57783

Применение производной к исследованию функции

Конспект урока

Педагогика и дидактика

Цели урока: сформировать навыки исследования и построения графиков функции с помощью производной. Учитель записывает на доске а ученики в тетради: Применение производной при исследовании функции.

Русский

2014-04-15

1.89 MB

5 чел.

Коммунальное учреждение «ЛУГАНСКАЯ СРЕДНЕОБРАЗОВАТЕЛЬНАЯ

ШКОЛА I-III СТЕПЕНЕЙ №18»

Выполнил работу

учитель математики

Мельник М.С.


Тема урока:
Применение производной к исследованию функции

Цели урока: сформировать навыки исследования и построения графиков функции с помощью  производной. Развивать алгоритмическое мышление, память. Воспитывать у учащихся требовательность к себе, критическое отношение к результатам своей работы, настойчивость в достижении цели.

Тип урока: урок усвоения новых знаний.

Методы обучения: объяснительно-иллюстративный, проблемный, эвристический.

Форма обучения: наглядная, практическая, словесная

Оборудование: мультимедийный проектор, презентация, карточки с заданием для групп, ватманы и маркеры для групп.

Структура урока

  1.  Организационный момент
  2.  Сообщение темы, цели и задач урока
  3.  Актуализация опорных знаний учащихся
  4.  Первичное восприятие и осознание учащимися нового материала
  5.  Первичное применение приобретённых знаний
  6.  Подведение итогов урока
  7.  Сообщение домашнего задания

Ход урока

 ӏ  Организационный момент:

   -приветствие учащихся;

   - отметить отсутствующих на уроке;

   - записать дату урока, классная работа в тетради.

ӏӏ Сообщение темы, цели и задач урока.

 Учитель записывает на доске, а ученики в тетради: Применение производной при исследовании функции.

Цель нашего урока: научиться исследовать функцию и строить её график с использованием производной. Эта тема в дальнейшем упростит нахождение свойств функции и построение графиков функций.

Задача урока: научиться пользоваться алгоритмом исследования функции.

ӏӏӏ  Актуализация опорных знаний учащихся.

 (Фронтальный опрос  учащихся).

 Вопросы:

  1.  Что называется функцией?

        Если каждому значению переменной Х из некоторого множества D соответствует        единственное значение переменной У, то такое соответствие называется функцией. При этом Х называют независимой переменной, или аргументом, а У  -зависимой переменой, или функцией.

  1.  Что называется областью определения и областью значения функции?

        Множество всех значений, которые может принимать аргумент, называют областью определения данной функции и обозначают D. Множество значений, которые может принимать функция, называют областью значений и обозначают буквой Е.

  1.  Какая функция называется чётной (нечётной)?

       Функция называется чётной (нечётной), если область её определения симметрична относительно числа  0 и для каждого значения Х из области определения  f(-x)=f(x), (f(-x)=-f(x) ).

  1.  Какие точки называются критическими?

        Внутренние точки области определения, в которых производная равна нулю или не существует, называют – критическими точками функции.

  1.  Дать определение, на каком промежутке функция возрастает, убывает, постоянная.

        Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке   возрастает. Если производная функции в каждой точке некоторого промежутка отрицательная, то функция на этом промежутке убывает. Если производная функции в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.

  1.  Как можно определить промежутки возрастания и убывания функции  f(x)?

        ӏ способ: нужно решить неравенства f(x)>0 и f(x)<0.

        ӏӏ способ: найти все критические точки функции, разбить ими область определения функции на промежутки, а потом исследовать, на каких из них функция возрастает, а на каких убывает.

  1.  Что называется точкой минимума (максимума) функции?

       Точка х0 называется точкой минимума функции f(x), если для всех х (х≠х0) из некоторой окрестности точки х0 выполняется неравенство f(x0)<f(x) (f(x0)>f(x)).

  1.  Как, одним словом назвать точки максимума и минимума функции?

       Точки экстремума.

  1.  Как определить точки экстремума?

        Точка х0, при переходе через которую в направлении роста аргумента производная меняет знак с «+» на «-» является точкой максимума, а точка при переходе через которую производная меняет знак с «-» ни «+»-точкой минимума.

ӏv  Восприятие и первичное осознание учащимися нового материала.

   Итак, теперь переходим к изучению новой темы.

   Исследовать функцию – это значит установить её свойства: указать D(f), E(f), промежутки возрастания и убывания, промежутки на которых функция принимает положительные значения, на которых принимает отрицательные, выяснить, не является ли данная функция чётной или нечётной и т.д.

