57768

Теорема Піфагора

Конспект урока

Педагогика и дидактика

Мета: сформулювати і довести теорему Піфагора; познайомити учнів з біографією Піфагора; вчити застосовувати теорему до розвязання задачрозвивати логічне мислення; розвивати інтерес до математики...

Украинкский

2014-04-15

271.5 KB

9 чел.

Відкритий урок по геометрії у 8 класі по теми:  «Розв’язування задач на тему:    “Теорема Піфагора.”»

Підготовила вчитель математикиШосткинської гімназії                                                                       Шосткинської міської ради                                                                       Бугай Н.В.

                                2011 рік


Мета: 1) сформулювати і довести теорему Піфагора;
         2) познайомити учнів з біографією Піфагора;

         
3) вчити застосовувати теорему до розв'язання задач  
         4) розвивати логічне мислення;  
         5)розвивати інтерес до математики

 Прилади і матеріали. Оформлення на уроці.

1. Слайд 1.Напис на дошці „ Математика - знаряддя для мислення, оскільки все, що є в небі, в душі, на землі  можна виразити точним числом” (Ричард Фейман)

2. Картки “Усний рахунок”

3. Картки із завданнями № 72,№75,№ 77.

4.Картки з самостійною роботою.

5. Рішення на дошці “Самостійна робота”.

6. Вірші (роздані дітям) “Піфагорова теорема”, "Гімн гіпотенузі”

7. Портрет. Піфагора Самоського.

8 Книга “Колумби математики ” А.Г. Комфоровича.

І  Організаційний момент. Слайд 2.

а) Вітання

б) Мета уроку Слайд 3.

в) Тема уроку Слайд 4.

І Перевірка  домашнього завдання

(на попередньому уроці завдання учні записували в зошит)

3 учні виконують завдання на дошці.

Клас самостійно

 4) Знайдіть  гіпотенузу правильного трикутника, якщо його катети відповідно дорівнюють 5см. і 6см.

Розв’язання:                                За теоремою Піфагора

                                                     

 Відповідь: 

 

ІІ. Усні вправи

Інтерактивна гра „Мозковий штурм”

картки “Визнач невідому сторону  х.”

Слайд 5

1)   Назвіть сторони прямокутного трикутника АВС.

2)   Яку з сторін називають гіпотенузою? (АВ сторона, яка лежить напроти прямого кута) Яку називаємо катетом?

3)    Назвіть катет прилеглий до кута α? (b), до кута β? (а).

4)    Назвіть катет, протилежний куту α? (а), куту β? (b).

5)    Що називається соs гострого кута прямокутного трикутника? (Косинусом гострого кута  прямокутного  трикутника називається відношення прилеглого катета до гіпотенузи).

6)     Знайдіть чому дорівнює соsА? (соsА= відношенню прилеглого катета АС до гіпотенузи АВ).

        Знайдіть чому дорівнює соsВ? (соsВ= відношенню прилеглого катета до гіпотенузи).

7)      Скажіть, чи залежить значення соs кута від розмірів трикутника? (ні).

8)      Чи залежить значення соs кута від розміщення трикутника? (ні).

9)      А від чого залежить соs кута прямокутного трикутника? (соs кута залежить тільки від градусної міри кута).

Задача 1. Слайд 6.

 

                                             У прямокутному трикутнику гіпотенуза дорівнює    

                              10см, соsα=0,8. Знайдіть катет, прилеглий до цього кута.

                                  

                                                 Розв'язання

                                                Так як со= і соsα=, то АС=8см.

                                                                    Відповідь: 8см.

ІІІ. Розв’язання задач

 Історична довідка Слайди 7- 9.

              Наприкінці XIX століття на Марсі було відкрито канали, які тривалий час вважалися штучними. Для налагодження зв'язків з марсіанами запропонували на величезному просторі Західно-Сибірської низини побудувати гігантський прямокутний трикутник. Ця фігура повинна була світитися, бо вважали, що побачивши це зображення, марсіани зроблять висновок, що на Землі живуть розумні істоти, і дадуть відповідь також мовою математики.

