57783

Применение производной к исследованию функции

Конспект урока

Педагогика и дидактика

Цели урока: сформировать навыки исследования и построения графиков функции с помощью производной. Учитель записывает на доске а ученики в тетради: Применение производной при исследовании функции.

Русский

2014-04-15

1.89 MB

5 чел.

Коммунальное учреждение «ЛУГАНСКАЯ СРЕДНЕОБРАЗОВАТЕЛЬНАЯ

ШКОЛА I-III СТЕПЕНЕЙ №18»

Выполнил работу

учитель математики

Мельник М.С.


Тема урока:
Применение производной к исследованию функции

Цели урока: сформировать навыки исследования и построения графиков функции с помощью  производной. Развивать алгоритмическое мышление, память. Воспитывать у учащихся требовательность к себе, критическое отношение к результатам своей работы, настойчивость в достижении цели.

Тип урока: урок усвоения новых знаний.

Методы обучения: объяснительно-иллюстративный, проблемный, эвристический.

Форма обучения: наглядная, практическая, словесная

Оборудование: мультимедийный проектор, презентация, карточки с заданием для групп, ватманы и маркеры для групп.

Структура урока

  1.  Организационный момент
  2.  Сообщение темы, цели и задач урока
  3.  Актуализация опорных знаний учащихся
  4.  Первичное восприятие и осознание учащимися нового материала
  5.  Первичное применение приобретённых знаний
  6.  Подведение итогов урока
  7.  Сообщение домашнего задания

Ход урока

 ӏ  Организационный момент:

   -приветствие учащихся;

   - отметить отсутствующих на уроке;

   - записать дату урока, классная работа в тетради.

ӏӏ Сообщение темы, цели и задач урока.

 Учитель записывает на доске, а ученики в тетради: Применение производной при исследовании функции.

Цель нашего урока: научиться исследовать функцию и строить её график с использованием производной. Эта тема в дальнейшем упростит нахождение свойств функции и построение графиков функций.

Задача урока: научиться пользоваться алгоритмом исследования функции.

ӏӏӏ  Актуализация опорных знаний учащихся.

 (Фронтальный опрос  учащихся).

 Вопросы:

  1.  Что называется функцией?

        Если каждому значению переменной Х из некоторого множества D соответствует        единственное значение переменной У, то такое соответствие называется функцией. При этом Х называют независимой переменной, или аргументом, а У  -зависимой переменой, или функцией.

  1.  Что называется областью определения и областью значения функции?

        Множество всех значений, которые может принимать аргумент, называют областью определения данной функции и обозначают D. Множество значений, которые может принимать функция, называют областью значений и обозначают буквой Е.

  1.  Какая функция называется чётной (нечётной)?

       Функция называется чётной (нечётной), если область её определения симметрична относительно числа  0 и для каждого значения Х из области определения  f(-x)=f(x), (f(-x)=-f(x) ).

  1.  Какие точки называются критическими?

        Внутренние точки области определения, в которых производная равна нулю или не существует, называют – критическими точками функции.

  1.  Дать определение, на каком промежутке функция возрастает, убывает, постоянная.

        Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке   возрастает. Если производная функции в каждой точке некоторого промежутка отрицательная, то функция на этом промежутке убывает. Если производная функции в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.

  1.  Как можно определить промежутки возрастания и убывания функции  f(x)?

        ӏ способ: нужно решить неравенства f(x)>0 и f(x)<0.

        ӏӏ способ: найти все критические точки функции, разбить ими область определения функции на промежутки, а потом исследовать, на каких из них функция возрастает, а на каких убывает.

  1.  Что называется точкой минимума (максимума) функции?

       Точка х0 называется точкой минимума функции f(x), если для всех х (х≠х0) из некоторой окрестности точки х0 выполняется неравенство f(x0)<f(x) (f(x0)>f(x)).

  1.  Как, одним словом назвать точки максимума и минимума функции?

       Точки экстремума.

  1.  Как определить точки экстремума?

        Точка х0, при переходе через которую в направлении роста аргумента производная меняет знак с «+» на «-» является точкой максимума, а точка при переходе через которую производная меняет знак с «-» ни «+»-точкой минимума.

ӏv  Восприятие и первичное осознание учащимися нового материала.

   Итак, теперь переходим к изучению новой темы.

   Исследовать функцию – это значит установить её свойства: указать D(f), E(f), промежутки возрастания и убывания, промежутки на которых функция принимает положительные значения, на которых принимает отрицательные, выяснить, не является ли данная функция чётной или нечётной и т.д.

