57783

Применение производной к исследованию функции

Конспект урока

Педагогика и дидактика

Цели урока: сформировать навыки исследования и построения графиков функции с помощью производной. Учитель записывает на доске а ученики в тетради: Применение производной при исследовании функции.

Русский

2014-04-15

1.89 MB

5 чел.

Коммунальное учреждение «ЛУГАНСКАЯ СРЕДНЕОБРАЗОВАТЕЛЬНАЯ

ШКОЛА I-III СТЕПЕНЕЙ №18»

Выполнил работу

учитель математики

Мельник М.С.


Тема урока:
Применение производной к исследованию функции

Цели урока: сформировать навыки исследования и построения графиков функции с помощью  производной. Развивать алгоритмическое мышление, память. Воспитывать у учащихся требовательность к себе, критическое отношение к результатам своей работы, настойчивость в достижении цели.

Тип урока: урок усвоения новых знаний.

Методы обучения: объяснительно-иллюстративный, проблемный, эвристический.

Форма обучения: наглядная, практическая, словесная

Оборудование: мультимедийный проектор, презентация, карточки с заданием для групп, ватманы и маркеры для групп.

Структура урока

  1.  Организационный момент
  2.  Сообщение темы, цели и задач урока
  3.  Актуализация опорных знаний учащихся
  4.  Первичное восприятие и осознание учащимися нового материала
  5.  Первичное применение приобретённых знаний
  6.  Подведение итогов урока
  7.  Сообщение домашнего задания

Ход урока

 ӏ  Организационный момент:

   -приветствие учащихся;

   - отметить отсутствующих на уроке;

   - записать дату урока, классная работа в тетради.

ӏӏ Сообщение темы, цели и задач урока.

 Учитель записывает на доске, а ученики в тетради: Применение производной при исследовании функции.

Цель нашего урока: научиться исследовать функцию и строить её график с использованием производной. Эта тема в дальнейшем упростит нахождение свойств функции и построение графиков функций.

Задача урока: научиться пользоваться алгоритмом исследования функции.

ӏӏӏ  Актуализация опорных знаний учащихся.

 (Фронтальный опрос  учащихся).

 Вопросы:

  1.  Что называется функцией?

        Если каждому значению переменной Х из некоторого множества D соответствует        единственное значение переменной У, то такое соответствие называется функцией. При этом Х называют независимой переменной, или аргументом, а У  -зависимой переменой, или функцией.

  1.  Что называется областью определения и областью значения функции?

        Множество всех значений, которые может принимать аргумент, называют областью определения данной функции и обозначают D. Множество значений, которые может принимать функция, называют областью значений и обозначают буквой Е.

  1.  Какая функция называется чётной (нечётной)?

       Функция называется чётной (нечётной), если область её определения симметрична относительно числа  0 и для каждого значения Х из области определения  f(-x)=f(x), (f(-x)=-f(x) ).

  1.  Какие точки называются критическими?

        Внутренние точки области определения, в которых производная равна нулю или не существует, называют – критическими точками функции.

  1.  Дать определение, на каком промежутке функция возрастает, убывает, постоянная.

        Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке   возрастает. Если производная функции в каждой точке некоторого промежутка отрицательная, то функция на этом промежутке убывает. Если производная функции в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.

  1.  Как можно определить промежутки возрастания и убывания функции  f(x)?

        ӏ способ: нужно решить неравенства f(x)>0 и f(x)<0.

        ӏӏ способ: найти все критические точки функции, разбить ими область определения функции на промежутки, а потом исследовать, на каких из них функция возрастает, а на каких убывает.

  1.  Что называется точкой минимума (максимума) функции?

       Точка х0 называется точкой минимума функции f(x), если для всех х (х≠х0) из некоторой окрестности точки х0 выполняется неравенство f(x0)<f(x) (f(x0)>f(x)).

  1.  Как, одним словом назвать точки максимума и минимума функции?

       Точки экстремума.

  1.  Как определить точки экстремума?

