x) = g(x).

Пример1.  Решите уравнение:    

Преобразуем обе части уравнения таким образом, чтобы в основании было число  0,2,  получим уравнение:  (0,2),

(0,2),  х = 2х – 3,   х = 3;

                                                                                                       Ответ: 3. 

Пример 2.  Решить уравнение:     = ( ) х + 1.

Преобразуем обе части уравнения таким образом, чтобы в основании было число 3, получим:   ,   ,    

2х + 2 = 3 ( х2 – х – 2),  3х2 – 5х – 8 = 0;  

  х1, 2 =  = ;    х1 = ,      х2 = - 1.                    

Ответ: ,  - 1.      

  1.  Решение показательных  уравнений методом вынесения общего множителя за скобки.

Пример3.   Решите уравнение:   33х + 1 - 427х – 1 + 91,5х – 1 = 80.

 33х + 1 – 4 33х – 3 + 3 3х – 2 = 80,   3 ( 3 -     3• = 80,

3• = 80,   3 = 27,    3 = 33,   3х = 3,    х = 1.                            

    Ответ:  1.

Пример 4.  Решить уравнение:  5х + 1 - 35х – 2 = 122.

55х - 3 = 122,  5х ( 5 - ) = 122,   5х• = 122,  5х = 25,   5х = 52, х = 2.

Ответ: 2.

 Задание 3 группы:

1.  Решение показательных уравнений способом подстановки.

С помощью удачной замены переменных некоторые показательные уравнения удается свести к алгебраическому виду, чаще всего к квадратному уравнению.

Пример1.   Решите уравнение :   9х + 1 + 263х – 3 = 0.

Решение.    32х + 2 + 263х – 3 = 0,   93 + 263х – 3 = 0.  Пусть 3х = у, у > 0, тогда  9у2 + 26у – 3 = 0,   у1, 2 =  = ;   у1 = ;     у2 = - 3 – не удовлетворяет ОДЗ уравнения.  Вернёмся в замену, получим:  3х  = 3- 2,

х = - 2.                                                                                           Ответ:   - 2.

Пример 2.     Решить уравнение:     -  = 2.

Решение.   Пусть  2х = у, у > 0, тогда получим:  = 2;

ОЗ:  ( у + 2) ( у – 3).                                            ОДЗ: у ≠ - 2;  у ≠ 3.

4( у – 3) – у – 2 = 2 ( у + 2) (у – 3),     4у – 12 – у – 2 = 2у2 – 2у – 12,

2 – 5у + 2 = 0,    у1, 2 =  = ,    у1 = 2,     у2 = .

Вернёмся в замену:

  2х = 2,        х = 1;

  2х = 2 -1,     х = - 1.                                                                            Ответ:  1, - 1.

Пример 3.   Решить уравнение:  ( ) х + (  ) х = 4.

Заметим, что ( ) (  )  = 4 – 3 = 1.

Поэтому (  ) =  . Тогда исходное уравнение принимает вид

( 2 +  х/2 + ( 2 +  ) – х/2 = 4,   и заменой   ( 2 +  х/2 = у,  у > 0

сводится к уравнению  у +  = 4   ⇔  = 0,  у1, 2 = 2 ±  = 2 ±

    у1 = 2 + ;                                      ( 2 +  х/2  = 2 +           

    у2 =  = ( 2 + ) – 1 ;    ( 2 +  х/2  =  ( 2 + ) – 1;   

       = 1;

       = - 1.    х1 = 2,   х2 = - 2.

Ответ: ± 2.

Задание 4 группы.

1.  Метод почленного деления.

Данный метод заключается в том, чтобы разделить каждый член уравнения, содержащий степени с одинаковыми показателями, но разными основаниями, на одну из степеней. Этот метод применяется для решения однородных показательных уравнений.

Пример1.  Решите уравнение:   4х - 214х - 349х = 0.  

 Решение.   2 - 22х7х - 37 = 0,    ( : 72х  ≠ 0),  получим:

- 2(х – 3 = 0.   Пусть (, где y > 0, тогда  y

у1, 2 = 1 ± 2;    у1 = 3,    у2 = - 1 – не удовлетворяет ОДЗ уравнения.

Получим:   (        х = log ;                                             Ответ:  log .

Пример 2.  Решить уравнение.  1081 х + 9225 х - 9625 х = 0.

Решение.    103 + 915 2х  - 95 4х = 0   103  + 93 5 -  95 4х = 0.

