57730

Решение логарифмических уравнений различными способами

Конспект урока

Педагогика и дидактика

Цель: Формировать умения и навыки решать логарифмические уравнения различными способами. Развивать социальную компетентность: учить детей высказывать собственную точку зрения, выслушивать точку зрения товарища...

Русский

2014-04-15

445 KB

2 чел.

Урок по алгебре и началам анализа в 11 классе (академический уровень)

Тема «Решение логарифмических уравнений различными способами»

         Цель: Формировать умения и навыки решать логарифмические уравнения различными способами.

  Развивать социальную компетентность: учить детей высказывать собственную точку зрения, выслушивать точку зрения товарища, согласовывать и приходить к взаимопониманию. Предоставлять учащимся возможность проявлять инициативу, творчество.

 Воспитывать силу воли и упорство в достижении цели; способность у учащихся давать адекватную самооценку.

 

Афоризм   

Если запастись терпением и проявить старание, то посеянные зерна знаний непременно дадут хорошие всходы.

      Леонардо да Винчи.


Ход урока.

  1.  Организационный этап.
  2.  Актуализация опорных умений и навыков.

У каждого учащегося на парте оценочный лист для комплексной оценки, которую они выставят себе по итогу их работы на уроке:

1.Теория(1б).

2.Задание на соответствие(4б).

3.Участие в работе группы(1б).

4.Решение тестовых заданий(6б).

1.   Работа в парах с последующей оценкой товарища.

Учащиеся, имитируя «Микрофон», задают друг другу вопросы по теории (все вопросы высвечены на экране).

  1.Определение логарифма.

                                2.Чему равна сумма логарифмов?

                                 3.Чему равна разность логарифмов?

     4.Чему равен логарифм степени?

     5.Формулы перехода к новому основанию.

     6.Основное логарифмическое тождество.

     7.Назвать основные методы решения логарифмических      

                         уравнений.   

2.Найти соответствие между функциями и их областью определения.

1)у=lg(4x-5)     A(-6;-5) (-5;

2)y=lg      Б хо

3)y=     В (1;

4)y=lg(-x)4                                 Г x5

      Д(1,25; +)             

Ответы:1)Д,2)В,3)А,4)Б.( Проверка выполняется самооценкой по высветившейся проверочной таблице на экране).

3.Решить уравнения(устно).Обсудить с учащимися.

а)lgx4=1;    б)lglxl=2; в)log2log3x=2.       

Ответы:а) x=              б)x=             в)х=81.

  1.  Проверка домашнего задания.

Консультанты докладывают о наличии домашнего задания. По выполненному на экране домашнему заданию учащиеся обсуждают решение, задают вопросы учителю и консультантам.

  1.  Формирование умений и навыков решения логарифмических уравнений различными способами.

Работа по группам (решается уравнение совместно, затем один представитель группы записывает решение на доске):

I группа

 Решить уравнения:

№ 1. 2log2x2-log22(-x)=3

Решение.

ОДЗ:        .

4log2(-x) – log22(-x) -3 =0; log22(-x)-4log2(-x)+3=0; log2(-x)=3 или log2(-x)=1.

Х=-8 или Х=-2.

Ответ:-8;-2.

II группа

№ 2. log-2x(2x2-x-1)=1.

Решение.

2x2-x-1=-2x ;  2x2+x-1=0 ;    x=-1  или    x=0,5.

Проверкой убеждаемся, что х=0,5 не является корнем уравнения.

Ответ:-1.

III группа

№ 3. log7(x-2)-log7(x+2)=1-log7(2x-7);

Решение.

log7(x-2)+log7(2x-7)=log77+log7(x+2);

log7(x-2)(2x-7)=log77(x+2);

2x2-18x=0; x=0 или x=9.

Проверкой убеждаемся, что Х=9-корень уравнения.

Ответ:9.

Каждая группа защищает решение своего примера и подробно объясняет, какие свойства были использованы.

Коллективное решение №4

X1-lgx=0,01

Решение.

Прологарифмируем обе части уравнения:lgx1-lgx=lg0,01;

I способ:      II способ: замена lgx=y,

(1-lgx)lgx =-2;                                               (1-y)y=-2;

 lg2xlgx-2=0;                                y2-y-2=0;       y=2 или y=-1;

                                      lgx=2 илиlgx=-1.

                                      X=100 или x=0,1.

Проверкой убеждаемся, что Х=100 и Х=0,1 являются корнями уравнения.

Ответ:0,1;100.

 

Самостоятельная работа

Выполнить проверочный тест.

Проверочный тест.

            № 1

Если logb a=c для любых a, b и c, таких, что а>0, b>0 и

  1.  a=cb

  1.  b=ac

  1.  a=bc

  1.  c=ab

  1.  c=ba

           № 2

Вычислите log2, если log2b=3.

  1.  1
  1.  -7
  1.  3
  1.  7
  1.  -1

           №3

Расположите в порядке убывания числа , , .

  1.  
  1.  ;
  1.  
  1.  ;;
  1.  ;;

 №4

Найти область определения функции у=5log5(2+x2-3|x|).

  1.  

  1.  (1;1)U(2;+)
  1.  (-1;1)U(1;2)
  1.  (U        (1;1)U(2;+
  1.  (-2;2)

          №5

. Какому из интервалов принадлежит корень этого уравнения?

 

В.

Д.

         №6

Найдите область значений функции

А.

Б.

В.

Г.

Д.

Ответы:

1

В

2

Д

3

А

4

Г

5

В

6

А

Проверка решения теста проводится взаимопроверкой по высветившейся на экране таблице с ответами.

