57783

Применение производной к исследованию функции

Конспект урока

Педагогика и дидактика

Цели урока: сформировать навыки исследования и построения графиков функции с помощью производной. Учитель записывает на доске а ученики в тетради: Применение производной при исследовании функции.

Русский

2014-04-15

1.89 MB

5 чел.

Коммунальное учреждение «ЛУГАНСКАЯ СРЕДНЕОБРАЗОВАТЕЛЬНАЯ

ШКОЛА I-III СТЕПЕНЕЙ №18»

Выполнил работу

учитель математики

Мельник М.С.


Тема урока:
Применение производной к исследованию функции

Цели урока: сформировать навыки исследования и построения графиков функции с помощью  производной. Развивать алгоритмическое мышление, память. Воспитывать у учащихся требовательность к себе, критическое отношение к результатам своей работы, настойчивость в достижении цели.

Тип урока: урок усвоения новых знаний.

Методы обучения: объяснительно-иллюстративный, проблемный, эвристический.

Форма обучения: наглядная, практическая, словесная

Оборудование: мультимедийный проектор, презентация, карточки с заданием для групп, ватманы и маркеры для групп.

Структура урока

  1.  Организационный момент
  2.  Сообщение темы, цели и задач урока
  3.  Актуализация опорных знаний учащихся
  4.  Первичное восприятие и осознание учащимися нового материала
  5.  Первичное применение приобретённых знаний
  6.  Подведение итогов урока
  7.  Сообщение домашнего задания

Ход урока

 ӏ  Организационный момент:

   -приветствие учащихся;

   - отметить отсутствующих на уроке;

   - записать дату урока, классная работа в тетради.

ӏӏ Сообщение темы, цели и задач урока.

 Учитель записывает на доске, а ученики в тетради: Применение производной при исследовании функции.

Цель нашего урока: научиться исследовать функцию и строить её график с использованием производной. Эта тема в дальнейшем упростит нахождение свойств функции и построение графиков функций.

Задача урока: научиться пользоваться алгоритмом исследования функции.

ӏӏӏ  Актуализация опорных знаний учащихся.

 (Фронтальный опрос  учащихся).

 Вопросы:

  1.  Что называется функцией?

        Если каждому значению переменной Х из некоторого множества D соответствует        единственное значение переменной У, то такое соответствие называется функцией. При этом Х называют независимой переменной, или аргументом, а У  -зависимой переменой, или функцией.

  1.  Что называется областью определения и областью значения функции?

        Множество всех значений, которые может принимать аргумент, называют областью определения данной функции и обозначают D. Множество значений, которые может принимать функция, называют областью значений и обозначают буквой Е.

  1.  Какая функция называется чётной (нечётной)?

       Функция называется чётной (нечётной), если область её определения симметрична относительно числа  0 и для каждого значения Х из области определения  f(-x)=f(x), (f(-x)=-f(x) ).

  1.  Какие точки называются критическими?

        Внутренние точки области определения, в которых производная равна нулю или не существует, называют – критическими точками функции.

  1.  Дать определение, на каком промежутке функция возрастает, убывает, постоянная.

        Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке   возрастает. Если производная функции в каждой точке некоторого промежутка отрицательная, то функция на этом промежутке убывает. Если производная функции в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.

  1.  Как можно определить промежутки возрастания и убывания функции  f(x)?

        ӏ способ: нужно решить неравенства f(x)>0 и f(x)<0.

        ӏӏ способ: найти все критические точки функции, разбить ими область определения функции на промежутки, а потом исследовать, на каких из них функция возрастает, а на каких убывает.

  1.  Что называется точкой минимума (максимума) функции?

       Точка х0 называется точкой минимума функции f(x), если для всех х (х≠х0) из некоторой окрестности точки х0 выполняется неравенство f(x0)<f(x) (f(x0)>f(x)).

  1.  Как, одним словом назвать точки максимума и минимума функции?

       Точки экстремума.

  1.  Как определить точки экстремума?

        Точка х0, при переходе через которую в направлении роста аргумента производная меняет знак с «+» на «-» является точкой максимума, а точка при переходе через которую производная меняет знак с «-» ни «+»-точкой минимума.

ӏv  Восприятие и первичное осознание учащимися нового материала.

   Итак, теперь переходим к изучению новой темы.

   Исследовать функцию – это значит установить её свойства: указать D(f), E(f), промежутки возрастания и убывания, промежутки на которых функция принимает положительные значения, на которых принимает отрицательные, выяснить, не является ли данная функция чётной или нечётной и т.д.