        Точка х0, при переходе через которую в направлении роста аргумента производная меняет знак с «+» на «-» является точкой максимума, а точка при переходе через которую производная меняет знак с «-» ни «+»-точкой минимума.

ӏv  Восприятие и первичное осознание учащимися нового материала.

   Итак, теперь переходим к изучению новой темы.

   Исследовать функцию – это значит установить её свойства: указать D(f), E(f), промежутки возрастания и убывания, промежутки на которых функция принимает положительные значения, на которых принимает отрицательные, выяснить, не является ли данная функция чётной или нечётной и т.д.

   На слайде представлен график функции

  1.  D(f)=(-∞;+∞)
  2.  Функция ни чётная и ни нечётная
  3.  Нули функции: (-2;0) и (2;0)- с осью ОХ, (0;-8)-с осью ОУ
  4.  Функция возрастает на (-∞;-2] и [1;+∞), и убывает на [-2;1]
  5.  Точки экстремума Xmax =-2, Xmin=1. Экстремумы функции Ymax=0, Ymin=9,5

Учитель продолжает объяснять новую тему: в данном случае, если нам известен график функции, то перечислить все свойства этой функции не составит труда.

Решим обратную задачу: по известному аналитическому заданию функции перечислим все её свойства.

Пусть функция задана в виде y=f(x), тогда необходимо выполнить исследование функции по следующей схеме (схема перед глазами учащихся на слайде презентации):

  1.  Найти область определения функции
  2.  Исследовать функцию на чётность, нечётность и периодичность
  3.  Найти нули функции (точки пересечения графика функции с осями координат)
  4.  Исследовать функцию на монотонность (найти промежутки возрастания и убывания функции)
  5.  Найти точки экстремума и экстремальные значения функции
  6.  Найти дополнительные точки (если нужно)
  7.  Построить график функции

Учитель на доске показывает образец  выполнения задания. (Учащиеся активно берут участие в исследовании функции и записывают решение в тетради).

Исследовать функцию и построить её график  f(x)=x3-3x2+2

  1.  D(f)=(-∞:+∞)
  2.  f(-x)=(-x)3-3(-x)2+2=-x3-3x2+2            f(-x)≠f(x);

                                                              f(-x)≠-f(x)           функция ни чётная и ни нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-3x2+2=0;

                                                        х32-2х2+2=0;

                                                       (х32)-2(х2-1)=0;

                                                        х2(х-1)-2(х-1)(х+1)=0;

                                                        (х-1)(х2-2х-2)=0;

                                                        х-1=0 или х2-2х-2=0;

                                                        х1=1           D=(-2)2-4*1*(-2)=4+8=12;

                                                         х2= =1+,     х3= =1-;

             А(1;0), В(1+;0), С(1-;0).

            б) с осью ОУ: х=0               f(х)=03-2*02+2=2            D(0;2)

     4.    Монотонность функции

            f(x)=3х2-6х;

            f(x)=0              3х2-6х=0;

                                     3х(х-2)=0;

                                     3х=0  или х-2=0;

                                     х1=0;   х2=2

х

(-∞;0)

0

(0;2)

2

(2;+∞)

f(x)

+

0

-

0

+

f(х)

2

-2

max

min

           f(-1)=3*(-1)2-6*(-1)=3+6=9, 9>0

           f(1)=3*12-6*1=3-6=-3, -3<0

           f(3)=3*32-6*3=27-18=9, 9>0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=0            ymax=03-3*02+2=2           E(0;2)

xmin=2            ymin=23-3*22+2=8-12+2=-2          F(2;-2)

 v  Первичное применение приобретённых знаний

Ученики заранее поделены на пять групп, каждая из которых получает карточку с заданием. В каждой группе назначается ответственный за выполнение задания и ходом его решения. Как только в группе будет найден ответ на первый пункт схемы исследования своей функции, сразу один из учеников выходит к доске и записывает его  и так далее до конца (в ходе выполнения задания все учащиеся группы выйдут к доске минимум один раз). Каждой группе выдан ватман и маркер, на котором ученики строят график своей функции с целью экономии времени и места на доске, так как одновременно все пять групп  записывают исследование своей функции на заранее разделенной на пять частей доске.