Разделим обе части уравнения на    5 4х ≠ 0, получим:

10(   + 9(    - 9 = 0 .  Пусть  (    = у,   у > 0, тогда получим:    

10у2 + 9у – 9 = 0,    у1, 2 =  =  ,   у1 = ,   у2 = - 1,5 – не

удовлетворяет ОДЗ уравнения.  Вернёмся в замену:  

(   =        2х = 1    х = 0,5.

Ответ: 0,5.

                                             

2. Способ группировки.

Способ группировки заключается в том, чтобы собрать степени с разными основаниями в разных частях уравнения, а затем разделить обе части уравнения на одну из степеней.

Пример 3.  Решить уравнение.  34х +  9х + 2 = 64х + 1 -  9х + 1.

Решение. Сгруппируем слагаемые следующим образом:

34х - 64х + 1 = - 9х + 1 -  9х + 2. Вынесем из каждой части уравнения общие множители:   34х ( 1 – 8) = 9 х ( -  – 27 )      - 214х = -  9х .

Разделим обе части уравнения на 9х ≠ 0, получим:

=        (  = (      2х = - 1   х = - 0,5.

Ответ:  - 0,5.

Пример 4. Решить уравнение.   252 х + 5х – 10 х = 25.

Решение.   Сгруппируем слагаемые следующим образом:

( 252 х – 25) – (10 х - 5х) = 0    25 ( 2 х – 1) – 5 х (2 х – 1) = 0  

( 2 х – 1) ( 25 - 5х ) = 0             

      2 х = 1,                     х = 0,

      5х = 25.       ⇔       х = 2.

Ответ: 0;  2.

IV. Углубление знаний учащихся.    (20 минут)

1. Решение показательных уравнений методом подбора.

При решении показательных уравнений этим методом вначале находят путем подбора корень исходного уравнения, а затем  доказывают, что  этот корень единственный, с использованием свойства монотонности показательной функции.

Пример 1.  Решить уравнение:  5х + 12 х = 13 х.

Решение.  Не трудно заметить, что х = 2 - корень исходного уравнения.

Все функции, составляющие уравнение имеют одинаковый характер монотонности – возрастают. Поэтому, чтобы убедиться в единственности этого корня, разделим обе части уравнения почленно на 12х. Получим:

( х + 1 = ( ) х.  Функция у = ( х + 1 убывает, а функция у = ( ) х возрастает, значит согласно теоремы о монотонности показательной функции

х = 2 – единственный корень этого уравнения.

Ответ: 2.

Пример 2.  Решить уравнение.  4 х +  = 19.

Решение.  Поскольку функции у = 4 х и  у =  монотонно возрастающие на R,

то и функция  у = 4 х +  также монотонно возрастает на R. Значит данное уравнение на множестве действительных чисел имеет не более одного корня.

Легко заметить, что х = 2 удовлетворяет уравнению.

Ответ:  2.

Пример 3.  Решить уравнение.  6 х – 2 х = 32.

Решение.  Легко заметить, что уравнение удовлетворяет значение х = 2. Докажем, что других корней нет. Для этого представим уравнение в виде

3 х – 1  =  .   Правая часть уравнения – убывающая функция, левая – возрастающая, согласно теоремы о монотонности показательной функции

х =2 – единственный корень этого уравнения.

Ответ:  2.

Пример 4.     Решить уравнение:  (х+3) = (х+3) .

Решение.  Выражения в левой и правой частях уравнения представляют собой функцию, содержащую переменную, как в основании, так и в показателе степени. Решение показательно-степенного уравнения вида

=   сводится к таким случаям:

  1.   = 1,
  2.   = - 1,
  3.   = 0,        проверка корней, найденных в 2, 3 и 4 случаях
  4.   = т.                                        обязательна.

Решение.  

  1.  Если х+3=1, то  х = - 2.   ( 1 - верное равенство);
  2.  Если  х + 3 = - 1,  то х = - 4.  (   ( - 1)13 ≠ ( - 1)-8 ), посторонний корень;
  3.  Если х+3 = 0, то х= - 3.  ( 0≠  0), посторонний корень;
  4.  Если  х2 – 3 = 2х, то  х2 – 2х – 3 = 0,  х1 = 3,   х2 = - 1. В результате проверки убеждаемся, что это корни уравнения.

Ответ: -2; -1; 3.

Пример 5.  Решить уравнение.  (   = ( х – 2) 11х – 20.

Решение.