   На слайде представлен график функции

  1.  D(f)=(-∞;+∞)
  2.  Функция ни чётная и ни нечётная
  3.  Нули функции: (-2;0) и (2;0)- с осью ОХ, (0;-8)-с осью ОУ
  4.  Функция возрастает на (-∞;-2] и [1;+∞), и убывает на [-2;1]
  5.  Точки экстремума Xmax =-2, Xmin=1. Экстремумы функции Ymax=0, Ymin=9,5

Учитель продолжает объяснять новую тему: в данном случае, если нам известен график функции, то перечислить все свойства этой функции не составит труда.

Решим обратную задачу: по известному аналитическому заданию функции перечислим все её свойства.

Пусть функция задана в виде y=f(x), тогда необходимо выполнить исследование функции по следующей схеме (схема перед глазами учащихся на слайде презентации):

  1.  Найти область определения функции
  2.  Исследовать функцию на чётность, нечётность и периодичность
  3.  Найти нули функции (точки пересечения графика функции с осями координат)
  4.  Исследовать функцию на монотонность (найти промежутки возрастания и убывания функции)
  5.  Найти точки экстремума и экстремальные значения функции
  6.  Найти дополнительные точки (если нужно)
  7.  Построить график функции

Учитель на доске показывает образец  выполнения задания. (Учащиеся активно берут участие в исследовании функции и записывают решение в тетради).

Исследовать функцию и построить её график  f(x)=x3-3x2+2

  1.  D(f)=(-∞:+∞)
  2.  f(-x)=(-x)3-3(-x)2+2=-x3-3x2+2            f(-x)≠f(x);

                                                              f(-x)≠-f(x)           функция ни чётная и ни нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-3x2+2=0;

                                                        х32-2х2+2=0;

                                                       (х32)-2(х2-1)=0;

                                                        х2(х-1)-2(х-1)(х+1)=0;

                                                        (х-1)(х2-2х-2)=0;

                                                        х-1=0 или х2-2х-2=0;

                                                        х1=1           D=(-2)2-4*1*(-2)=4+8=12;

                                                         х2= =1+,     х3= =1-;

             А(1;0), В(1+;0), С(1-;0).

            б) с осью ОУ: х=0               f(х)=03-2*02+2=2            D(0;2)

     4.    Монотонность функции

            f(x)=3х2-6х;

            f(x)=0              3х2-6х=0;

                                     3х(х-2)=0;

                                     3х=0  или х-2=0;

                                     х1=0;   х2=2

х

(-∞;0)

0

(0;2)

2

(2;+∞)

f(x)

+

0

-

0

+

f(х)

2

-2

max

min

           f(-1)=3*(-1)2-6*(-1)=3+6=9, 9>0

           f(1)=3*12-6*1=3-6=-3, -3<0

           f(3)=3*32-6*3=27-18=9, 9>0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=0            ymax=03-3*02+2=2           E(0;2)

xmin=2            ymin=23-3*22+2=8-12+2=-2          F(2;-2)

 v  Первичное применение приобретённых знаний

Ученики заранее поделены на пять групп, каждая из которых получает карточку с заданием. В каждой группе назначается ответственный за выполнение задания и ходом его решения. Как только в группе будет найден ответ на первый пункт схемы исследования своей функции, сразу один из учеников выходит к доске и записывает его  и так далее до конца (в ходе выполнения задания все учащиеся группы выйдут к доске минимум один раз). Каждой группе выдан ватман и маркер, на котором ученики строят график своей функции с целью экономии времени и места на доске, так как одновременно все пять групп  записывают исследование своей функции на заранее разделенной на пять частей доске.

 Задание группы №1

Исследовать функцию и построить её график f(x)=x3-2х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=(-x)3-2(-x)2=-x3-2x2 =-(х3+2х2)                  f(-x)≠f(x);

                                                                              f(-x)≠-f(x)           функция ни чётная и ни нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-2x2=0;

                                                        х2(х-2)=0;

                                                        х2=0  или  х-2=0;

                                                        х1=0, Х2=2            А(0;0), В(2;0)

            б) с осью ОУ: х=0               f(х)=03-2*02=0             А(0;0)

      4. Монотонность функции

            f(x)=3х2-4х;

            f(x)=0              3х2-4х=0;

                                 х(3х-4)=0;

                                 х1=0,  3х-4=0

                                            х2=1

х

(-∞;0)

0

(0;1)

1

(1;+∞)

f(x)

+

0

-

0

+

f(х)

0

-1

max

min

           f(-1)=3*(-1)2-4*(-1)=3+4=7, 7>0

           f(1)=3*12-4*1=3-4=-1, -1<0

           f(2)=3*22-4*2=12-8=4, 4>0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=0            ymax=03-2*02=0           С(0;0)

xmin=            ymin=(3-2*()2=8-12+2=-  =-1                 D(2;-2)

Задание группы №2

Исследовать функцию и построить её график f(x)=3x-x3

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=3(-х)-(-x)3=-3х-x3 =-(3х-х3)                f(-x)=-f(x)             функция нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           3х-x3=0,

