57780

Экстремальные задачи

Конспект урока

Педагогика и дидактика

Цель: ознакомить учащихся с понятием экстремальные задачи; составить алгоритм их решения с помощью производной; раскрыть область применения производной, показать, что производная – способ исследования процессов действительности и современного производства.

Русский

2014-04-15

2.81 MB

13 чел.

Тема. Экстремальные задачи                                                      11класс

М-М16,17,18                     Содержательно-поисковый

Цель: ознакомить учащихся с понятием экстремальные задачи; составить алгоритм их решения с помощью производной; раскрыть область применения производной, показать, что производная – способ исследования процессов действительности и современного производства. Формировать единую научную картину мира. Развивать исследовательские навыки; познавательный интерес, логическое мышление, умение анализировать, сравнивать, видеть аналогию задач.

Воспитывать трудолюбие, внимание, ответственность, требовательность к себе; волю и настойчивость в достижении конечной цели; развивать навыки коллективной работы.

Компетентности: информационная, поликультурная, коммуникативная, социальная, саморазвития и самообразования, продуктивной творческой деятельности.

Оборудование: компьютер, проектор, презентации, выставка исследовательских работ.

Методы и приемы: проблемно-поисковые, индуктивные, словесные, практические, самостоятельная работа.

Ожидаемые результаты: после этого урока учащиеся усвоят понятие экстремальные задачи и  научатся решать их по алгоритму.

Алгоритм М-М16.

  1.  Организационный момент.

За неделю до начала урока учащиеся объединились в группы «Историки», «Исследователи», «Знатоки», «Практики». Каждая группа получила задание: отработать дополнительную литературу, справочники, интернет и найти в разных сферах экстремальные задачи, а также подготовить исторический материал. Собранный материал представить в виде презентаций.

Группы докладывают о готовности к уроку. Каждому ученику выдается  оценочный лист, в котором он  выставляет себе баллы за участие в каждом этапе модуля.

  1.  Проверка домашней работы.

Тетради с домашним заданием собираются в конце урока.

  1.  Мотивация учебной деятельности.

На экране портрет И.Ньютона.

Учитель. Ребята, представьте: Англия, 1666год. И.Ньютон, ему лишь 23 года, и именно он делает прорыв в математике – открывает производную. И все. Жизнь Европы с этого момента кардинально изменилась..

Развитие научно-технического прогресса, войны, изготовление оружия, эпидемии и открытие целительного пенициллина, запуск космических ракет и создание ядерных реакторов – основанием всему послужило дифференциальное исчисление. От высоких достижений до стремительных падений шагала рядом производная.

Ученица декламирует стихотворение «Производная и ее применение».

Вона на вигляд недолуга:

Стришок маленький, та й усе.

Але яку значну потугу

Цей ледь помітний знак несе!

 Це символ моря знань високих,

 Яке не має меж і дна.

 Не ступите не раз, ні кроку

 Без терміну, що зветься «похідна».

Відкрий секрети нам науки,

Поживу дай уму й душі,

Хай вдячно нам потиснуть руки

Ньютон и Лейбніц, і Коші.

 На предыдущих уроках вы познакомились с применением производной для исследования и построения графиков функций, нахождения наибольшего и наименьшего значений функции на отрезке.

А сегодня вы узнаете, как с помощью производной можно решать интересные задачи прикладного характера.

  1.   Объявление темы, цели, задач урока.

Достичь успеха можно только тогда, когда определена цель и задачи, который каждый ставит перед собой. Сегодня наша цель – усвоить какие задачи называются экстремальными и научиться решать их по алгоритму.

  1.  Актуализация опорных знаний.

Устные упражнения

  1.  Задание в тестовой форме проектируется на экран. По сигналу учителя правильный ответ показывают с помощью карточек. Каждый правильный ответ оценивается в 0,5 балла.

Найти производную (презентация №1):

Слайд 1

Слайд 2

Слайд 3

Слайд 4

Слайд 5

Слайд 6

Слайд 7

Слайд 8

Слайд 9

Слайд 10

  1.  По схематическому графику функции в окрестности точки х0 охарактеризуйте поведение f ׳(x0) и f ׳(x), определите вид критической точки x0.