  1.  Итог урока. Учащиеся заполняют оценочный лист и подсчитывают общую сумму  баллов. Учитель комментирует работу учащихся  на  уроке и выставляет оценки.

Домашнее задание: подобрать 3 логарифмические уравнения из различных источников и решить их  различными методами. По учебнику читать  п.7,с.67-78,повторить свойства логарифмов.             


Литература.

1. Алгебра и начала анализа: ученик  для  11классов общеобразовательных учебных заведения:академический уровень, профильный уровень. / Г.П. Бевз,

Н.Г.Владимирова.-К.: Освіта,2011.-400с.

2. Ж. «Абітурієнт» №10, 2010р, Харків, вид. «Факт».

3. Г.Н.Литвиненко,Л.Я.Федченко,В.А.Швец Сборник заданий для аттестации по математике учащихся 10-11классов.-Харьков:ББН,2000,-164с.

4. Алгебра і початки аналізу,10клас:Плани-конспекти уроків/Л.В.Колесникова,Г.Й.Коротіна.-Харків:Веста:Видавництво «Ранок»,2004,-352с.

5. Сборник задач по математике для поступающих во втузы:Учеб.пособие/В.К.Егерев и др.;Под ред.М.И.Сканави.-6-е изд.,стер.-М.:Высшая шк..,1992.-528с.:ил.

6. Завало С.Т. Рівняння і нерівності,Вид. «Радянська школа»,К.-1973.

7. Шарова Л.И. Уравнения и неравенства: Пособие для подготовительных отделений.-Киев:Вища школа, Головное изд-во,1981.-280с.


 

А также другие работы, которые могут Вас заинтересовать

20108. Математические модели САУ. Основные формы записи линеаризированных уравнений в автоматики 56.5 KB
  Для систем с распределёнными параметрами уравнение имеет вид уравнения в частных производных. Уравнение статики описывает поведение системы в установившемся режиме. Урие связи между вх и вых велми искомое урие то есть дифуравнение. В общем случае на динамическое звено кроме входной велны на выходную велну могут оказывать влияние возмущающие воздействия Пусть динамическое звено имеет статическую характеристику вида1 и описывается дифференциальным уравнением первого порядка.
20109. Временные характеристики линейных звеньев 49 KB
  Переходная функция и функция веса. Динамические свва звеньев можно определить по их переходным функциям и функциям веса. Переходная функция ht такой переходной процесс который возникает на выходе динамического звена при подаче на вход звена единичного ступенчатого скачка. Весовая функция Rt представляет собой реакцию звена на единичную импульсную функцию поданную на вход.
20110. Передаточные функции динамических звеньев. Частотные передаточные функции и частотные характеристики 33 KB
  Их получают при рассмотрении вынужденного движения системы или звена когда на вход подаётся гармоническое воздействие вида : x1 = Aвхsin wt 1 Рассмотрим динамическое звено : При подаче на его вход сигнала 1 если звено линейное на выходе получается сигнал вида : y = Авыхsinwt j 2 j cдвиг фазы Для удобства принимают символическую форму записи sin or cos через ряд : sin wt = ejwt поэтому: sinwt j = еjwt ...
20111. Позиционные, интегрирующие и дифференцирующие типовые динамические звенья их частотные характеристики 45.5 KB
  Типовое динамическое звено описываемое уравнением не выше второго порядка так как реальные звенья составляются на основании законов выражаемых уравнениями не выше второго порядка.1 Безинерционное идеальное звено звено которое в установившемся режиме и в переходном режиме описывается уравнением y = kx На практике идеальным звеном принимают то звено у которого постоянная времени значительно меньше постоянной времени последующих звеньев 1.2 Апериодическое звено первого порядка звено которое...
20112. Структурные схемы систем автоматического управления 903 KB
  Структурной схемой называется схема отражающая взаимодействие динамических звеньев в процессе работы системы. Может содержать: 1 элемент с 1 входом и 1 выходом 1 элемент 2 входа и 1 выход узел сумматор сравнивающее устройство Последовательное соединение динамических звеньев Общая передаточная функция равна произведению составляющих функций динамических звеньев Параллельное соединение Встречнопараллельное соединение общая передаточная функция если обратная связь отрицательна если обратная связь положительна Если в...
20113. Качество переходных процессов. Частотные показатели качества САР 44 KB
  При этом используют АЧХ замкнутой системы Фjw АЧХ разомкнутой системы Wjw ВЧХвещественночастотная характеристика замкнутой системы Uw.22π Wm 2Использование ВЧХ замкнутой системы для оценки качества. Для устойчивых автоматических систем ВЧХ связана с переходной функцией ht следующей зависимостью: Используя это соотношение можно косвенно оценить границы переходного процесса по амплитуде и длительности. Для того чтобы косвенно судить о качестве рассмотрим свойства ВЧХ и свойства и свойства соответствующих им переходных...
20114. Синтез последовательных корректирующих звеньев 130.5 KB
  Рассмотрим основные виды обр. Жесткая отрицательная обр. связь осуществляется за счет охвата некоторого элемента сисмы обр. связью с передаточной функцией усилительного звена то есть в цепи обр.
20115. Шлифовальные станки. Их классификация 7.26 MB
  Шлифовальные станки. В зависимости от вида обработки шлифовые станки подразделяются на: станки общего назначения; специализированные станки. Круглошлифовальные станкию.
20116. Причины возникновения погрешностей измерительных устройств 27 KB
  Погрешности схемы прибора. Технологические погрешности. Динамические погрешности. Температурные погрешности.