                                                       х(3-х2)=0,

                                                       х1=0, 3-х2=0,

                                                   х2=3,

                                                    х2=, х3=-                А(0;0), В(,0), С(-,0)

               б) с осью ОУ: х=0               f(х)=3*0-03 =0             А(0;0)

      4. Монотонность функции

            f(x)=3-3х2,

            f(x)=0              3-3х2=0,

                                      3(1-х2)=0,

                        х2=1,

                        х1=1, х2=-1

х

(-∞;-1)

-1

(-1;1)

1

(1;+∞)

f(x)

-

0

+

0

-

f(х)

-2

2

min

max

           f(-2)=3-3*(-2)2=3-12=-9, -9<0

           f(0)=3-3*02=3, 3>0

           f(2)=3-3*22=3-12=-9, -9<0

  1.  Точки экстремума. Экстремальные значения функции.

xmax=1            ymax=03-2*02=0           D(1;2)

xmin=-1           ymin=3*1-13=3-1=2                 E(-1;-2)

Задание группы №3

Исследовать функцию и построить её график f(x)=x3-6x

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=(-x)3-6(-x)=-x3+6x =-(х3-6x)                f(-x)=-f(x)             функция нечётная

  1.  Нули функции:

             а) с осью ОХ: у=0           x3-6x=0,

                                                       х(х2-6)=0, 

                                                       х1=0, х2-6=0,

                                                                 х2=, х3=-               А(0;0), В(,0), С(-,0)

             б) с осью ОУ: х=0               f(х)=03-6*0 =0             А(0;0)

      4. Монотонность функции

            f(x)=3х2-6,

            f(x)=0              3х2-6=0,

                                      3(х2-2)=0,

                        х2=2,

                        х1=, х2=-

х

(-∞;-)

(-;)

(;+∞)

f(x)

+

0

-

0

+

f(х)

4

-4

max

min

           f(-2)=3*(-2)2-6=12-6=6, 6>0

           f(0)=3*02-6=-6, -6<0

           f(2)=3*22-6=12-6=6, 6>0

  1.    Точки экстремума. Экстремальные значения функции.

xmax=-              ymax=(-3-6*( - )=-2 +6 =4              D(-;4)

xmin=               ymin=3-6=2-6=-4                 E(;-4)

Задание группы №4

Исследовать функцию и построить её график f(x)=-2х4+2х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=-2(-х)4+2(-х)2=-2х4+2х2                f(-x)=f(x)             функция чётная

  1.  Нули функции:

             а) с осью ОХ: у=0          -2х4+2х2=0,

                                                       -2х22-1)=0, 

                                                        х1=0, х2-1=0,

                                                                 х2=1, х3=-1               А(0;0), В(1;0), С(-1;0)

             б) с осью ОУ: х=0               f(х)=-2*04+2*02=0                 А(0;0)

      4. Монотонность функции

            f(x)=-8х3+4х,

            f(x)=0              -8х3+4х =0,

                                      -4х(2х2-1)=0,

                                      -4х=0 или  2х2-1=0

                         х1=0,    х2=,

                                      х2=,  х3=-

х

(-∞;-)

(-;0)

(0;

(

f(x)

+

0

-

0

+

0

-

f(х)

0

max

min

max

           f(-1)=-8*(-1)3+4*(-1)=8-4=4,  4  >0,

           f(-)=-8*(-)3+4*(-)=1-2=-1, -1<0,

           f()=-8*()3+4*=-1+2=1, 1>0,

           f(1)=-8*13+4*1=-8*4=-4, -4<0,

  1.    Точки экстремума. Экстремальные значения функции.

xmax=-              ymax=-2*(- )4+2*(- )2=-2*+2*  =- +1=                    D(-;)

xmin=0               ymin=-2*04+2*02=0             А(0;0)

xmax=              ymax=-2*( )4+2*( )2=-2*+2*  =- +1=                    Е(;)

Задание группы №5

Исследовать функцию и построить её график f(x)=3х4-6х2

  1.  D(f)=(-∞:+∞)
  2.  

f(-x)=3(-х)4-6(-х)2=3х4-6х2                f(-x)=f(x)             функция чётная

  1.  Нули функции:

             а) с осью ОХ: у=0           3х4-6х2=0,

                                                        3х22-2)=0, 

                                                        х1=0, х2-2=0,

                                                                 х2=, х3=-                   А(0;0), В(;0), С(-;0)

             б) с осью ОУ: х=0               f(х)=3*04-6*02=0                 А(0;0)

      4. Монотонность функции

            f(x)=12х3-12х,

            f(x)=0               12х3-12х  =0,

                                      12х(х2-1)=0,

                                      12х=0 или  х2-1=0

                         х1=0,    х2=1,

                                      х2=1, х3=-1

х

(-∞;-1)

-1

(-1; 0)