Каждый правильный ответ оценивается в 0,5 балла:

Схематический вид графика функции    f׳(x) в окрестностях точки x0

Ожидаемый ответ

  1.  Поведение f ׳(x0)
  2.  Поведение f ׳(x)
  3.  Критическая точка x0

2.1.

                                                       x

  1.  f ׳(x0)=0
  2.  f ׳(x) изменяет знак с «+» на «-»
  3.  x0 – точка максимума

2.2.

                                                       x

  1.  f ׳(x0)=0
  2.  f ׳(x) изменяет знак с «-» на «+»
  3.  x0 – точка минимума

2.3.

                                                           x

f ׳(x0) не существует

f ׳(x) изменяет знак с «-» на «+»

x0 – точка минимума

2.4.

                                                           x

  1.  f ׳(x0)=0
  2.  f ׳(x) не меняет знака
  3.  x0 – точка перегиба

2.5.

                                                          x

  1.  f ׳(x0) не существует
  2.  f ׳(x) изменяет знак с «+» на «-»
  3.  x0 – точка максимума

2.6.

                                                            x

  1.  f ׳(x0)=0
  2.  f ׳(x) не меняет знака
  3.  x0 – точка перегиба

 

3. Презентация (Задание №3):                              

 

   

VI/ Восприятие и усвоение новых знаний.

Группа «Историки» - историческая справка (презентация оценивается в 5 баллов)

Нашей группе было поручено выяснить, кто из ученых ввел понятие экстремальные задачи. Работать над проектом «История возникновения экстремальных задач» было не только легко и интересно, но и эффективно.

С незапамятных времен перед человеком возникают практические проблемы нахождения наибольшего и наименьшего, наилучшего и наихудшего. Как правило, в задачах подобного рода достижение некоторого результата может быть осуществлено не единственным способом и приходится отыскивать наилучший способ достижения  результата.

Однако в одной и той же задаче в разных ситуациях наилучшими могут быть совершенно разные решения. Здесь все зависит от выбранного или заданного критерия. Например, каковы должны быть наилучшие очертания судна? Ответы будут разными в зависимости от того, для каких целей предназначается судно. Для разных целей различны будут и главные критерии. Критерии могут быть следующими:

1) необходимо, чтобы судно при движении испытывало в воде наименьшее сопротивление (это главный критерий быстроходного судна);

  2) необходимо, чтобы судно было максимально, устойчивым при сильном волнения и сильном ветре;

3) необходимо, чтобы судно имело наименьшую осадку (в случае, если судно предназначается для эксплуатации на мелких водоемах).

Задачи такого характера, получившие название экстремальных задач, возникают  в самых различных областях человеческой деятельности.

Содержание рассматриваемых задач самое разнообразное, разнообразны и методы их решения. Однако общее в решении экстремальных задач заключается в самом характере применения того или иного математического метода.

Задачи на отыскание максимума и минимуме называются экстремальными задачами. Почти тот же смысл вкладывается в термин «задачи оптимизации». Разные причины побуждают людей решать задачи на экстремум. Добиться наивысшего при заданных условиях результата (прибыли, мощности, скорости) или понести наименьшие потери (времени, материалов, энергии) — желание вполне понятное и естественное. Поэтому задачи оптимизации играют большую роль в экономике и технике.

Другая причина может показаться неожиданной: как выяснилось, многие законы природы основаны на экстремальных принципах. Например, луч света распространяется по самому быстрому пути. Пифагору принадлежит высказывание: «Прекраснейшим телом является шар, а прекраснейшей плоской фигурой — круг». Почему круг и шар — «прекраснейшие»? Николай Коперник в бессмертной книге «Об обращениях небесных сфер» даёт такой ответ: «Мир является шарообразным... потому, что эта форма обладает наибольшей вместимостью, что более всего приличествует тому, что должно объять всё». Иначе говоря, размышляя о строении мира, Коперник полагал, что его «архитектура» подчинена принципам экстремальности и совершенства.

