57713

Прямоугольная система координат. Расстояние между точками. Координаты середины отрезка

Конспект урока

Педагогика и дидактика

Актуализация опорных знаний фронтальный опрос сильных учащихся с наводящими вопросами по будущим заданиям Что такое треугольник фигура состоящая из 3х точек не лежащих на одной прямой и 3х отрезков попарно соединяющих эти точки...

Русский

2014-04-15

286 KB

50 чел.

Тема урока:         Прямоугольная система координат. Расстояние между точками.

Координаты середины отрезка

Цели: формирование умений решать задачи, используя формулы для нахождения расстояния между

точками на плоскости и вычисления координат середины отрезка;  развитие внимания,

сосредоточенности, логического мышления; воспитание трудолюбия, привитие бережного

отношения к технике и программному обеспечению

Тип: урок применения знаний, умений и навыков

Форма: фронтальная, коллективная, индивидуальная

Методы: словесный, наглядный, репродуктивный, частично-поисковый, метод контроля

Оборудование в кабинете: ПК, Power Point, тестирующая программа, карточки для сильных учащихся,

            карточки-консультанты

Оборудование у учащихся: чертежные инструменты (карандаш, линейка, ручка), тетрадь, дневник

Ход урока

І.  Орг.момент

(приветствие, проверка отсутствующих и готовности уроку, рассаживание определенным образом: за компьютеры садятся сильные ученики, за лекционными столами остаются более слабые ученики)

II. Актуализация опорных знаний

(фронтальный опрос сильных учащихся с наводящими вопросами по будущим заданиям)

  1.  Что такое треугольник?

(фигура, состоящая из 3-х точек, не лежащих на одной прямой и 3-х отрезков, попарно соединяющих эти точки)

  1.  Что значит найти длину стороны треугольника, зная координаты его вершин?

(найти расстояние между двумя соседними вершинами)

  1.  Как найти расстояние между двумя точками?

  1.  Какие бывают виды треугольников по сторонам?

(равнобедренные, равносторонние, произвольные)

  1.  Как узнать, что равнобедренный треугольник существует, если известны 2 координаты вершин треугольника?

(найти длины всех сторон и убедиться, что какие-то две стороны равны)

  1.  Что такое трапеция?

(четырехугольник, у которого две стороны параллельны и две не параллельны)

  1.  Как называются параллельные стороны?

(основания)

  1.  Как называются не параллельные стороны?

(боковые)

  1.  Что такое средняя линия трапеции?

(отрезок, соединяющий середины боковых сторон)

  1.  Как найти координаты середины отрезка?

III. Закрепление (решение задач)

  •  Сильные ученики работают индивидуально за компьютерами, решают задачи в тетради, ответы вводят в тестовую систему.
  •  Слабые ученики работают коллективно вместе с учителем за лекционными столами, следя за заданиями и решением с помощью презентации.

Задания 1-6 решаются коллективно учащимися всей группы,

учитель наводящими вопросами вовлекает учащихся в работу.

После решения задания ответить, какие знаки имеют абсциссы и ординаты точек в каждой четверти.

Опирается на вывод, сделанный в задаче 1.

Вопрос: По какой формуле вычисляется расстояние

    между двумя точками на плоскости?

Вопрос:  - координаты какой точки?

               - координаты какой точки?

Вопрос: По какой формуле вычисляется расстояние

   между двумя точками на плоскости?

Вопрос: Как найти радиус круга, зная диаметр?

Вопрос: Чему равен радиус круга?

Вопрос: Можно визуально определить точку С-

   середину отрезка АВ?

Вопрос: Каковы её координаты?

Вопрос: По каким формулам вычисляются

   координаты середины отрезка?

Задание 7 решается, используя интерактивный приём «цепочка» для самых слабых учащихся.

Вопрос: Как вычислить координаты середины

   отрезка?

(продолжается решение «по цепочке»

- для пунктов б,г – самыми слабыми учащимися)

Вопрос: Как вычислить координаты точки А (точки

   В), зная координаты середины отрезка и

   другого конца?

(продолжается решение «по цепочке»

- для пунктов а,в,д,е – более сильными слабыми учащимися)

IV. Применение знаний

  •  Сильные ученики возвращаются за лекционные столы и разбирают с учителем сложную задачу.
  •  Слабые ученики проходят тестирование на компьютере по рассмотренной теме и решенным на уроке задачам.
  •  Самые слабые ученики получают карточки и выполняют эти задания в тетрадях за последним лекционным столом.

Задания 1,2 решаются совместно с учителем, который с помощью наводящих вопросов помогает учащимся правильно составить алгоритм решения задач и решить их.

Вопрос: Что такое параллелограмм? Дайте

   определение параллелограмма.

(параллелограмм – это четырехугольник, у которого противоположные стороны параллельны)

Вопрос: Каким свойством обладают диагонали

   параллелограмма?

