57768

Теорема Піфагора

Конспект урока

Педагогика и дидактика

Мета: сформулювати і довести теорему Піфагора; познайомити учнів з біографією Піфагора; вчити застосовувати теорему до розвязання задачрозвивати логічне мислення; розвивати інтерес до математики...

Украинкский

2014-04-15

271.5 KB

9 чел.

Відкритий урок по геометрії у 8 класі по теми:  «Розв’язування задач на тему:    “Теорема Піфагора.”»

Підготовила вчитель математикиШосткинської гімназії                                                                       Шосткинської міської ради                                                                       Бугай Н.В.

                                2011 рік


Мета: 1) сформулювати і довести теорему Піфагора;
         2) познайомити учнів з біографією Піфагора;

         
3) вчити застосовувати теорему до розв'язання задач  
         4) розвивати логічне мислення;  
         5)розвивати інтерес до математики

 Прилади і матеріали. Оформлення на уроці.

1. Слайд 1.Напис на дошці „ Математика - знаряддя для мислення, оскільки все, що є в небі, в душі, на землі  можна виразити точним числом” (Ричард Фейман)

2. Картки “Усний рахунок”

3. Картки із завданнями № 72,№75,№ 77.

4.Картки з самостійною роботою.

5. Рішення на дошці “Самостійна робота”.

6. Вірші (роздані дітям) “Піфагорова теорема”, "Гімн гіпотенузі”

7. Портрет. Піфагора Самоського.

8 Книга “Колумби математики ” А.Г. Комфоровича.

І  Організаційний момент. Слайд 2.

а) Вітання

б) Мета уроку Слайд 3.

в) Тема уроку Слайд 4.

І Перевірка  домашнього завдання

(на попередньому уроці завдання учні записували в зошит)

3 учні виконують завдання на дошці.

Клас самостійно

 4) Знайдіть  гіпотенузу правильного трикутника, якщо його катети відповідно дорівнюють 5см. і 6см.

Розв’язання:                                За теоремою Піфагора

                                                     

 Відповідь: 

 

ІІ. Усні вправи

Інтерактивна гра „Мозковий штурм”

картки “Визнач невідому сторону  х.”

Слайд 5

1)   Назвіть сторони прямокутного трикутника АВС.

2)   Яку з сторін називають гіпотенузою? (АВ сторона, яка лежить напроти прямого кута) Яку називаємо катетом?

3)    Назвіть катет прилеглий до кута α? (b), до кута β? (а).

4)    Назвіть катет, протилежний куту α? (а), куту β? (b).

5)    Що називається соs гострого кута прямокутного трикутника? (Косинусом гострого кута  прямокутного  трикутника називається відношення прилеглого катета до гіпотенузи).

6)     Знайдіть чому дорівнює соsА? (соsА= відношенню прилеглого катета АС до гіпотенузи АВ).

        Знайдіть чому дорівнює соsВ? (соsВ= відношенню прилеглого катета до гіпотенузи).

7)      Скажіть, чи залежить значення соs кута від розмірів трикутника? (ні).

8)      Чи залежить значення соs кута від розміщення трикутника? (ні).

9)      А від чого залежить соs кута прямокутного трикутника? (соs кута залежить тільки від градусної міри кута).

Задача 1. Слайд 6.

 

                                             У прямокутному трикутнику гіпотенуза дорівнює    

                              10см, соsα=0,8. Знайдіть катет, прилеглий до цього кута.

                                  

                                                 Розв'язання

                                                Так як со= і соsα=, то АС=8см.

                                                                    Відповідь: 8см.

ІІІ. Розв’язання задач

 Історична довідка Слайди 7- 9.

              Наприкінці XIX століття на Марсі було відкрито канали, які тривалий час вважалися штучними. Для налагодження зв'язків з марсіанами запропонували на величезному просторі Західно-Сибірської низини побудувати гігантський прямокутний трикутник. Ця фігура повинна була світитися, бо вважали, що побачивши це зображення, марсіани зроблять висновок, що на Землі живуть розумні істоти, і дадуть відповідь також мовою математики.

                - Що таке можна виділити в прямокутному трикутнику, що відомо всій цивілізації?

                  (можливо дехто з учнів відповість).

                Це співвідношення між катетами і гіпотенузою, яке отримало назву Теорема Піфагора. І читається вона так: «В прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів».