Задачи на максимумы и минимумы всегда привлекали внимание математиков. Встречаются они и в трудах трёх величайших геометров Древней Греции — Евклида, Аполлония Пергского и Архимеда.

 

К 30-м гг. XVII в. появилась необходимость отыскать какие-то общие методы решения экстремальных задач. Первый аналитический приём был найден Пьером Ферма. Открытие состоялось, по-видимому, в 1629 г., но впервые автор достаточно полно изложил свой метод только в 1636 г. в знаменитой книге Иоганна Кеплера

«Новая стереометрия винных бочек» (1615 г.), учёный решил множество интересных задач на максимум и минимум. Кеплер писал: «Вблизи максимума изменения <функции> бывают нечувствительными». На геометрическом языке мысль Кеплера и результат Ферма можно выразить так-в точке экстремума касательная к графику функции должна быть горизонтальной (если касательная не горизонтальна, то изменения функции «чувствительны»). Ньютон высказал ту же мысль по-другому: «Когда величина является максимальной или минимальной, она не течёт ни вперёд, ни назад».

В 1684 г. появилась работа Готфрида Вильгельма Лейбница «Новый метод нахождения наибольших и наименьших значений...», в которой заложены основы математического анализа. Уже само название труда показывает, какую важную роль сыграла задача о нахождении экстремума в становлении современной математики. Большинство излагаемых Лейбницем фактов было к тому времени известно Ньютону, но работ на эту тему до 1736 г. он не публиковал.

Следующий шаг в теории экстремума был сделан, когда стали искать кривые,

наилучшие с той или иной точки зрения. Первую задачу такого рода решил Ньютон. Это техническая задача о поверхности вращения, испытывающей наименьшее сопротивление в некой «редкой» среде. (Но решение Ньютона, данное им в «Математических началах натуральной философии» (1687 г.), так до конца и не поняли вплоть до середины XX в., когда появилось новое направление в теории экстремума, названное оптимальным управлением, -- одним из его создателей был российский математик Лев Семёнович Понтрягин.)

  1.  Итог модуля.

Итог модуля проводим в форме интерактивной игры «Микрофон»

Вопрос классу: •на этом модуле мы повторили…?

Ожидаемые ответы: Нахождение производной элементарных и сложных функций; экстремальные точки; нахождение наибольшего и наименьшего значений функции на отрезке.

•Что нового узнали?

Алгоритм М-М17.

  1.  Восприятие и усвоение новых знаний.

Учитель. Древняя китайская мудрость гласит: «…Покажи мне и я запомню. Дай мне действовать самому – и я научусь…»

У вас была возможность действовать самим. Посмотрим чему вы научились.

 

  1.  Группа «Историки» (Презентация)

Ученик. Поручено создать алгоритм решения экстремальных задач с помощью производной.Работали под девизом «Знания только тогда знания, когда они добываются усилиями своих мыслей, а не только памятью»

  1.  «Исследователи»

Ученик. Получили задание: найти интересные задачи по математике, которые решаются с помощью производной.

Отработали учебники, по которым обучаемся, затем учебники с углубленным изучением математики. Поняли, что без понятия «производная» как без оружия.

Предлагаем решить задачу.

Слайд 1

Слайд 2

Слайд 3

Слайд 4

Слайд 5

  1.  Группа «Знатоки»

Ученик. Группе поручено найти задачи по физике, которые решаются с помощью производной.

Среди задач мы нашли наиболее характерные.

Слайд 1

Слайд 2

Слайд 3

Слайд 4

  1.  Группа «Практики»

Ученик. Мы ознакомились с задачами, которые встречаются в экономике. Среди них наиболее характерные:

Слайд 1

Слайд 2

Слайд 3

  1.   Итог модуля.
  2.  Воспроизведите алгоритм решения экстремальных задач.
  3.  Оценивание презентаций (оценивается в 5 баллов).

Алгоритм М-М18.

Формирование навыков и умений.

Решение задач (учебник: Алгебра 11, Г.П.Бевз, В.Г.Бевз, Н.Г.Владимирова).

