57738

Розв’язування систем рівнянь з параметрами

Конспект урока

Педагогика и дидактика

Розвивальна мета: розвивати логічне мислення творчі здібності формувати вміння міркувати висловлювати думку. Формувати соціальну компетентність: давати учням змогу вибору варіантів завдань та шляхів розвязку задач.

Украинкский

2014-04-15

1.32 MB

11 чел.

 Тема Розв’язування  систем рівнянь з параметрами

Цілі:

    Навчальна мета: удосконалювати вміння й навички розв’язування  системи рівнянь різними способами, рівняння з параметрами, визначати за рівняннями умову перетину графіків функції, аналізувати й робити висновки.

    Розвивальна мета:  розвивати логічне мислення, творчі здібності, формувати вміння міркувати, висловлювати думку.

    Формувати соціальну  компетентність: давати учням змогу вибору варіантів завдань та шляхів розв’язку задач.

    Виховна мета:  формувати вміння працювати в колективі, виховувати толерантність, відповідальне ставлення до навчання.

    Тип уроку:засвоєння знань, формування вмінь.

    Наочність та обладнання: конспект «Методи розв’язування систем рівнянь», картки, картки самоконтролю, тест,мультимедійний проектор.

Епіграф

Він числа і фігури об’єднав,

А лінії й рівняння ототожнив,

І людству метод надпотужний дав –

Такий, що знає його кожний.

                           Г. Бевз

  1.  
    Організаційний етап.
  2.  Актуалізація опорних знань.                                                                                                                                    У кожного учня на парті картки з запитаннями. «Мікрофон» передається за вибором учня, який відповідає.                                                                                           Питання:
  3.  Що називається розв’язком системи рівнянь?
  4.  Що означає розв’язати систему?
  5.  Які системи називаються рівносильними на деякій множині?
  6.  Назвіть найпростіші властивості  рівносильних систем.
  7.  Основні способи розв’язування систем рівнянь.

ІІІ.    Виконання тестового завдання

Учитель:Перед вами картки з тестами, якщо ви правильно виконаєте тест, то дізнаєтесь, про кого казав Г. Бевз.

  1.  Розв’яжіть рівняння (х2-1)2+(х-1)2=0;

А

Б

В

Г

Д

2

3

0

1

  1.  Розв’яжіть рівняння  (х2-4)=0;

Ф

Б

Е

С

К

-1;-2

-1;

-1;2

0;

4;

      3.Скільки розв’язків має система рівнянь

   

К

Р

С

Т

жодного

один

безліч

два

  1.  Знайдіть радіус кола і координати його центра

                                 (х-1)2+(у+2)2=4

А

Б

В

С

(1;-2)

R=2

(-1;2)

R=4

(-1;2)

R=2

(1;-2)

R=16

  1.  Знайдіть координати вершини параболи   y+x2=5

О

П

Р

С

(0;-5)

(5;0)

(0;5)

(-5;0)

  1.  Розв’яжіть систему рівнянь  , та знайдіть    

, де ( )- розв’язок даної системи.

 

Т

У

Ф

К

2

-1

0

3

Учитель:а тепер обміняємось зошитами і перевіримо відповіді за таблицею

1

Д

2

Е

3

К

4

А

5

Р

6

Т

         

Занесіть відповідну кількість балів у картку самоконтролю.

IV. Удосконалення вмінь і навичок              

  1.  Розв’язування систем рівнянь( у групах).

У кожного на парті картка з конспектом « Методи розв’язування систем рівнянь».

Група №1 Розв’язати систему рівнянь зведенням системи рівнянь до об’єднання простіших систем

 №336а  

Група №2  Способом зведення нових змінних

         №334а 

Група №3  Використання теореми Вієта

Група №4 Cиметричні системи

На дошці представники груп демонструють розв’язування цих систем.

  1.  Розв’язування  систем рівнянь з параметрами (колективне, з повним поясненням). Всі завдання аналогічні завданням ЗНО.

№1  Знайдіть  значення параметра а, при якому система,

не  має розв’язку.

Відповідь -8 

№2  Знайдіть найбільше значення параметра а, при якому система ,

має єдиний розв’язок.

відповідь 11.

№3  Знайдіть значення параметра а, при якому система рівнянь , має нескінченну кількість розв’язків.

відповідь -5.

№4  При якому найменшому цілому додатному значенні параметра а, система рівнянь , не має розв’язку?

відповідь 7 

№5  Знайдіть усі дійсні значення параметра а, при якому система рівнянь, має рівно три розв’язки.

відповідь  при а є.

№6 ЗНО 2007

Знайдіть найбільше ціле значення параметра а, при якому система рівнянь, має два розв’язка.