   На слайде представлен график функции

  1.  D(f)=(-∞;+∞)
  2.  Функция ни чётная и ни нечётная
  3.  Нули функции: (-2;0) и (2;0)- с осью ОХ, (0;-8)-с осью ОУ
  4.  Функция возрастает на (-∞;-2] и [1;+∞), и убывает на [-2;1]
  5.  Точки экстремума Xmax =-2, Xmin=1. Экстремумы функции Ymax=0, Ymin=9,5

Учитель продолжает объяснять новую тему: в данном случае, если нам известен график функции, то перечислить все свойства этой функции не составит труда.

Решим обратную задачу: по известному аналитическому заданию функции перечислим все её свойства.

Пусть функция задана в виде y=f(x), тогда необходимо выполнить исследование функции по следующей схеме (схема перед глазами учащихся на слайде презентации):

  1.  Найти область определения функции
  2.  Исследовать функцию на чётность, нечётность и периодичность
  3.  Найти нули функции (точки пересечения графика функции с осями координат)
  4.  Исследовать функцию на монотонность (найти промежутки возрастания и убывания функции)
  5.  Найти точки экстремума и экстремальные значения функции
  6.  Найти дополнительные точки (если нужно)
  7.  Построить график функции

Учитель на доске показывает образец  выполнения задания. (Учащиеся активно берут участие в исследовании функции и записывают решение в тетради).

Исследовать функцию и построить её график  f(x)=x3-3x2+2

  1.  D(f)=(-∞:+∞)
  2.  f(-x)=(-x)3-3(-x)2+2=-x3-3x2+2            f(-x)≠f(x);

                                                              f(-x)≠-f(x)           функция ни чётная и ни нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-3x2+2=0;

                                                        х32-2х2+2=0;

                                                       (х32)-2(х2-1)=0;

                                                        х2(х-1)-2(х-1)(х+1)=0;

                                                        (х-1)(х2-2х-2)=0;

                                                        х-1=0 или х2-2х-2=0;

                                                        х1=1           D=(-2)2-4*1*(-2)=4+8=12;

                                                         х2= =1+,     х3= =1-;

             А(1;0), В(1+;0), С(1-;0).

            б) с осью ОУ: х=0               f(х)=03-2*02+2=2            D(0;2)

     4.    Монотонность функции

            f(x)=3х2-6х;

            f(x)=0              3х2-6х=0;

                                     3х(х-2)=0;

                                     3х=0  или х-2=0;

                                     х1=0;   х2=2

х

(-∞;0)

0

(0;2)

2

(2;+∞)

f(x)

+

0

-

0

+

f(х)

2

-2

max

min

           f(-1)=3*(-1)2-6*(-1)=3+6=9, 9>0

           f(1)=3*12-6*1=3-6=-3, -3<0

           f(3)=3*32-6*3=27-18=9, 9>0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=0            ymax=03-3*02+2=2           E(0;2)

xmin=2            ymin=23-3*22+2=8-12+2=-2          F(2;-2)

 v  Первичное применение приобретённых знаний

Ученики заранее поделены на пять групп, каждая из которых получает карточку с заданием. В каждой группе назначается ответственный за выполнение задания и ходом его решения. Как только в группе будет найден ответ на первый пункт схемы исследования своей функции, сразу один из учеников выходит к доске и записывает его  и так далее до конца (в ходе выполнения задания все учащиеся группы выйдут к доске минимум один раз). Каждой группе выдан ватман и маркер, на котором ученики строят график своей функции с целью экономии времени и места на доске, так как одновременно все пять групп  записывают исследование своей функции на заранее разделенной на пять частей доске.

 Задание группы №1

Исследовать функцию и построить её график f(x)=x3-2х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=(-x)3-2(-x)2=-x3-2x2 =-(х3+2х2)                  f(-x)≠f(x);

                                                                              f(-x)≠-f(x)           функция ни чётная и ни нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-2x2=0;

                                                        х2(х-2)=0;

                                                        х2=0  или  х-2=0;

                                                        х1=0, Х2=2            А(0;0), В(2;0)

            б) с осью ОУ: х=0               f(х)=03-2*02=0             А(0;0)

      4. Монотонность функции

            f(x)=3х2-4х;

            f(x)=0              3х2-4х=0;

                                 х(3х-4)=0;

                                 х1=0,  3х-4=0

                                            х2=1

х

(-∞;0)

0

(0;1)

1

(1;+∞)

f(x)

+

0

-

0

+

f(х)