                - Що таке можна виділити в прямокутному трикутнику, що відомо всій цивілізації?

                  (можливо дехто з учнів відповість).

                Це співвідношення між катетами і гіпотенузою, яке отримало назву Теорема Піфагора. І читається вона так: «В прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів».

     Піфагор народився близько 580 р. до н.е. на острові Самос. Там у сім'ї золотих діл майстра народився син. За давньою легендою, молодому подружжю Мнесахера і Парфеніси оракул устами бога Аполона Піфійського пророчив народження сина, який прославиться у віках своєю мудрістю, ділами і красою. Тому, коли народився син, йому дали ім'я Піфагор, тобто передбачений Піфієм.

      Піфагор і справді виявив неабиякі здібності до наук. У свого першого вчителя Гермодамаса він вивчив основи музики і живопису. Пам'ять тренував завчаючи пісні “Одиссея” та “Імада”. Зовсім юним він залишив Батьківщину і вирушив до Єгипту. Але до Єгипту ще далеко і він на острові Лесбос у своїх родичів під опікою Фалеса кілька років навчався астрології, передбаченню затемнень, таємниці чисел, медицині, Піфагор відвідав також Вавілон, де він вивчив теорію чисел. Всі ці подорожі сприяли тому, що Піфагор став найосвідченішою людиною свого часу. В 60 років Піфагор повертається на свою батьківщину, де організовує школу, яка діяла майже 30 років.

     Школа Піфагора – це заклад зі строго обмеженою кількістью учнів з аристократії і потрапити туди було дуже нелегко. Претендент мав витримати кілька іспитів. Піфагорійці прокидалися зі світанком, співали, акомпануючи собі на мрії, потім робили гімнастику, вивчали теорію музики, філософії, математики, астрономію та інші науки.

     Навчання в школі було двоступінчатим. Одні учні називалися математиками”, тобто пізнавачами, а інші – акусматиками, тобто слухачами. Школа була одночасно і філософською і політичною партією і релігійним братством. Наприкінці V століття до н.е. в Греції прокотилася хвиля демократичного руху. Піфагор з учнями переїхав у Тарент, а звідти в Метапонт, де відбулося народне повстання. В одній із нічних сутичок і загинув майже 90 літній Піфагор.

     Основна ідея Піфагорійців Початком усього є числа. Без них нічого б не було і не було б порядку, гармонії. Піфагорійці приписували числам різні властивості. Парні числа вважалися нещасливими, а непарні – щасливими. Так, вважається, що слід дарувати букет з непарної кількості квіток. Піфагорійці розбили всі числа НП непарні – “чоловічі”, і парні “жіночі”. Символом шлюбу складався із суми чоловічого непарного числа 3 і жіночого числа 2, тобто 5. З цієї причини прямокутний прямокутник зі сторонами 3, 4, 5 називали фігурою нареченої. Піфагорійці винайшли і досконалі числа, які дорівнювали сумі своїх дільників (крім самого числа). Наприклад 6=1+2+3, або 28=1+2+4+7+14.

      Увесь світ, на думку піфагорійців, був побудований на перших чотирьох непарних і перших чотирьох парних числах, а тому найстрашнішою клятвою в них вважалась клятва числом 36. За їх теорією число 666 – це число звіра, воно дорівнює сумі квадратів перших семи простих чисел;

воно дорівнює сумі перших 36 натуральних чисел і багато іншого. Піфагор пильно вивчав співвідношення чисел і застосував їх у музиці. Піфагорійці дійшли висновку, що якісні відмінності звуків обумовлюються кількісними розходженнями довжин струн. Наприклад, відношення числа коливань у чистої квінти 2:3, у кварті 3:4, октави 1:2. Гармонійний акорд виходить при звучанні трьох струн, коли їхні довжини зіставляються зі співвідношенням чисел 3, 4 і 6.

       Трикутник зі сторонами 3, 4, 5 називають також Піфагоровим. Піфагорових трикутників безліч (5; 12; 13), (6; 8; 10), (15; 17; 8), (7; 24; 25) і т.д. Застосування теореми Піфагора разноманітне:

  1.  для вимірювальних робіт (це знали ще в III тис. до н.е.)
  2.  для геометричного знаходження квадратних коренів з цілих чисел.
  3.  Для знаходження степенів цілих чисел і др.