     Піфагор народився близько 580 р. до н.е. на острові Самос. Там у сім'ї золотих діл майстра народився син. За давньою легендою, молодому подружжю Мнесахера і Парфеніси оракул устами бога Аполона Піфійського пророчив народження сина, який прославиться у віках своєю мудрістю, ділами і красою. Тому, коли народився син, йому дали ім'я Піфагор, тобто передбачений Піфієм.

      Піфагор і справді виявив неабиякі здібності до наук. У свого першого вчителя Гермодамаса він вивчив основи музики і живопису. Пам'ять тренував завчаючи пісні “Одиссея” та “Імада”. Зовсім юним він залишив Батьківщину і вирушив до Єгипту. Але до Єгипту ще далеко і він на острові Лесбос у своїх родичів під опікою Фалеса кілька років навчався астрології, передбаченню затемнень, таємниці чисел, медицині, Піфагор відвідав також Вавілон, де він вивчив теорію чисел. Всі ці подорожі сприяли тому, що Піфагор став найосвідченішою людиною свого часу. В 60 років Піфагор повертається на свою батьківщину, де організовує школу, яка діяла майже 30 років.

     Школа Піфагора – це заклад зі строго обмеженою кількістью учнів з аристократії і потрапити туди було дуже нелегко. Претендент мав витримати кілька іспитів. Піфагорійці прокидалися зі світанком, співали, акомпануючи собі на мрії, потім робили гімнастику, вивчали теорію музики, філософії, математики, астрономію та інші науки.

     Навчання в школі було двоступінчатим. Одні учні називалися математиками”, тобто пізнавачами, а інші – акусматиками, тобто слухачами. Школа була одночасно і філософською і політичною партією і релігійним братством. Наприкінці V століття до н.е. в Греції прокотилася хвиля демократичного руху. Піфагор з учнями переїхав у Тарент, а звідти в Метапонт, де відбулося народне повстання. В одній із нічних сутичок і загинув майже 90 літній Піфагор.

     Основна ідея Піфагорійців Початком усього є числа. Без них нічого б не було і не було б порядку, гармонії. Піфагорійці приписували числам різні властивості. Парні числа вважалися нещасливими, а непарні – щасливими. Так, вважається, що слід дарувати букет з непарної кількості квіток. Піфагорійці розбили всі числа НП непарні – “чоловічі”, і парні “жіночі”. Символом шлюбу складався із суми чоловічого непарного числа 3 і жіночого числа 2, тобто 5. З цієї причини прямокутний прямокутник зі сторонами 3, 4, 5 називали фігурою нареченої. Піфагорійці винайшли і досконалі числа, які дорівнювали сумі своїх дільників (крім самого числа). Наприклад 6=1+2+3, або 28=1+2+4+7+14.

      Увесь світ, на думку піфагорійців, був побудований на перших чотирьох непарних і перших чотирьох парних числах, а тому найстрашнішою клятвою в них вважалась клятва числом 36. За їх теорією число 666 – це число звіра, воно дорівнює сумі квадратів перших семи простих чисел;

воно дорівнює сумі перших 36 натуральних чисел і багато іншого. Піфагор пильно вивчав співвідношення чисел і застосував їх у музиці. Піфагорійці дійшли висновку, що якісні відмінності звуків обумовлюються кількісними розходженнями довжин струн. Наприклад, відношення числа коливань у чистої квінти 2:3, у кварті 3:4, октави 1:2. Гармонійний акорд виходить при звучанні трьох струн, коли їхні довжини зіставляються зі співвідношенням чисел 3, 4 і 6.

       Трикутник зі сторонами 3, 4, 5 називають також Піфагоровим. Піфагорових трикутників безліч (5; 12; 13), (6; 8; 10), (15; 17; 8), (7; 24; 25) і т.д. Застосування теореми Піфагора разноманітне:

  1.  для вимірювальних робіт (це знали ще в III тис. до н.е.)
  2.  для геометричного знаходження квадратних коренів з цілих чисел.
  3.  Для знаходження степенів цілих чисел і др.

Те, що Піфагор пов'язав реальний світ з числовими закономірностями,

дало змогу більш пізнім поколінням учених зрозуміти краще світ і глибше.

   Слайд 10.

 1. Основа рівнобедреного трикутника 16см, а висота, проведена до основи, дорівнює 6 см. Знайдіть бічну сторону трикутника.