  1.  Если   х – 2 = 1,   х = 3.        ( 115 = 1 13 – верное равенство)
  2.  Если  х – 2 = - 1,  х = 1.        (  ( - 1) 3 = ( - 1)- 9 – верное равенство)
  3.  Если  х – 2 = 0,   х = 2.         ( 08 = 02 – верное равенство)
  4.  Если  х2 + 2х = 11х – 20, то  получим:

х2 – 9х + 20 = 0,   х1, 2 = 4,5 ±  = 4,5 ± 0,5,  х1 = 5,  х2 = 4. Проверкой убеждаемся, что найденные корни удовлетворяют уравнению.

Ответ: 1, 2, 3, 4, 5.

V.  Закрепление изученного материала. Ярмарка задач . (15 минут).

Каждой группе учащихся в конвертах даются уравнения не менее 6и каждой группе (соответствующей степени сложности).  Консультант раздает каждому ученику по одному уравнению и через 10 - 15 минут решения собираются и сдаются учителю. Затем продолжается обсуждение  и решение в группе  остальных уравнений.

Задания  группам:  

Банк показательных уравнений.

Решить уравнение                                                    Ответы

  1.                                              7; - 3.
  2.      х + 33 х = 288                                      2.
  3.      = 14.                                        2.
  4.   х + 3 – 2х = 112                                     4.
  5.  хх =                                          3.
  6.    = 96                                        4.
  7.    3х + 1 = 5х – 2                                  0,125.
  8.                                               8.

  1.   = 625                                             16.

10.  8 х – 3 = 9 х  -3                                        3.

11.  5 х – 3 – 5 х – 4 - 165 х – 5 = 2х – 3          5.

12.  216х – 2 – 4 2х – 2 = 15.                  0,75.

13.  9 3 + х + 3 2х + 2 = 738                       - 2.

14.   4 х – 3х – 0,5= 3х + 0,5 – 2 2х – 1                1,5.

15.   5 = 56                     16.

16.   916 х + 6416 х – 1- 25616 х – 2       1,25.

17.  3 5х – 4 + 3 = 82                                 0,8.

18.  23 х + 2 - 53 х – 3 = 1443                    4.

19.                                162.

20.  23 х + 1 - 59 х – 2 =81                    4;  4 - .

21.  3 х + 2 + 9 х +1 = 810                               2.

22.  53 х -  = 7                                      3.

23.  3= 20                                 8.

24.  2 х + 1 - 56 х + 32х + 1 = 0                      0; - 1.

25.  43 х - 92 х = 5•                      4.

26.  34 х + 29 х = 5•                     0;  1.

27.  225 х - 510 х +2•                    

28.   8 х + 18 х = 227 х                                 0.

29.  2 х + 3х + 4х = 99                                    3.

30.  ( = ( 5х – 8)10х                   1,8; 3.

31.  ( х + 5) х – 9 = 1                                        - 4; 9.

32.  ( 4 – х) 3х + 2 = 4 – х                                   3;  - .

33.   9                                      2.

34.  (3                                               - 2;  1.

VI. Проверка и обсуждение заданий: (10 - 12 минут). 

Готовые решения одного из заданий записываются на доске каждой группой. Выдвинутый группой ученик объясняет решение, основываясь на теории, выдвигает алгоритм действий. Объяснения длятся около 4 минут. Другие группы могут задать вопросы по решению уравнения. 

Решение некоторых  уравнений  № 33 и 34 из банка.

  1.  Решить уравнение:       9

Решение:  

  9

Получаем: 9;9 - 7; Пусть > 0;

Тогда 9 - 7y - 16y= 0;   16y+7y-9=0;  y=;  y< 0 – посторонний корень.

Вернёмся в замену, получим:   ;  (;  х=2;   

Ответ: 2.

  1.  Решить  уравнение:    (3    

  Решение: Произведение двух выражений равно нулю, если хотя бы один из множителей равен нулю, а второй при этом не теряет смысл.

  1.  3;   3;   х; х = 2 и х = - 2.

При  х = 2  подкоренное выражение отрицательно, значит, число 2 не является корнем уравнения.

2)  при х = 1. Это число является корнем данного уравнения, так как выражение 3 имеет смысл при любом х.

Ответ: - 2 ;1.

 

V II. Итог урока:  (3 - 5минут)

1)Учитель задает вопросы классу: Какими методами можно решать  показательные уравнения?

2)Оценка знаний учащихся: Учитель оценивает деятельность каждой группы. Учитель ставит итоговые отметки, оценив деятельность каждой группы.

 

V III. Домашнее задание:  стр46, №169(б; г); №173(а);№175(а; в);№176(а;г); Алгебра и начала анализа. Учебник для 11 класса общеобразовательных учебных заведений: академический уровень, профильный уровень/ Г. П. Бевз, В. Г. Бевз, Н. Г. Владимирова. – К.: Освіта, 2011. 