0

-1

max

min

           f(-1)=3*(-1)2-4*(-1)=3+4=7, 7>0

           f(1)=3*12-4*1=3-4=-1, -1<0

           f(2)=3*22-4*2=12-8=4, 4>0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=0            ymax=03-2*02=0           С(0;0)

xmin=            ymin=(3-2*()2=8-12+2=-  =-1                 D(2;-2)

Задание группы №2

Исследовать функцию и построить её график f(x)=3x-x3

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=3(-х)-(-x)3=-3х-x3 =-(3х-х3)                f(-x)=-f(x)             функция нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           3х-x3=0,

                                                       х(3-х2)=0,

                                                       х1=0, 3-х2=0,

                                                   х2=3,

                                                    х2=, х3=-                А(0;0), В(,0), С(-,0)

               б) с осью ОУ: х=0               f(х)=3*0-03 =0             А(0;0)

      4. Монотонность функции

            f(x)=3-3х2,

            f(x)=0              3-3х2=0,

                                      3(1-х2)=0,

                        х2=1,

                        х1=1, х2=-1

х

(-∞;-1)

-1

(-1;1)

1

(1;+∞)

f(x)

-

0

+

0

-

f(х)

-2

2

min

max

           f(-2)=3-3*(-2)2=3-12=-9, -9<0

           f(0)=3-3*02=3, 3>0

           f(2)=3-3*22=3-12=-9, -9<0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=1            ymax=03-2*02=0           D(1;2)

xmin=-1           ymin=3*1-13=3-1=2                 E(-1;-2)

Задание группы №3

Исследовать функцию и построить её график f(x)=x3-6x

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=(-x)3-6(-x)=-x3+6x =-(х3-6x)                f(-x)=-f(x)             функция нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-6x=0,

                                                       х(х2-6)=0, 

                                                       х1=0, х2-6=0,

                                                                 х2=, х3=-               А(0;0), В(,0), С(-,0)

             б) с осью ОУ: х=0               f(х)=03-6*0 =0             А(0;0)

      4. Монотонность функции

            f(x)=3х2-6,

            f(x)=0              3х2-6=0,

                                      3(х2-2)=0,

                        х2=2,

                        х1=, х2=-

х

(-∞;-)

(-;)

(;+∞)

f(x)

+

0

-

0

+

f(х)

4

-4

max

min

           f(-2)=3*(-2)2-6=12-6=6, 6>0

           f(0)=3*02-6=-6, -6<0

           f(2)=3*22-6=12-6=6, 6>0

  1.    Точки экстремума. Экстремальные значения функции.

xmax=-              ymax=(-3-6*( - )=-2 +6 =4              D(-;4)

xmin=               ymin=3-6=2-6=-4                 E(;-4)

Задание группы №4

Исследовать функцию и построить её график f(x)=-2х4+2х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=-2(-х)4+2(-х)2=-2х4+2х2                f(-x)=f(x)             функция чётная

  1.  Нули функции:

             а) с осью ОХ: у=0          -2х4+2х2=0,

                                                       -2х22-1)=0, 

                                                        х1=0, х2-1=0,

                                                                 х2=1, х3=-1               А(0;0), В(1;0), С(-1;0)

             б) с осью ОУ: х=0               f(х)=-2*04+2*02=0                 А(0;0)

      4. Монотонность функции

            f(x)=-8х3+4х,

            f(x)=0              -8х3+4х =0,

                                      -4х(2х2-1)=0,

                                      -4х=0 или  2х2-1=0

                         х1=0,    х2=,

                                      х2=,  х3=-

х

(-∞;-)

(-;0)

(0;

(

f(x)

+

0

-

0

+

0

-

f(х)

0

max

min

max

           f(-1)=-8*(-1)3+4*(-1)=8-4=4,  4  >0,

           f(-)=-8*(-)3+4*(-)=1-2=-1, -1<0,

           f()=-8*()3+4*=-1+2=1, 1>0,

           f(1)=-8*13+4*1=-8*4=-4, -4<0,

  1.    Точки экстремума. Экстремальные значения функции.

xmax=-              ymax=-2*(- )4+2*(- )2=-2*+2*  =- +1=                    D(-;)

xmin=0               ymin=-2*04+2*02=0             А(0;0)

xmax=              ymax=-2*( )4+2*( )2=-2*+2*  =- +1=                    Е(;)

Задание группы №5

Исследовать функцию и построить её график f(x)=3х4-6х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=3(-х)4-6(-х)2=3х4-6х2                f(-x)=f(x)             функция чётная

  1.  Нули функции:

             а) с осью ОХ: у=0           3х4-6х2=0,

                                                        3х22-2)=0, 

                                                        х1=0, х2-2=0,

                                                                 х2=, х3=-                   А(0;0), В(;0), С(-;0)

             б) с осью ОУ: х=0               f(х)=3*04-6*02=0                 А(0;0)

      4. Монотонность функции

            f(x)=12х3-12х,

            f(x)=0               12х3-12х  =0,

                                      12х(х2-1)=0,

                                      12х=0 или  х2-1=0

                         х1=0,    х2=1,

                                      х2=1, х3=-1

х

(-∞;-1)

-1

(-1; 0)

(0;1

1

(1

f(x)

-

0

+

0

-

0

+

f(х)

-3

0

-3

min

max

min

           f(-2)=12*(-2)3-12*(-2)=12*(-8)+24=-96+24=-72,  -72<0,

           f(-)=12*(-)3-12*(-)=-+6=-1,5+6=4,5    4,5>0,

           f()=12*()3-12*=-6=1,5-6=-4,5    -4,5<0,

           f(2)=12*23-12*2=12*8-24=96-24=72, 72>0,

  1.    Точки экстремума. Экстремальные значения функции.

xmin=-1               ymin=3*(-1)4-6*(-1)2=3-6=-3                    D(-1;-3)

xmax=0                ymax=3*04-6*02=0                  А(0;0)

xmin=1               ymin=3*14-6*12=3-6=-3              Е(1;-3)

vӏ Подведение итогов урока.

 Учитель выставляет оценки за роботу на уроке

  Учащиеся повторяют алгоритм исследования функции.

vӏӏ Сообщение домашнего задания.



 

А также другие работы, которые могут Вас заинтересовать

35941. Нормирования в области охраны окружающей среды 54 KB
  Нормирования в области охраны окружающей среды. Основы нормирования в области охраны окружающей среды. Нормирование в области охраны окружающей среды осуществляется в целях государственного регулирования воздействия хозяйственной и иной деятельности на окружающую среду гарантирующего сохранение благоприятной окружающей среды и обеспечение экологической безопасности. Нормирование в области охраны окружающей среды заключается в установлении нормативов качества окружающей среды нормативов допустимого воздействия на окружающую среду при...
35942. Виды неразрушающего контроля 53 KB
  Виды неразрушающего контроля Типовая программа диагностики предусматривает использование различных методов контроля прежде всего методов неразрушающего контроля. Классификация видов НК в соответствии с ГОСТ 1835379 основана на физических процессах взаимодействия поля или вещества с объектом контроля. Каждый из видов НК подразделяют на методы отличающиеся следующими признаками: характером взаимодействия поля или вещества с объектом определяющим соответствующие изменения поля или состояния вещества; параметром поля или вещества...
35943. PR-информация 53.5 KB
  PR информация PRинформация как разновидность социальной информации Характеристики PRинформации Связи с общественностью оперируют социальной информацией – одним из наиболее сложных и многообразных типов информации связанных с обществом и человеком. Таким образом источник социальной информации – человеческая деятельность. Основными признаками PRинформации отличающими её от других видов социальной информации являются признаки инициированности оптимизированности селективности.
35946. Постмодернизм как теоретико-литературная проблема. Постмодернизм в современном литературном процессе 51.5 KB
  Естественно в этой связи самой важной чертой постмодернистской поэтики оказывается так называемая интертекстуальность. Интертекст – особое пространство схождений бесконечного множества цитатных осколков разных культурных эпох. В таком качестве интертекстуальность не может являться чертой мировосприятия художника и никак не характеризует его собственный мир. Интертекстуальность в постмодернизме – бытийная характеристика эстетически познаваемой реальности.
35947. Основное общее образование – вторая ступень общего образования 51 KB
  Федеральный компонент государственного стандарта общего образования направлен на приведение содержания образования в соответствие с возрастными особенностями подросткового периода когда ребенок устремлен к реальной практической деятельности познанию мира самопознанию и самоопределению. Федеральный компонент направлен на реализацию следующих основных целей: формирование целостного представления о мире основанного на приобретенных знаниях умениях навыках и способах деятельности; приобретение опыта разнообразной деятельности индивидуальной...
35949. Синтетическая теория эволюции 50.5 KB
  Она представляет собой учение об эволюции органического мира разработанное на основе данных современной генетики экологии и классического дарвинизма. В разработку синтетической теории эволюции внесли вклад многие ученые. Основные положения синтетической теории эволюции в общих чертах можно выразить следующим образом: Материалом для эволюции служат наследственные изменения мутации как правило генные и их комбинации.