№7 Знайдіть  значення параметрів а і в, при яких система рівнянь , має безліч розв’язків.

№8 Знайдіть значення параметра а, при яких розв’язки системи рівнянь  , задовольняють умови:

V. Підсумок уроку. Обговорюється участь кожного на всіх етапах уроку.

Учитель: А зараз ви оціните свою роботу на уроці, заповнивши картку самоконтролю.

VI. Домашнє завдання:  читати §3, п.3.2 стор. 84-88. Знайти, або самостійно скласти і розв’язати 2 системи рівнянь з параметрами.


  Додаток (для вчителя)

Група №1

№336а
друге рівняння помножимо на 2, та складемо з першим рівнянням.

, ,

 

 

……………………………

 

 

 

 

Відповідь (1;2), (2;1), (-2;-1),(-1;-2).
Група №2

№334а

, нехай х+у=U, =V, тоді

 

 

………………………….

 

…………………………………

 

 

……………………………………

 

 

Відповідь (.

Група №3

   х і у – корені рівняння в2+5в+6=0, звідси в=2, в=3. Отже, розв’язками системи є пари (2;3),(3;2).

Відповідь (2;3),(3;2).

Група № 4

, нехай х+у=U, ху=V, тоді (х+у)2=u², х22=U2-2V

,, . Звідси, (3;4), (4;3).

Відповідь(3;4), (4;3).

2, Системи з параметрами.

№1Знайдіть значення параметра а,при якому система не має розв’язків. . щоб система не мала розв’язків, потрібно, щоб виконувалися умови  , звідси  ,,              

 , а=-8.

Відповідь приа=-8.

№2 Знайдіть найбільше значення параметра а,при якому система має єдиний розв’язок.

.  Перше рівняння системи рівняння колo з центром у початку координат і радіусом 9, а друге - коло з центром у точці(-2;1) і радіусом. Система матиме  єдиний розв’язок тоді і тільки тоді, коли ці кола матимуть тільки одну спільну точку. Тобто кола дотикаються одне одного. Кола дотикатимуться коли=7, або коли а=-7, а=7,а=-11,а=11.Отже, найбільше значення параметра а,при якому дана система має єдиний розв’язок, дорівнює 11.

                                                     y

                             

                                                                                                     x                                                              
                    
-13       -9             -2   0                    9                       

№3 Знайдіть значення параметра а, при якому система рівнянь

 , має нескінченну кількість розв’язків.

                                             Розв’язання

Система має нескінченну кількість розв’язків тоді, коли виконуються умови

= ,

Звідси  ,

а2+15а+14=6а-6,                             

6а-60=2а2+28а,                                     а=-5.

а

Відповідь при а=-5.

№4. При якому найменшому цілому додатному значенні параметра а, система рівнянь , не має розв’язку?

   Розв’язання

Графіком рівняння  є коло з центром в точці О(0;0) і радіусом 6. Графіком рівняння   є парабола з вершиною (0;а), вітки параболи направлені вгору, система рівнянь не має розв’язку тоді, коли графіки рівнянь не перетинаються, тобто a>6. Отже, найменше ціле додатне значення параметра а, при якому система не має розв’язку, дорівнює 7.

                                                      у

                                                     
                                                       7    
                                                6

                                         -6        0     6                          х

                                                -6

№5  Знайдіть усі дійсні значення параметра а, при якому система рівнянь, має рівно три розв’язки.

Розв’язання

На координатній площині ХОУ побудуємо графік рівняння  – коло з центром (0;0) і радіусом 1 та графік функції у=.

         у

                                                                                                 у=

                                                                1

                                         -1                      0             1

                                                                                                                       х

 

                                                                -1

                                     х=-1  х=           х=  х=1

Розташування прямої х=а, що задовольняє умову, може бути таким, як на рисунку, а = 1, а = -1 або а = , а = . Відповідь .

№6 ЗНО 2007

Знайдіть найбільше ціле значення параметра а, при якому система рівнянь, має два розв’язка.

    

   Розв’язання

На координатній площині ХОУ побудуємо графік рівняння  – коло з центром (0;0) і радіусом 1. Умови задачі задовольняє розташування прямої у = х + а від положення ІІ до положення І (див. на рисунку). За допомого геометричних міркувань знайдемо ординату точки В. Точка В має ординату . Ордината точки С дорівнює . Отже, при аЄ( ) система має 2 розв’язки.

Відповідь аЄ( )

                                               у

                                                                         І                                                              

                                                                С                      у = х + а

                                                                1

                                                                                                  ІІ

                                         -1                      0             1

                                                                                                                       х

                                                                              А

                                                                -1

                                                               В

№7 Знайдіть  значення параметрів а і в, при яких система рівнянь , має безліч розв’язків.