Дано:  АС – основа, АС = 16см, ВД- висота,ВД=6см

 Знайти: АВ

Розв’язання:

 

- рівнобедрений, ВД- висота, за властивістю висоти рівнобедреного трикутника ВД - медіана,. АД=ДС=8см.

прямокутний, АВ==10(см)

 Відповідь: АВ==10 см.

2.Діагональ прямокутника дорівнює 10см, а одна з його сторін 8 см. Знайдіть периметр прямокутника.

Дано: АВСД – прямокутник, ВД -       

           діагональ, ВД = 10 см,

                                       АД=8 см.

                         Знайти: Р

Розв’язання:

         Р=(АВ +ВС)× 2

Трикутник АВД - прямокутний, за теоремою Піфагора

    АВ=

АВ=

Р=(6+8)× 2 = 28(см)

 Відповідь: 28см.

3. У прямокутній трапеції АВСД з основами АД і ВС, кут А прямий, АВ = 4 дм. з вершини С до основи АД проведений перпендикуляр СК, КД 3дм,  Знайдіть СД.

        Дано: АВСД – трапеция, <А = АВ=4 дм.

СК АД  КД=3 дм

        Знайти: СД

        Розв’язання

Оскільки АВСД трапеція АД//ВС

 АВ//СК, АВ=АВ=4 дм; Розглянемо

 По теоремою Піфагора    СД²=КД² + СК²;

(дм.)

 Відповідь 5дм.

 IV Самостійна робота (на дошці розв’язання) Слайд 11.

Метод „Метеоритний дощ” (деяке розв’язання змило дощем )

Слайд 12.

I рівень. Сторона ромба рівна 5 см, а його менша діагональ рівна 6 см. Знайдіть велику діагональ ромба.

    Розв’язання:

Ми знаємо що за властивістю діагоналей ромба  АСВД и АО=ОС=3 см. Отже  - прямокутний. За теоремою Піфагора – АВ²=АО ²+ ВО²,  (см.)

 ВД = 2ВО=8 (см.)

 Відповідь: 8 см.

 

Слайд 13.

 ІІ рівень. Знайдіть діагональ прямокутника, якщо одна з його сторін рівна 8 см, а периметр дорівнює  46 см.

 

Розв’язання:

 

Р=46 см, АВ+ВС=46:2=23 (см). АВ=23-8 =15(см.)

- прямокутний. По теоремою Піфагора АС²=АВ² + ВС²        

                                  Відповідь 17 см.

Перевірка самостійної роботи. Кожен перевіряє і порівнює своє рішення з дошкою, заповняючи змиті дощем  формули, оцінює свою роботу.

V Читання віршів

“Піфагорова теорема”

“Гімн гіпотенузі”

 VІ  Рефлексія.

1. Виставляння оцінок

2. Аналіз девізу уроку

3. Читання вірша “про теорему Піфагора.”

Розповідь про біографію. Додаткова інформація про вченого.

VІІ Домашнє завдання. Слайд 14.

Обмін карток із завданнями.

1.

Підстави рівнобедреного трикутника I б см, а висота, проведена до підстави, рівна 6 см. Знайдіть бічну сторону трикутника.

2.

Діагональ прямокутника рівна 10 см, а одна з його сторін 8 см. Знайдіть периметр прямокутника.

3.

У прямокутній трапеції АВСД з основами АД і ВС, кут А прямий, АВ=4дм. З вершини С до основи АД проведений перпендикуляр СК, КД=3 дм.  Знайдіть СД.

Самостійна робота

I В. Сторона ромба рівна 5 см, а його менша діагональ 6 см.  Знайдіть більшу діагональ ромба.

II. В. Знайдіть діагональ  прямокутника, якщо одна з його сторін дорівнює 8 см, периметр дорівнює 46 см.

PAGE   \* MERGEFORMAT 2


 