Те, що Піфагор пов'язав реальний світ з числовими закономірностями,

дало змогу більш пізнім поколінням учених зрозуміти краще світ і глибше.

   Слайд 10.

 1. Основа рівнобедреного трикутника 16см, а висота, проведена до основи, дорівнює 6 см. Знайдіть бічну сторону трикутника.

Дано:  АС – основа, АС = 16см, ВД- висота,ВД=6см

 Знайти: АВ

Розв’язання:

 

- рівнобедрений, ВД- висота, за властивістю висоти рівнобедреного трикутника ВД - медіана,. АД=ДС=8см.

прямокутний, АВ==10(см)

 Відповідь: АВ==10 см.

2.Діагональ прямокутника дорівнює 10см, а одна з його сторін 8 см. Знайдіть периметр прямокутника.

Дано: АВСД – прямокутник, ВД -       

           діагональ, ВД = 10 см,

                                       АД=8 см.

                         Знайти: Р

Розв’язання:

         Р=(АВ +ВС)× 2

Трикутник АВД - прямокутний, за теоремою Піфагора

    АВ=

АВ=

Р=(6+8)× 2 = 28(см)

 Відповідь: 28см.

3. У прямокутній трапеції АВСД з основами АД і ВС, кут А прямий, АВ = 4 дм. з вершини С до основи АД проведений перпендикуляр СК, КД 3дм,  Знайдіть СД.

        Дано: АВСД – трапеция, <А = АВ=4 дм.

СК АД  КД=3 дм

        Знайти: СД

        Розв’язання

Оскільки АВСД трапеція АД//ВС

 АВ//СК, АВ=АВ=4 дм; Розглянемо

 По теоремою Піфагора    СД²=КД² + СК²;

(дм.)

 Відповідь 5дм.

 IV Самостійна робота (на дошці розв’язання) Слайд 11.

Метод „Метеоритний дощ” (деяке розв’язання змило дощем )

Слайд 12.

I рівень. Сторона ромба рівна 5 см, а його менша діагональ рівна 6 см. Знайдіть велику діагональ ромба.

    Розв’язання:

Ми знаємо що за властивістю діагоналей ромба  АСВД и АО=ОС=3 см. Отже  - прямокутний. За теоремою Піфагора – АВ²=АО ²+ ВО²,  (см.)

 ВД = 2ВО=8 (см.)

 Відповідь: 8 см.

 

Слайд 13.

 ІІ рівень. Знайдіть діагональ прямокутника, якщо одна з його сторін рівна 8 см, а периметр дорівнює  46 см.

 

Розв’язання:

 

Р=46 см, АВ+ВС=46:2=23 (см). АВ=23-8 =15(см.)

- прямокутний. По теоремою Піфагора АС²=АВ² + ВС²        

                                  Відповідь 17 см.

Перевірка самостійної роботи. Кожен перевіряє і порівнює своє рішення з дошкою, заповняючи змиті дощем  формули, оцінює свою роботу.

V Читання віршів

“Піфагорова теорема”

“Гімн гіпотенузі”

 VІ  Рефлексія.

1. Виставляння оцінок

2. Аналіз девізу уроку

3. Читання вірша “про теорему Піфагора.”

Розповідь про біографію. Додаткова інформація про вченого.

VІІ Домашнє завдання. Слайд 14.

Обмін карток із завданнями.

1.

Підстави рівнобедреного трикутника I б см, а висота, проведена до підстави, рівна 6 см. Знайдіть бічну сторону трикутника.

2.

Діагональ прямокутника рівна 10 см, а одна з його сторін 8 см. Знайдіть периметр прямокутника.

3.

У прямокутній трапеції АВСД з основами АД і ВС, кут А прямий, АВ=4дм. З вершини С до основи АД проведений перпендикуляр СК, КД=3 дм.  Знайдіть СД.