        Розв’язання

Система має безліч розв’язків, якщо

 =  = ,

звідси

Відповідь: (-2;-6), (6;2).

№8 Знайдіть значення параметра а, при яких розв’язки системи рівнянь  , задовольняють умови:

Розв’язання

Додавши почленно рівняння системи, дістанемо 4,  х = . Здобутий вираз підставимо в друге рівняння системи: ,

З’ясуємо, при яких значеннях параметра розв’язки системи задовольняють умову  

Для цього розв’яжемо систему нерівностей

    а=2.

Відповідь: а = 2


  Література

1. Підручник «Алгебра і  початки аналізу» Е. П. Нелін( профільний  рівень). Харків «Гімназія» 2010

  2.Ж. «Математика в школах України» «Параметри» №16-18. 2008р.

  3.Ж.  «Абітурієнт» ТІМО 2009

    4. Збірник задач з математики для вступників у вузи. Під ред.. М.І.       Сканаві Москва 1992р.

   5.Кушнир И. Неравенства – Київ. АСТАРТА,1996, 604с

   6.Нестеренко Ю.В., Олехник С.П., Потапов М.К. « Задачи вступительных экзаменов по математике». Москва. Наука, Главная редакция физико-математической литературы,1980-320с.

  7. Шарыгин И.Ф. Факультативный курс по математике. Решение задач: учебное пособие для 10 классов средней школы-М. Просвещение,1989.


 

А также другие работы, которые могут Вас заинтересовать

32134. Un archaïsme est un emploi lexical ou grammatical passé de mode 11.54 KB
  La notion d’archaïsme a été jusqu’à présent beaucoup moins abordée que la néologie. Une réflexion générale autour de la problématique des genres littéraires: le choix que peuvent faire un auteur, une école ou une communauté
32136. Les mots dans le texte litteraire 11.25 KB
  Pour étudier les vleurs stylistiques des mots dns le texte il existe deux pproches.Lpproche sémsiologique consiste à ller de l lexie u sens cest à dire construire un chmp sémntique dun mot étudier toutes les significtions dénottives et connottives dun mot ses liens dichroniques et synchroniques dérivtionnels et prdigmtiques ce qui permet de pénétrer le sens profond du texte.L pproche onomsiologique consiste à dopter une méthode inverse celle d'ller du sens ux lexies; permet de repérer les différents moyens d'exprimer l même...
32137. Les synonymes et les antonymes 11.8 KB
  Dns l stylistique il y le probleme du clssement des synonimes. EX Chrles Blly proposee le methode didentifiction des synonymes cd u centre du groupe se trouve lunitee principle le terme de lidentifiction. Il existe des synonymes ideogrphiques et stylistiques.
32138. LASPECT STYLISTIQUE La generalitee 12.8 KB
  La valeur grammaticale des faits de langue porte un caractere abstrait ; les normes de grammaire sont stables, unes et obligatoires pour tous les sujets parlants. Aussi, les faits de grammaire sont-ils pour la plupart dun usage general.
32140. LC {DL аббревиатура на звания известной консалтинговой фирмы rthur D. 27.5 KB
  Конкретные модели относящиеся к отмеченному концептуальному подходу в основном различаются по 3 ключевым характеристикам: 1 оценочные показатели по осям матрицы которые так или иначе определяют существенные характеристики каждого конкретного бизнеса; 2 содержание и форма самих матриц характеризующие уровень глубины и детализации позиционирования; 3 наборы типовых стратегических решений которые соответствуют различным позициям бизнеса на сетке матрицы а также различным маршрутам возможного движения бизнеса по разным позициям в...
32141. Производственная стратегия как подсистема корпоративных стратегий 27.5 KB
  Производственная стратегия это подсистема корпоративной стратегии представленная в виде долгосрочной программы конкретных действий по созданию и реализации продукта организации; подсистема предусматривает использование и развитие всех производственных мощностей организации в целях достижения стратегического конкурентного преимущества. Для многих промышленных компаний производство того или иного продукта как правило является наиболее сложной и масштабной деятельностью. При системной оценке производственных затрат как для...
32142. Стратегия управления персоналом 28.5 KB
  Стратегия управления персоналом Стратегия управления персоналом это подсистема стратегии организации представленная в виде долгосрочной программы конкретных действий по реализации концепции использования и развития потенциала персонала организации в целях обеспечения ее стратегического конкурентного преимущества. Стратегия использования и развития потенциала персонала наряду с продуктовомаркетинговой стратегией является ключевой функциональной стратегией организации. Стратегия реализующая принцип купить предполагает привлечение...