№828 (коллективно):

Какую наибольшую площадь может иметь прямоугольник, вписанный в фигуру, ограниченную осью Ох и графиком функции у = 4-х2 (рис.1).                                    рис.1

№826 – работа в парах (3 балла):

Какими должны быть размеры бассейна объемом 32м3 с квадратным дном и вертикальными стенами, чтобы на его облицовку использовали наименьшее количество плитки?

 

№831 - работа в группах (4 балла).

Емкость легких человека, возраст которого не менее 10 лет приближенно выражается функцией t(x)=, где х є [10;100]  - возраст человека в годах, t(x) – емкость легких человека  в литрах. Установите, в каком возрасте емкость легких человека максимальная и чему она равна.

ІІ.    Итог модуля.

 Оценивание учащихся.

ІІІ. Домашнеее задание.

Решить задачу №834 (учебник: Алгебра 11, Г.П.Бевз, В.Г.Бевз, Н.Г.Владимирова):

  1.  в общем  виде;
  2.  выполнить вычисления, взяв реальные размеры банки:

  - под консервированную кукурузу;

  - под консервированные ананасы.

  1.  Сравнить и ответить на вопрос: «Несут ли нерациональные затраты на изготовление банки производственники?»

  1.  

 

А также другие работы, которые могут Вас заинтересовать

6229. Теорія графів. Розвязок задачі на основі графів на мові C++ 583.5 KB
  Теорія графів - це галузь дискретної математики, особливістю якої є геометричний підхід до вивчення об'єктів. Вона перебуває зараз у самому розквіті. Розділ теорії графів Зв'язність графів, що розглядається у цій роботі, є дуже актуальною на сьогоднішній день. Наприклад її прямим застосуванням є теорія сітей – та її додаток - теорія електронних сітей...
6230. Антибиотики (Пенициллины, цефалоспорины, макролиды) 115.5 KB
  Антибиотики (Пенициллины, цефалоспорины, макролиды) Антибиотики (от греч. anti - против, bios - жизнь) - вещества микробного, животного или растительного происхождения, избирательно угнетающие жизнедеятельность микроорганизмов. В 1929...
6231. Теория потребительского поведения 116 KB
  Теория потребительского поведения Потребительское поведение - это процесс формирования спроса отдельного потребителя (индивидуального спроса) на различные товары и услуги. Предъявляя спрос на те или иные блага, потребитель стремится извле...
6232. Завершение эмпиризма: сенсуализм, субъективный идеализм и агностицизм 102.5 KB
  Завершение эмпиризма: сенсуализм, субъективный идеализм и агностицизм. Сенсуализм Д. Локка и субъективный идеализм Д. Беркли. Проблема гносеологии и базисное утверждение Джона Локка. Центральной проблемой в учениях английского философа Джон...
6233. Методические подходы к разработке организационной структуры предприятия 141 KB
  Анализ методов и подходов к совершенствованию организационных структур Разработка и реализация процесса совершенствования организационных структур - одна из самых сложных проблем теории систем и системного анализа. В настоящее время, ког...
6234. Фармакопейный анализ натрия тиосульфата, натрия нитрита, йода и его спиртовых растворов 105.5 KB
  Фармакопейный анализ натрия тиосульфата, натрия нитрита, йода и его спиртовых растворов Описание. Растворимость. Бесцветные прозрачные кристаллы, без запаха, солоновато-горького вкуса. Препарат выветриваются в теплом сухом воздухе, а во влажном возд...
6236. Економіка підприємства. Навчальний посібник 1.55 MB
  Передмова У навчальному посібнику з урахуванням вимог нормативної програми дисципліни Економіка підприємства надається перелік обов'язкових до вивчення питань, розкривається зміст конкретної теми (за змістом десять тем) з викладом розрахунков...
6237. ВИЧ-инфекция (HIV infection). Эпидемиология. Клиническая картина. СПИД 128.19 KB
  ВИЧ-инфекция (HIV infection). Эпидемиология. Клиническая картина. ВИЧ-инфекция-антропонозное вирусное заболевание, в основе патогенеза которого лежит прогрессирующий иммунодефицит и развитие вследствие этого вторичных оппо...