(0;1

1

(1

f(x)

-

0

+

0

-

0

+

f(х)

-3

0

-3

min

max

min

           f(-2)=12*(-2)3-12*(-2)=12*(-8)+24=-96+24=-72,  -72<0,

           f(-)=12*(-)3-12*(-)=-+6=-1,5+6=4,5    4,5>0,

           f()=12*()3-12*=-6=1,5-6=-4,5    -4,5<0,

           f(2)=12*23-12*2=12*8-24=96-24=72, 72>0,

  1.    Точки экстремума. Экстремальные значения функции.

xmin=-1               ymin=3*(-1)4-6*(-1)2=3-6=-3                    D(-1;-3)

xmax=0                ymax=3*04-6*02=0                  А(0;0)

xmin=1               ymin=3*14-6*12=3-6=-3              Е(1;-3)

vӏ Подведение итогов урока.

 Учитель выставляет оценки за роботу на уроке

  Учащиеся повторяют алгоритм исследования функции.

vӏӏ Сообщение домашнего задания.



 

А также другие работы, которые могут Вас заинтересовать

41279. Сетевые модели (N-схемы). Основные соотношения. Возможные приложения N-схем 176.5 KB
  Сетевые модели Nсхемы. Сетевые модели Nсхемы Основные соотношения Для формального описания структуры и взаимодействия параллельных систем и процессов а также анализа причинноследственных связей в сложных системах используются сети Петри англ. Граф Nсхемы имеет два типа узлов: позиции и переходы изображаемые 0 и 1 соответственно. Граф Nсхемы является мультиграфом так как он допускает существование кратных дуг от одной вершины к другой.
41281. ФОРМАЛИЗАЦИЯ И АЛГОРИТМИЗАЦИЯ ПРОЦЕССОВ ФУНКЦИОНИРОВАНИЯ СИСТЕМ 163 KB
  Методика разработки и машинной реализации моделей систем Сущность машинного моделирования системы состоит в проведении на вычислительной машине эксперимента с моделью которая представляет собой некоторый программный комплекс описывающий формально и или алгоритмически поведение элементов системы в процессе ее функционирования т. Требования пользователя к модели Основные требования предъявляемые к модели процесса функционирования системы: 1. Полнота модели должна предоставлять пользователю возможность получения необходимого набора оценок...
41283. ОСНОВЫ АЛГЕБРЫ ЛОГИКИ 56.5 KB
  Алгебра логики или алгебра высказываний разработана Джорджем Булем в 1854 г. Отсюда второе название "Булева алгебра". Логическая функция – закон соответствия между логическими переменными (функция дискретная). Логическая переменная либо есть, либо ее нет. Логическая функция может иметь произвольное число логических переменных. Область определения насчитывает значений, где n – количество переменных.
41284. Політичне і соціально-економічне становище українських земель у складі Австро-Угорщини 48.5 KB
  У Галичині тривав початий ще значно раніше процес полонізації на Закарпатті мадяризації на Буковині румунізації. Перші дві парові машини в Галичині зявилися лише в 1843 р. Велике феодальне землеволодіння було домінуючим на Закарпатті та в Галичині. Кількість сільської буржуазії становила 11 в Галичині та 8 на Буковині.
41285. Політичне і соціально-економічне становище українських земель у складі Російської імперії 85 KB
  в Україні сталося 104 масових антиурядових виступи кріпаків. Найзначнішими на Правобережній Україні були виступи селян у 24 селах і містечках Черкаського повіту на Київщині в 1803 р. Однак це не зупинило антикріпосницький рух в Україні. Особливо широкого розмаху він набрав на Правобережній Україні у звязку з проведенням інвентарної реформи 18471848 рр.
41286. Суспільно-політичний розвиток західноукраїнських земель 16.42 KB
  Вона маніфестувала нескореність духу українського народу що мало неабияке значення у справі пробудження національної самосвідомості мас. Яхимовичем взяла на себе роль представника інтересів українського населення Галичини перед центральним урядом і виконувала її протягом 18481851 рр. Руські ради стали організаторами боротьби українського населення за відокремлення Східної Галичини заселеної переважно українцями від західної польської та надання їй національнотериторіальної автономії за запровадження навчання в усіх освітніх закладах...
41287. Три поділи Польщі 47 KB
  Відтоді почався австрійський період історії Львова та краю тривав він до 1 листопада 1918 року. Відкрите втручання Росії в польські справи підтримка православних дисидентів спонукали шляхту утворити 29 лютого 1768 року в містечку Бар на Поділлі нову конфедерацію що спиралася на підтримку Австрії та Франції. Протягом липнясерпня 1768 року було розгромлено більшість гайдамацьких загонів. Але попри значну міжнародну підтримку 1772 року головні сили шляхти було розбито російськими військами під командуванням Суворова.