(диагонали параллелограмма пересекаются и точкой пересечения делятся пополам)

Вопрос: Как нам поможет основное свойство

   диагоналей параллелограмма найти

   координаты четвертой вершины

   параллелограмма?

Вопрос: Какой план решения?

  1.  Найти координаты точки О как середины отрезка BD
  2.  Зная координаты точки А и точки О (середины отрезка АС) найти координаты т С – четвертой вершины параллелограмма.

Вопрос: Что такое треугольник? Дайте определение

   треугольника.

(треугольник – это фигура, состоящая из 3-х точек, не лежащих на одной прямой, и 3-х отрезков попарно соединяющих эти точки)

Вопрос: Что такое медиана треугольника?

(медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны)

Вопрос: Как нам это поможет решить нашу задачу?

   Каков план решения?

  1.  Найти координаты середины отрезка АВ, ВС, АС, т.е. точки N, P, K.
  2.  Найти длины медиан треугольника, т.е. отрезков AP, BK, CN.

V. Подведение итогов урока (выставление оценок, повторение изученного)

Каждый ученик за урок получает оценку во время прохождения тестирования на компьютере, учитель выставляет полученные оценки в журнал. Проверяются задания самых слабых учеников по карточкам-консультантам.

VI. Домашнее задание

Группа А: задание 1 №7,8 и задание 2 №3 (с. 20) – учебник Апостоловой

Группа Б:

№1 (№435).Вычислите площадь треугольника АВС по координатам его вершин: А(1; 2), В(2; 4), С(-2;5).

№2 (№427). Докажите, что четырехугольник ABCD с вершинами в точках A(5;-1), B(-7;-6), C(-12;6), D(0;11) является: 1)параллелограммом; 2)ромбом; 3)квадратом.


 

А также другие работы, которые могут Вас заинтересовать

18198. Функції, види операційних систем 36.5 KB
  Лекція 3 Функції види операційних систем Операційна система ОС це комплекс програм; забезпечує керування комп'ютером як єдиним цілим тоді як насправді комп'ютер складається з багатьох частин його взаємодія з навколишнім середовищем людиною прикладними програм
18199. Операційна система: призначення й склад 39 KB
  Лекція 4 Операційна система: призначення й склад На IBMсумісних персональних комп'ютерах використовуються операційні системи корпорації Microsoft Windows вільно розповсюджуєма операційна система Linux. На персональних комп'ютерах фірми Apple використовуються різні версії опер...
18200. Windows - Загальні відомості 52.5 KB
  Лекція 5 Windows Загальні відомості Наприкінці 90х років XX ст. стандартом ОС для 32розрядних ПК стала система Windows 98. Вона має ряд особливостей: 1. Зручний для користувача графічний інтерфейс. Він дає змогу досить просто керувати роботою комп'ютера використовуючи такі п...
18201. Складові Windows 93.5 KB
  Лекція 6 Складові Windows Головне меню містить у собі такі пункти: Програми виведення списку інстальованих програм. Документи виведення списку недавно переглянутих документів. Настройки виведення списку компонентів системи настройка яких може бути зміне
18202. Операційна система Windows XP 120 KB
  Лекція 7 Операційна система Windows XP Windows XP з'явився 25 жовтня 2001 року. Це унікально потужна операційна система в основі якої лежить Windows 2000. Це нова OC від Microsoft починаючи з якої зроблена спроба об'єднати дві що раніше існували незалежно лінійки W9x і NT. Спочатку цей проект
18203. Операційна система Windows Server 2003 156 KB
  Лекція 8 Операційна система Windows Server 2003 Операційні системи сімейства Windows Server 2003 є еволюційним розвитком серверної платформи Windows 2000 Server що також включили в себе багато засобів систем Windows XP. Слід також нагадати що ОС Windows 2000 мають внутрішній номер версії 5.0 а системи Wi...
18204. Робота з WINDOWS SERVER 2003 192 KB
  Робота з WINDOWS SERVER 2003 Створювати розділи на жорсткому диску можна такими способами: Якщо на комп'ютері вже встановлена система Windows NT/2000/XP то розділи на жорсткому диску можна створити за допомогою адміністративних засобів самої операційної системи. Якщо на комп'ю
18205. Операційна система Linux: історія 85 KB
  Лекція 10 Операційна система Linux: історія Linux багатозадачна й багатокористуваться операційна система для бізнесу утворення й індивідуального програмування. Linux належить сімейству UNIXподібних операційних систем вона може працювати на комп'ютерах Intel 80386 80486 і Pen...
18206. Види операційної системи Linux 43 KB
  Лекція 11 Види операційної системи Linux Linux Mandriva One Ця редакція Linux Mandriva являє собою Live CD. Live CD операційна система яка завантажується й працює прямо з компактдиска без необхідності установки й без ризику внесення якихнебудь змін у систему. Крім того Mandriva One мож...