А также другие работы, которые могут Вас заинтересовать

54340. Метод проектів на уроках інформатики 78.5 KB
  Історія виникнення методу проектів Місце методу проектів у навчальному процесі Формування проектних компетенцій Метод проектів на уроках інформатики Висновки Використані джерела Вступ Сучасну практичну діяльність людства науковотехнічний та культурний прогрес у різних сферах суспільного буття неможливо уявити без проектування і проектів. Історія виникнення методу проектів Використання у навчальновиховному процесі методу проектів не є новим для українських шкіл. Першим увів поняття метод проектів...
54341. Культура Европы в XX - начале XXI вв.: противоречия и проблемы 28.21 KB
  Таким образом процесс подготовки и проведения такого учебного занятия как комбинированный урок увлекает студентов активизирует их достаточно свободно пользоваться простыми языковыми средствами в основных видах речевой деятельности: говорении аудировании чтении и письме. ФГОУ СПО Чебоксарский техникум строительства и городского хозяйства МЕТОДИЧЕСКАЯ КАРТА ЗАНЯТИЯ Дисциплина: Английский язык Группа: С41 Преподаватель: Бутакова Л. Тема занятия: Строительство зданий и сооружений Тип и вид занятия: комбинированный Цели занятия...
54342. Методические основы использования прикладного ПО на уроках в школе 111.5 KB
  Деление на группы производят либо по способностям либо случайным образом например по партам или по алфавиту. В этом случае как правило формируются разно уровневые группы в которых быстро определяются лидеры и аутсайдеры. Гузеев предложил различать группы выравнивания поддержки и развития. Группы выравнивания состоят из учащихся с различной успеваемостью и ориентированы на достижение всех ее участников обязательного уровня образования; группы поддержки однородны по успеваемости; в группах развития ученики более высокого уровня...
54343. Дмитриу Донской. Куликовская битва 83 KB
  Что позволило Дмитрию Ивановичу открыто выступить против монголотатар и разгромить их 12 октября 1350 года у московского удельного князя Ивана родился сын которого окрестили Дмитрием. Дмитрия Московского сумели получить для своего князя ярлык. Разведка великого князя донесла что Мамай собрав войско уже три недели ждал на Дону Ягайло Литовского.
54344. Сучасний урок - джерело творчості вчителя 2.78 MB
  Тестові завдання з геометрії. клас із використанням тестуючого комплексу MIFTests. Кожен вчитель є справжнім керівником дитячого колективу діти визнають своїх педагогів за лідерів та активно співпрацюють із ними а це означає: вчитель має власний педагогічний імідж свій особливий педагогічний почерк він конкурентоспроможний компетентний фахівець. МАТЕМАТИКА ТА ІТК У сучасному світі потреба в компютерних технологіях постійно зростає вони необхідні і вдома і на робочому місці. Систематичне використання...
54345. Комплекс игр и упражнений «Биоэнергопластика» в коррекционной работе с детьми-логопатами 717 KB
  Поражение верхней височной извилины приводит к тому что человек слышит слова но не понимает их смысла так как в зоне Вернике как в своеобразной картотеке хранятся все усвоенные человеком слова точнее их звуковые образы и он всю жизнь пользуется этой картотекой. Если произошло поражение этой зоны то хранящиеся там звуковые образы слов распадаются человек перестает понимать слова. При нормальном слухе он остается глухим к словам. Действительно левое полушарие отвечает: за движение правых конечностей и обеих рук за...
54346. Урок русского языка и литературного чтения 352 KB
  Планируемые результаты учебного предмета Русский язык общие на 4 года обучения Личностными результатами изучения русского языка в начальной школе являются: осознание языка как основного средства человеческого общения; восприятие русского языка как явление национальной культуры; понимание того что правильная устная и письменная речь является показателем индивидуальной культуры человека; способность к самооценке на основе наблюдения за собственной речью; способность к итоговому и пооперационному самоконтролю; ...
54347. Етапи розвязування задач за допомогою компютера 1.3 MB
  Для розвязання цих задач компютер озброєний найрізноманітнішим програмним забезпеченням, яке поділяється на чотири великих категорії: операційні системи, системні утиліти, системи програмування, прикладне програмне забезпечення.
54348. Інформаційно-комп’ютерні технології на уроках географії та природознавства 83.5 KB
  Вчителями природознавства опановано такі теми: Створення слайдових презентацій у середовищі програми MS Power Point Пошук та завантаження текстової звукової та відеоінформації з Інтернету Створення потокових презентацій відео кліпів у середовищі програми Movie Mker Створення та обробка графічної інформації засобами растрового графічного редактора dobe Photoshop. № п п Термін Тема заняття 1 Вересень Створення слайдових презентацій у середовищі програми MS Power Point. 3 Лютий Створення потокових презентацій відео кліпів у...