Список  литературы.

  1.  А. Г. Мерзляк, В. Б. Полонский, М. С. Якир.  Алгебраический тренажер.  Киев « А. С. К», 1997
  2.  А. Г. Гайштут, Р. П. Ушаков «Сборник задач по математике с примерами  решений».  Киев « А. С. К.», 2002.
  3.  А. Г. Мордкович «Беседы с учителями математики». Москва «ОНИКС 21 век» «Мир и Образование» 2005.
  4.  В. Н. Литвиненко, А. Г. Мордкович «Практикум по решению математических задач». Москва: Просвещение, 1984.
  5.  М. С. Фурман «Збірник задач з алгебри і початків аналізу. 11 клас. Харків. Видавнича група «Основа» 2010.
  6.  Алгебра и начала анализа. Учебник для 11 класса общеобразовательных учебных заведений: академический уровень, профильный уровень/ Г. П. Бевз, В. Г. Бевз, Н. Г. Владимирова. – К.: Освіта, 2011. 
  7.  И. Т. Бородуля. Показательные и логарифмические уравнения и   неравенства.  Пособие для учителя. М., «Просвещение», 1967.

PAGE   \* MERGEFORMAT 14


 

А также другие работы, которые могут Вас заинтересовать

73077. Психоаналитические теории культуры: З.Фрейд, К.Юнг, Ж.Лакан 34 KB
  Юнг швейцарский психолог психиатр. Ученик Фрейда Юнг пришел к выводу о том что типичные образы являющиеся в снах пациентов являются явлением не извне. Юнг выделяет в структуре психики человека не только индивид. Таким образом Юнг приходит к выводу что коллективное бессознательное имеет культурное...
73078. Морфология культуры в XX веке: О.Шпенглер, А.Тойнби, П.Сорокин 40 KB
  Морфология культуры в XX веке: О. В основе каждой культуры лежит общественный идеал или степень культуры кот. Вслед за Данилевским Шпенглер считает что развитие культуры выстраивается по образцу живого организма походит стадии детства юности зрелости старости смерти.
73079. Типология культур Н.Данилевского 32.5 KB
  В основу концепции исторической типологии им положен принцип многообразия локальных цивилизаций циклического развития культуры. Данилевский первым обосновал такой подход к истории мировой культуры. Данилевский отстаивал идею самобытности русской культуры национального характера русского народа и духовных ценностей.
73080. Позитивистские и эволюционные концепции культуры: Г.Спенсер, Э.Тайлор 33.5 KB
  В 19 веке появилась специальная наука об человеческих общностях социология ставшая основой для формирования культурной антропологии социологии культуры и более частных культурологических дисциплин культурной этнологии и этнографии социологии искусства и т.
73081. Теории развития культуры в эпоху Просвещения. Д.Вико и И.Гердер 36.5 KB
  Просветителей интересовала возможность духовного совершенствования человека, взаимопонимания народов. Эти идеи оказали значительное влияние на развитие общественной мысли. Вместе с тем в 19-20 вв. идеология Просвещения нередко подвергалась критике за идеализацию человеческой природы...
73082. РЕЧЕВЫЕ АКТЫ В СТАНДАРТНОЙ ТЕОРИИ 90 KB
  Речевой акт в понимании Дж. Остина Первой своей задачей при создании теории речевых актов Дж. Остин считал выяснение характера отношений между констативными и перформативными высказываниями и условий удачности перформативов.
73083. Социальная философия и теоретическая социология 272 KB
  В противоположность кайресу следует обозначить состояние которе метафорически можно назвать исторической дремотой сном истории. Сон истории - это период когда как кажется ничего не происходит. Это и есть ритм истории. Факторы исторического процесса и их соотношение...
73084. Вывод (доказательство) в логике 31.5 KB
  Вывод доказательство в логике: вывод и вывод из данных формул в аксиоматическом исчислении высказываний прямое и косвенное доказательство в системах естественного вывода. Доказательство логическая форма мысли обосновывающая истинность того или иного положения посредством других положений...
73085. Политика снижения рождаемости, ее результативность в разных странах 23.47 KB
  Политика одного ребёнка на одну семью (или одна семья — один ребёнок) — демографическая политика Китая. Китай был вынужден законодательно ограничить размер семьи в 1970-х годах, когда стало понятно, что огромное количество людей перегружает земельные, водные и энергетические ресурсы страны.