 Задание группы №1

Исследовать функцию и построить её график f(x)=x3-2х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=(-x)3-2(-x)2=-x3-2x2 =-(х3+2х2)                  f(-x)≠f(x);

                                                                              f(-x)≠-f(x)           функция ни чётная и ни нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-2x2=0;

                                                        х2(х-2)=0;

                                                        х2=0  или  х-2=0;

                                                        х1=0, Х2=2            А(0;0), В(2;0)

            б) с осью ОУ: х=0               f(х)=03-2*02=0             А(0;0)

      4. Монотонность функции

            f(x)=3х2-4х;

            f(x)=0              3х2-4х=0;

                                 х(3х-4)=0;

                                 х1=0,  3х-4=0

                                            х2=1

х

(-∞;0)

0

(0;1)

1

(1;+∞)

f(x)

+

0

-

0

+

f(х)

0

-1

max

min

           f(-1)=3*(-1)2-4*(-1)=3+4=7, 7>0

           f(1)=3*12-4*1=3-4=-1, -1<0

           f(2)=3*22-4*2=12-8=4, 4>0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=0            ymax=03-2*02=0           С(0;0)

xmin=            ymin=(3-2*()2=8-12+2=-  =-1                 D(2;-2)

Задание группы №2

Исследовать функцию и построить её график f(x)=3x-x3

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=3(-х)-(-x)3=-3х-x3 =-(3х-х3)                f(-x)=-f(x)             функция нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           3х-x3=0,

                                                       х(3-х2)=0,

                                                       х1=0, 3-х2=0,

                                                   х2=3,

                                                    х2=, х3=-                А(0;0), В(,0), С(-,0)

               б) с осью ОУ: х=0               f(х)=3*0-03 =0             А(0;0)

      4. Монотонность функции

            f(x)=3-3х2,

            f(x)=0              3-3х2=0,

                                      3(1-х2)=0,

                        х2=1,

                        х1=1, х2=-1

х

(-∞;-1)

-1

(-1;1)

1

(1;+∞)

f(x)

-

0

+

0

-

f(х)

-2

2

min

max

           f(-2)=3-3*(-2)2=3-12=-9, -9<0

           f(0)=3-3*02=3, 3>0

           f(2)=3-3*22=3-12=-9, -9<0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=1            ymax=03-2*02=0           D(1;2)

xmin=-1           ymin=3*1-13=3-1=2                 E(-1;-2)

Задание группы №3

Исследовать функцию и построить её график f(x)=x3-6x

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=(-x)3-6(-x)=-x3+6x =-(х3-6x)                f(-x)=-f(x)             функция нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-6x=0,

                                                       х(х2-6)=0, 

                                                       х1=0, х2-6=0,

                                                                 х2=, х3=-               А(0;0), В(,0), С(-,0)

             б) с осью ОУ: х=0               f(х)=03-6*0 =0             А(0;0)

      4. Монотонность функции

            f(x)=3х2-6,

            f(x)=0              3х2-6=0,

                                      3(х2-2)=0,

                        х2=2,

                        х1=, х2=-

х

(-∞;-)

(-;)

(;+∞)

f(x)

+

0

-

0

+

f(х)

4

-4

max

min

           f(-2)=3*(-2)2-6=12-6=6, 6>0

           f(0)=3*02-6=-6, -6<0

           f(2)=3*22-6=12-6=6, 6>0

  1.    Точки экстремума. Экстремальные значения функции.

xmax=-              ymax=(-3-6*( - )=-2 +6 =4              D(-;4)

xmin=               ymin=3-6=2-6=-4                 E(;-4)

Задание группы №4

Исследовать функцию и построить её график f(x)=-2х4+2х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=-2(-х)4+2(-х)2=-2х4+2х2                f(-x)=f(x)             функция чётная

  1.  Нули функции:

             а) с осью ОХ: у=0          -2х4+2х2=0,

                                                       -2х22-1)=0, 

                                                        х1=0, х2-1=0,

                                                                 х2=1, х3=-1               А(0;0), В(1;0), С(-1;0)

             б) с осью ОУ: х=0               f(х)=-2*04+2*02=0                 А(0;0)

      4. Монотонность функции

            f(x)=-8х3+4х,

            f(x)=0              -8х3+4х =0,

                                      -4х(2х2-1)=0,

                                      -4х=0 или  2х2-1=0

                         х1=0,    х2=,

                                      х2=,  х3=-

х

(-∞;-)

(-;0)

(0;

(

f(x)

+

0

-

0

+

0

-

f(х)

0

max

min

max

           f(-1)=-8*(-1)3+4*(-1)=8-4=4,  4  >0,

           f(-)=-8*(-)3+4*(-)=1-2=-1, -1<0,

           f()=-8*()3+4*=-1+2=1, 1>0,

           f(1)=-8*13+4*1=-8*4=-4, -4<0,

  1.    Точки экстремума. Экстремальные значения функции.

xmax=-              ymax=-2*(- )4+2*(- )2=-2*+2*  =- +1=                    D(-;)

xmin=0               ymin=-2*04+2*02=0             А(0;0)

xmax=              ymax=-2*( )4+2*( )2=-2*+2*  =- +1=                    Е(;)

Задание группы №5

Исследовать функцию и построить её график f(x)=3х4-6х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=3(-х)4-6(-х)2=3х4-6х2                f(-x)=f(x)             функция чётная

  1.  Нули функции:

             а) с осью ОХ: у=0           3х4-6х2=0,

                                                        3х22-2)=0, 

                                                        х1=0, х2-2=0,

                                                                 х2=, х3=-                   А(0;0), В(;0), С(-;0)

             б) с осью ОУ: х=0               f(х)=3*04-6*02=0                 А(0;0)

      4. Монотонность функции

            f(x)=12х3-12х,

            f(x)=0               12х3-12х  =0,

                                      12х(х2-1)=0,

                                      12х=0 или  х2-1=0

                         х1=0,    х2=1,

                                      х2=1, х3=-1

х

(-∞;-1)

-1

(-1; 0)

(0;1

1

(1

f(x)

-

0

+

0

-

0

+

f(х)

-3

0

-3

min

max

min

           f(-2)=12*(-2)3-12*(-2)=12*(-8)+24=-96+24=-72,  -72<0,

           f(-)=12*(-)3-12*(-)=-+6=-1,5+6=4,5    4,5>0,

           f()=12*()3-12*=-6=1,5-6=-4,5    -4,5<0,

           f(2)=12*23-12*2=12*8-24=96-24=72, 72>0,

  1.    Точки экстремума. Экстремальные значения функции.

xmin=-1               ymin=3*(-1)4-6*(-1)2=3-6=-3                    D(-1;-3)

xmax=0                ymax=3*04-6*02=0                  А(0;0)

xmin=1               ymin=3*14-6*12=3-6=-3              Е(1;-3)

vӏ Подведение итогов урока.

 Учитель выставляет оценки за роботу на уроке

  Учащиеся повторяют алгоритм исследования функции.

vӏӏ Сообщение домашнего задания.



 