Самостійна робота

I В. Сторона ромба рівна 5 см, а його менша діагональ 6 см.  Знайдіть більшу діагональ ромба.

II. В. Знайдіть діагональ  прямокутника, якщо одна з його сторін дорівнює 8 см, периметр дорівнює 46 см.

PAGE   \* MERGEFORMAT 2


 

А также другие работы, которые могут Вас заинтересовать

12887. ПРОБУЖДЕНИЕ АКТИВНОСТИ 46.5 KB
  ПРОБУЖДЕНИЕ АКТИВНОСТИ Сценарий классного часа Вам приходилось слышать от взрослых в школе высказывания о том что современные дети ничего не хотят что растет поколение потребителей И действительно мы можем найти этому массу подтверждений. Чем лучше школа тем боль
12888. Развитие творческих способностей учащихся подросткового возраста 51.5 KB
  Классный час Развитие творческих способностей учащихся подросткового возраста Цель: познание и раскрытие учениками своих потенциальных способностей к творчеству. Задачи: развитие познавательных психологических процессов: памяти внимания мышления; разви
12889. Психологическое здоровье. Мое настроение 42 KB
  Психологическое здоровье. Мое настроение. Классный час для 7го класса Цель: формирование убеждения о значении настроения в психическом здоровье человека необходимости уметь произвольно контролировать и регулировать свое настроение. Задачи: пробудить стремле
12890. Классный час Мой жизненный путь 32 KB
  Классный час Мой жизненный путь Цель: отработка практически полезного навыка в построении перспективного плана. Образовательный аспект: расширить понятийный аппарат учащихся что позволит им более четко определить ценности на которых строиться жизнь. Воспитатель...
12891. Урок. Кто есть кто в Камелоте 36 KB
  Кто есть кто в Камелоте Рыцарь не прилагает стараний к тому чтобы казаться. Он есть П. Коэльо Ведущий кратко рассказывает легенду о короле Артуре и рыцарях круглого стола затем предлагает отправиться в путешествие в то время. Разогрев Рыцарские скачки...
12892. Методические основы лагеря Лидерство 81 KB
  Методические основы лагеря Лидерство Лагерь Лидерство это тренинг коммуникативной компетенции. Тренинг который проводят любители по всем классификациям психологов тренинги бывают профессиональные и любительские. В качестве тренеров выступает команда стар
12893. Классный час «Откуда берутся бездомные животные» 46 KB
  Классный час Откуда берутся бездомные животные Ход занятия Ребята послушайте какое письмо мы получили от ученицы одной из школ Жалобными глазами глядя на прохожих смотрит маленький щенок надеясь что он найдет своих хозяев. Ведь не так недавно он жил с люд
12894. КОНЦЕПЦИЯ ЗАЩИТЫ НАСЕЛЕНИЯ ОТ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ ПРИРОДНОГО, ТЕХНОГЕННОГО И ТЕРРОРИСТИЧЕСКОГО ХАРАКТЕРА 261 KB
  КОНЦЕПЦИЯ ЗАЩИТЫ НАСЕЛЕНИЯ ОТ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ ПРИРОДНОГО ТЕХНОГЕННОГО И ТЕРРОРИСТИЧЕСКОГО ХАРАКТЕРА И ОТ ОПАСНОСТЕЙ ВОЗНИКАЮЩИХ ПРИ ВЕДЕНИИ ВОЕННЫХ ДЕЙСТВИЙ ИЛИ ВСЛЕДСТВИЕ ЭТИХ ДЕЙСТВИЙ Концепция представляет собой систему взглядов на организац
12895. ИНЖЕНЕРНОЕ ОБЕСПЕЧЕНИЕ МЕРОПРИЯТИЙ ПО ЗАЩИТЕ НАСЕЛЕНИЯ И ТЕРРИТОРИЙ В ЧС 3.36 MB
  Инженерное обеспечение мероприятий по защите населения и территорий в чс Учебное пособие Оглавление [1] Предисловие [2] Глава 1. Инженерные мероприятия РСЧС и ГО [2.1] 1.1. Инженерные мероприятия Р