   На слайде представлен график функции

  1.  D(f)=(-∞;+∞)
  2.  Функция ни чётная и ни нечётная
  3.  Нули функции: (-2;0) и (2;0)- с осью ОХ, (0;-8)-с осью ОУ
  4.  Функция возрастает на (-∞;-2] и [1;+∞), и убывает на [-2;1]
  5.  Точки экстремума Xmax =-2, Xmin=1. Экстремумы функции Ymax=0, Ymin=9,5

Учитель продолжает объяснять новую тему: в данном случае, если нам известен график функции, то перечислить все свойства этой функции не составит труда.

Решим обратную задачу: по известному аналитическому заданию функции перечислим все её свойства.

Пусть функция задана в виде y=f(x), тогда необходимо выполнить исследование функции по следующей схеме (схема перед глазами учащихся на слайде презентации):

  1.  Найти область определения функции
  2.  Исследовать функцию на чётность, нечётность и периодичность
  3.  Найти нули функции (точки пересечения графика функции с осями координат)
  4.  Исследовать функцию на монотонность (найти промежутки возрастания и убывания функции)
  5.  Найти точки экстремума и экстремальные значения функции
  6.  Найти дополнительные точки (если нужно)
  7.  Построить график функции

Учитель на доске показывает образец  выполнения задания. (Учащиеся активно берут участие в исследовании функции и записывают решение в тетради).

Исследовать функцию и построить её график  f(x)=x3-3x2+2

  1.  D(f)=(-∞:+∞)
  2.  f(-x)=(-x)3-3(-x)2+2=-x3-3x2+2            f(-x)≠f(x);

                                                              f(-x)≠-f(x)           функция ни чётная и ни нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-3x2+2=0;

                                                        х32-2х2+2=0;

                                                       (х32)-2(х2-1)=0;

                                                        х2(х-1)-2(х-1)(х+1)=0;

                                                        (х-1)(х2-2х-2)=0;

                                                        х-1=0 или х2-2х-2=0;

                                                        х1=1           D=(-2)2-4*1*(-2)=4+8=12;

                                                         х2= =1+,     х3= =1-;

             А(1;0), В(1+;0), С(1-;0).

            б) с осью ОУ: х=0               f(х)=03-2*02+2=2            D(0;2)

     4.    Монотонность функции

            f(x)=3х2-6х;

            f(x)=0              3х2-6х=0;

                                     3х(х-2)=0;

                                     3х=0  или х-2=0;

                                     х1=0;   х2=2

х

(-∞;0)

0

(0;2)

2

(2;+∞)

f(x)

+

0

-

0

+

f(х)

2

-2

max

min

           f(-1)=3*(-1)2-6*(-1)=3+6=9, 9>0

           f(1)=3*12-6*1=3-6=-3, -3<0

           f(3)=3*32-6*3=27-18=9, 9>0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=0            ymax=03-3*02+2=2           E(0;2)

xmin=2            ymin=23-3*22+2=8-12+2=-2          F(2;-2)

 v  Первичное применение приобретённых знаний

Ученики заранее поделены на пять групп, каждая из которых получает карточку с заданием. В каждой группе назначается ответственный за выполнение задания и ходом его решения. Как только в группе будет найден ответ на первый пункт схемы исследования своей функции, сразу один из учеников выходит к доске и записывает его  и так далее до конца (в ходе выполнения задания все учащиеся группы выйдут к доске минимум один раз). Каждой группе выдан ватман и маркер, на котором ученики строят график своей функции с целью экономии времени и места на доске, так как одновременно все пять групп  записывают исследование своей функции на заранее разделенной на пять частей доске.

 Задание группы №1

Исследовать функцию и построить её график f(x)=x3-2х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=(-x)3-2(-x)2=-x3-2x2 =-(х3+2х2)                  f(-x)≠f(x);

                                                                              f(-x)≠-f(x)           функция ни чётная и ни нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-2x2=0;

                                                        х2(х-2)=0;

                                                        х2=0  или  х-2=0;

                                                        х1=0, Х2=2            А(0;0), В(2;0)

            б) с осью ОУ: х=0               f(х)=03-2*02=0             А(0;0)

      4. Монотонность функции

            f(x)=3х2-4х;

            f(x)=0              3х2-4х=0;

                                 х(3х-4)=0;

                                 х1=0,  3х-4=0

                                            х2=1

х

(-∞;0)

0

(0;1)

1

(1;+∞)

f(x)

+

0

-

0

+

f(х)