А также другие работы, которые могут Вас заинтересовать

37904. КАЧЕСТВЕННЫЙ И ПОЛУКОЛИЧЕСТВЕННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ СПЛАВОВ 4.23 MB
  Определить процентное содержание химического элемента в сплаве. Спектр каждого элемента является строго его индивидуальной характеристикой и поэтому может быть использован для анализа вещества. Атом состоит из положительно заряженного ядра в котором сосредоточена практически вся его масса и отрицательно заряженных электронов число которых в нейтральном атоме совпадает с порядковым номером элемента в периодической системе Менделеева. На энергетических схемах возможные значения энергии атома изображаются горизонтальными линиями причем все...
37905. Исследования полупроводникового диода 566 KB
  С точки зрения зонной теории полупроводниками являются кристаллические вещества у которых при 0 К валентная зона полностью заполнена электронами а ширина запрещенной зоны невелика например для германия она равна 072 эВ. Выясним природу этих носителей на примере полупроводника из германия. Все атомы германия нейтральны и связаны друг с другом ковалентными связями. Чтобы создать проводимость необходимо разорвать хотя бы одну из связей удалив из атома германия электрон и перенеся его в какуюлибо другую кристаллическую ячейку где все...
37906. Изучение статических характеристик и определение коэффициента усиления транзистора 84.5 KB
  Инжекция носителей тока. Инжекция носителей тока В основе работы транзистора лежит явление полупроводников р и n типа рn переход к которому приложено внешнее электрическое поле в пропускном прямом направлении рис.1 В этом случае потенциальный барьер основных носителей на границе рn перехода снижается и под влиянием внешнего поля дырки переходят из р в n полупроводник а электроны в обратном направлении из n в р полупроводник и в цепи возникает прямой ток. Процесс рекомбинации происходит не...
37907. ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ 4.96 MB
  Электропроводность зависит от температуры структуры вещества и от внешних воздействий напряженности электрического поля магнитного поля облучения и т. Характер зависимости σ от температуры Т различен у разных веществ. Увеличение температуры приводит к возрастанию тепловых колебаний кристаллической решетки на которых рассеиваются электроны и σ уменьшается. при более низких температурах когда влиянием тепловых колебаний на рассеяние электронов можно пренебречь сопротивление практически не зависит от температуры.
37908. Определение постоянной Планка методом задерживающего потенциала 120 KB
  Михайлов Определение постоянной Планка методом задерживающего потенциала: Методические указания к лабораторной работе № 80 по курсу общей физики Уфимск. Методические указания знакомят студентов с уравнением Эйнштейна для фотоэффекта и с методом задерживающего потенциала позволяющего определять постоянную Планка. Студентам предлагается экспериментально получить график зависимости задерживающего потенциала от частоты падающего на фотокатод света и вычислить постоянную Планка и работу выхода.
37909. ДИФРАКЦИЯ ЭЛЕКТРОНОВ 951 KB
  Гипотеза деБройля 4 2. Контрольные вопросы 11 Список литературы 11 ЭЛАБОРАТОРНАЯ РАБОТА № 85 ДИФРАКЦИЯ ЭЛЕКТРОНОВ Цель работы Изучение гипотезы деБройля о волновых свойствах микрочастиц. Определение длины волны деБройля электронов дифрагированных на образцах с кубической кристаллической решеткой. Теоретическая часть Гипотеза деБройля В 1924 г.
37910. Исследование зависимости теплового излучения абсолютно черного тела от температуры 104 KB
  Лабораторная работа № 86 Исследование зависимости теплового излучения абсолютно черного тела от температуры 1. Цель работы Исследование зависимости интегральной излучательной способности абсолютно черного тела от температуры и проверка выполнения закона СтефанаБольцмана. зависит от температуры тела. Для спектральной характеристики теплового излучения вводится понятие излучательной способности тела или спектральной плотности излучательности 2.
37911. Изучение поляризованного света и внутренних напряжений в твердых телах оптическим методом 338.5 KB
  16 Лабораторная работа № 66 Изучение поляризованного света и внутренних напряжений в твердых телах оптическим методом 1. Закон Малюса Из электромагнитной теории света вытекает что световые волны поперечны. Естественные источники света излучают волны неполяризованные. При взаимодействии света с веществом основное действие оказывает электрическая составляющая электромагнитного поля световой волны электрические взаимодействия сильнее магнитных.
37912. ИЗУЧЕНИЕ ДИСПЕРСИИ СВЕТА 641.5 KB
  2 угол при вершине которой т. преломляющий угол равен P падает световая волна частоты ω угол падения равен i1. Угол наименьшего отклонения δ преломляющий угол P и показатель преломления связаны между собой соотношением .2 Угол отклонения лучей призмой тем больше чем больше преломляющий угол призмы.