0

-1

max

min

           f(-1)=3*(-1)2-4*(-1)=3+4=7, 7>0

           f(1)=3*12-4*1=3-4=-1, -1<0

           f(2)=3*22-4*2=12-8=4, 4>0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=0            ymax=03-2*02=0           С(0;0)

xmin=            ymin=(3-2*()2=8-12+2=-  =-1                 D(2;-2)

Задание группы №2

Исследовать функцию и построить её график f(x)=3x-x3

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=3(-х)-(-x)3=-3х-x3 =-(3х-х3)                f(-x)=-f(x)             функция нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           3х-x3=0,

                                                       х(3-х2)=0,

                                                       х1=0, 3-х2=0,

                                                   х2=3,

                                                    х2=, х3=-                А(0;0), В(,0), С(-,0)

               б) с осью ОУ: х=0               f(х)=3*0-03 =0             А(0;0)

      4. Монотонность функции

            f(x)=3-3х2,

            f(x)=0              3-3х2=0,

                                      3(1-х2)=0,

                        х2=1,

                        х1=1, х2=-1

х

(-∞;-1)

-1

(-1;1)

1

(1;+∞)

f(x)

-

0

+

0

-

f(х)

-2

2

min

max

           f(-2)=3-3*(-2)2=3-12=-9, -9<0

           f(0)=3-3*02=3, 3>0

           f(2)=3-3*22=3-12=-9, -9<0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=1            ymax=03-2*02=0           D(1;2)

xmin=-1           ymin=3*1-13=3-1=2                 E(-1;-2)

Задание группы №3

Исследовать функцию и построить её график f(x)=x3-6x

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=(-x)3-6(-x)=-x3+6x =-(х3-6x)                f(-x)=-f(x)             функция нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-6x=0,

                                                       х(х2-6)=0, 

                                                       х1=0, х2-6=0,

                                                                 х2=, х3=-               А(0;0), В(,0), С(-,0)

             б) с осью ОУ: х=0               f(х)=03-6*0 =0             А(0;0)

      4. Монотонность функции

            f(x)=3х2-6,

            f(x)=0              3х2-6=0,

                                      3(х2-2)=0,

                        х2=2,

                        х1=, х2=-

х

(-∞;-)

(-;)

(;+∞)

f(x)

+

0

-

0

+

f(х)

4

-4

max

min

           f(-2)=3*(-2)2-6=12-6=6, 6>0

           f(0)=3*02-6=-6, -6<0

           f(2)=3*22-6=12-6=6, 6>0

  1.    Точки экстремума. Экстремальные значения функции.

xmax=-              ymax=(-3-6*( - )=-2 +6 =4              D(-;4)

xmin=               ymin=3-6=2-6=-4                 E(;-4)

Задание группы №4

Исследовать функцию и построить её график f(x)=-2х4+2х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=-2(-х)4+2(-х)2=-2х4+2х2                f(-x)=f(x)             функция чётная

  1.  Нули функции:

             а) с осью ОХ: у=0          -2х4+2х2=0,

                                                       -2х22-1)=0, 

                                                        х1=0, х2-1=0,

                                                                 х2=1, х3=-1               А(0;0), В(1;0), С(-1;0)

             б) с осью ОУ: х=0               f(х)=-2*04+2*02=0                 А(0;0)

      4. Монотонность функции

            f(x)=-8х3+4х,

            f(x)=0              -8х3+4х =0,

                                      -4х(2х2-1)=0,

                                      -4х=0 или  2х2-1=0

                         х1=0,    х2=,

                                      х2=,  х3=-

х

(-∞;-)

(-;0)

(0;

(

f(x)

+

0

-

0

+

0

-

f(х)

0

max

min

max

           f(-1)=-8*(-1)3+4*(-1)=8-4=4,  4  >0,

           f(-)=-8*(-)3+4*(-)=1-2=-1, -1<0,

           f()=-8*()3+4*=-1+2=1, 1>0,

           f(1)=-8*13+4*1=-8*4=-4, -4<0,

  1.    Точки экстремума. Экстремальные значения функции.

xmax=-              ymax=-2*(- )4+2*(- )2=-2*+2*  =- +1=                    D(-;)

xmin=0               ymin=-2*04+2*02=0             А(0;0)

xmax=              ymax=-2*( )4+2*( )2=-2*+2*  =- +1=                    Е(;)

Задание группы №5

Исследовать функцию и построить её график f(x)=3х4-6х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=3(-х)4-6(-х)2=3х4-6х2                f(-x)=f(x)             функция чётная

  1.  Нули функции:

             а) с осью ОХ: у=0           3х4-6х2=0,

                                                        3х22-2)=0, 

                                                        х1=0, х2-2=0,

                                                                 х2=, х3=-                   А(0;0), В(;0), С(-;0)

             б) с осью ОУ: х=0               f(х)=3*04-6*02=0                 А(0;0)

      4. Монотонность функции

            f(x)=12х3-12х,

            f(x)=0               12х3-12х  =0,

                                      12х(х2-1)=0,

                                      12х=0 или  х2-1=0

                         х1=0,    х2=1,

                                      х2=1, х3=-1

х

(-∞;-1)

-1

(-1; 0)

(0;1

1

(1

f(x)

-

0

+

0

-

0

+

f(х)

-3

0

-3

min

max

min

           f(-2)=12*(-2)3-12*(-2)=12*(-8)+24=-96+24=-72,  -72<0,

           f(-)=12*(-)3-12*(-)=-+6=-1,5+6=4,5    4,5>0,

           f()=12*()3-12*=-6=1,5-6=-4,5    -4,5<0,

           f(2)=12*23-12*2=12*8-24=96-24=72, 72>0,

  1.    Точки экстремума. Экстремальные значения функции.

xmin=-1               ymin=3*(-1)4-6*(-1)2=3-6=-3                    D(-1;-3)

xmax=0                ymax=3*04-6*02=0                  А(0;0)

xmin=1               ymin=3*14-6*12=3-6=-3              Е(1;-3)

vӏ Подведение итогов урока.

 Учитель выставляет оценки за роботу на уроке

  Учащиеся повторяют алгоритм исследования функции.

vӏӏ Сообщение домашнего задания.



 

А также другие работы, которые могут Вас заинтересовать

939. Управление делами Аппарата Администрации Смоленской области г. Смоленск, площадь им. Ленина, 1 311.5 KB
  Общая характеристика Аппарата Администрации Смоленской области. Основные задачи и функции протокольного отдела. Управление делами Аппарата Администрации Смоленской области. Функциональное содержание управленческой деятельности на примере протокольного отдела Управления делами Аппарата Администрации Смоленской области.
940. Исследование основных параметров и схем включения операцион-ных усилителей 231.5 KB
  В ходе работе были определены параметры операционного усилителя К140УД7 на лабораторном стенде и его зарубежного аналога uA741C в среде моделирования Microcap9: коэффициент усиления ОУ без обратной связи, входные токи, входное напряжение смещения, коэффициент ослабления синфазного сигнала.
941. Транспортування небезпечних вантажів автомобільним видом транспорту 2.2 MB
  Визначення перспективного напрямку удосконалення існуючої схеми перевезень легкозаймистих речовин у Угорщину та Румунію. Аналіз українського законодавства в області автомобільних перевезень небезпечних вантажів. Оцінка техніко-економічної ефективності розроблених технологічних рішень.
942. Отечественная история от начала до конца ХХ века 683 KB
  Происхождение и ранняя история восточных славян (расселение, занятия, общественное устройство, религия). Объединение русских земель и образование Московского государства. Государственное реформирование при первых Романовых. Либеральные реформы 60- 70 гг. XIX века. Столыпинская аграрная реформа и ее итоги. Новая экономическая. политика (1921-28г.:причины, содержание, противоречия) НЭП.
943. Привод ленточного транспортёра 224.5 KB
  Промежуточный вал (расчёт на статическую прочность). Определение требуемой мощности электродвигателя. Определение частоты вращения вала электродвигателя. Определение действительного фактического передаточного числа. Крутящий момент в поперечных сечениях валов.
944. Проектирование автоматизированной информационной системы автомобильной стоянки на Delphi 753 KB
  Обзор существующих систем для автоматизации работы автомобильных стоянок. После анализа особенностей среды программирования Delphi и возможностей написания на ней программы было успешно разработано приложение Автостоянка, которое позволяет сотрудникам автостоянки осуществлять простой и удобный поиск клиентов и их авто по базе данных, добавлять новые записи, вести учет платежей за парковочные места.
945. Знакомство с операционной системой MS DOS 68.5 KB
  Просматривать содержимое дисков и каталогов. Выполнять действия над файлами. Выполнять действия над каталогами.
946. Основные команды работы с файлами и каталогами 103.5 KB
  Команды DOS состоят из имени команды и, возможно, параметров, разделённых пробелами. Имя команды и параметры могут набираться как прописными, так и строчными латинскими буквами.
947. Знакомство с программой Volkov Commander 63.5 KB
  Записать в тетрадь все команды и приглашение операционной системы, на которое вводилась каждая команда. Используя программу vc, зарисуйте структуру диска F:. Создайте в корневом каталоге диска E: новый файл с именем new.txt.