578

Расчёт термодинамических циклов

Курсовая

Физика

Исследование термодинамического цикла ДВС. Определение параметров рабочего тела в характерных точках цикла. Определение количества тепла участвующего в термодинамическом цикле. Определение параметров рабочего тела в характерных точках. Определение КПД паросиловой установки с учётом и без учёта работы насоса.

Русский

2013-01-06

3.66 MB

640 чел.

ЗАДАНИЕ

                       на курсовую работу по технической термодинамике

“Расчёт термодинамических циклов”

Студент:Винокуров Богдан Дмитриевич   ГруппаТП-10

Срок выполнения с ___________ по _____________2012 г.

Дата защиты__________ 2012 г.

Руководитель работы: Лебедев Александр Николаевич

Вариант№5

Задание:

  1.  Определить параметры рабочего тела в точках цикла ДВС (p,v,t).
  2.  Определить изменение энтропии в процессах.
  3.  Определить теплоту и работу во всех процессах.
  4.  Определить КПД цикла.
  5.   Построить графики цикла в pv и Ts координатах.
  6.   Расчетным и графическим путем показать влияние парметров цикла на работу цикла и КПД.
  7.  Определить параметры рабочего тела в характерных точках цикла Ренкина с перегревом пара.
  8.  Определить величины теоретической работы насоса и турбины.
  9.  Определить коэффициент полезного действия ПСУ с учетом работы насоса и без нее, проанализировать величину погрешности.


Исходные данные:

Давление -

Степень сжатия - =9,8

Степень повышения давления - λ = 2,1

Степень предварительного сжатия - ρ = 2,4

Газ – Аргон (Ar)

Масса одного кмоля газа  

Показатель адиабаты  - к =1,67

Давление в  конденсаторе -

Давление перегретого пара -

Температура перегретого пара -

Подпись студента _____________

Подпись руководителя работы ___________________


РЕФЕРАТ

Курсовая работа: 28страница , 4 диаграммы, 3  источника

Объектом исследования является термодинамический цикл ДВС и цикл Ренкина с перегревом пара.

В данной курсовой работе был произведен:

1.Расчет параметров рабочего тела в точках цикла Тринклера двигателя внутреннего сгорания, изменения энтальпии в процессах цикла, теплоты и работы во всех процессах, КПД цикла, влияние парметров цикла на работу цикла и КПД

2.Расчет параметров рабочего тела в характерных точках цикла Ренкина с            перегревом пара, теоретической работы насоса и турбины, КПД паросиловой установки с учетом работы насоса и без нее.

ТЕМПЕРАТУРА, ДАВЛЕНИЕ, ЭНТРОПИЯ, ОБЪЁМ, РАБОТА, ТЕПЛОТА, КПД, ГАЗ, ВОДА, ПЕРЕГРЕТЫЙ ВОДЯНОЙ ПАР

Винокуров Б.Д.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 6

ЧАСТЬ 1.Исследование термодинамического цикла ДВС 7

І.Определениетермодинамических характеристик рабочего тела 8

II.Определение параметров рабочего тела в характерных точках цикла 8

III.Определение количества тепла участвующего в термодинамическом цикле 13

IV.Определение работы цикла 13

V.Определение КПД цикла 14

VI.Построение графиков функции 15

ЧАСТЬ 2.РАСЧЁТ ЦИКЛА РЕНКИНА С ПЕРЕГРЕВОМ ПАРА 20

I.Определение параметров рабочего тела в характерных точках 21

II.Определение теоретической работы насоса и турбины 24

III.Определение КПД паросиловой установки с учётом и без учёта работы насоса 24

ВЫВОДЫ 26

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 27

 

ВВЕДЕНИЕ

Все тепловые машины (тепловые двигатели, теплосиловые установки, компрессоры, холодильные установки) работают по круговым процессам или циклам. Для термодинамического анализа работы таких машин важно знать условия, при которых осуществляется процесс преобразования теплоты в работу. Циклом называют круговой замкнутый процесс, совершающийся в тепловой машине, состояние цикла характеризуется начальным и конечным  значениями параметров.

В термодинамике циклы образуют из термодинамических процессов и графически изображают в системе координат, например, в системе PV или TS, где по оси абсцисс откладываются, в масштабе соответственно удельный объем и энтропия, а по оси ординат - абсолютное давление и температура.

Таким образом, термодинамический цикл, изображенный графически, представляет собой замкнутую фигуру, состоящую из ряда линий, каждая из которых отражает термодинамический процесс. Точки пересечения линий процессов называют характерными точками цикла. Характерная точка графически изображает конечное состояние газа одного процесса и начальное состояние следующего процесса. Циклы бывают обратимыми и не обратимыми.

В данной курсовой работе будем рассматривать циклы работы тепловых машин. Тепловой машиной называется устройство, преобразующее тепловую энергию в механическую работу (тепловой двигатель) или механическую работу в тепло (холодильник). Преобразование осуществляется за счёт изменения внутренней энергии рабочего тела — на практике обычно пара или газа. Основными элементами тепловой машины являются верхний и нижний источники тепла, а так же рабочее тело.

ЧАСТЬ 1.ИССЛЕДОВАНИЕ ТЕРМОДИНАМИЧЕСКОГО ЦИКЛА ДВС

В тепловых машинах в результате совершения круговых термо-динамических процессов (циклов) происходит преобразование тепловой энергии в механическую работу. Для получения непрерывно работающего теплового двигателя необходимо иметь два источника теплоты: с горячей температурой Т1 и холодной температурой Т2, рабочее тело, участвующее в процессе преобразования тепломеханической энергии.     

Совершенство термодинамических циклов оценивается термическим КПД – отношением полезно использованной теплоты в цикле к затрачиваемой в цикле теплоте. Для определения степени совершенства преобразования теплоты в механическую работу используется прямой обратимый цикл Карно, состоящий из двух изотерм и двух адиабат.

Исследование теоретических циклов позволяет установить ряд важных факторов, влияющих на работу теплового двигателя и наметить пути их совершенствования с целью повышения термического КПД.

В качестве преобразователей тепловой энергии в механическую работу широкое применение получили поршневые двигатели внутреннего сгорания, где преобразование теплоты в работу осуществляется по трем следующим циклам :

- со сгоранием топлива при постоянном объеме (v=const) –   цикл Отто;

- со сгоранием топлива при постоянном давлении (p=const) – цикл Дизеля;

- со смешанным сгоранием топлива при (частично при v=const и частично при p=const) – цикл Тринклера

Одним из основных недостатков, присущих поршневым двигателям внутреннего сгорания, является необходимость кривошипно-шатунного механизма и маховика и неизбежная неравномерность работы, обусловливающие невозможность сосредоточения большей мощности в одном агрегате. Это ограничивает сферу применения поршневых двигателей.

Расчёты:

І.Определение термодинамических характеристик рабочего тела

1.Определение характеристической газовой постоянной:

μ-масса 1 кмоля газа, численно равная молекулярной массе газа выраженной

2.Определение теплоёмкости:

- в процессе при постоянном объёме

где k – показатель адиабаты для ( Ar )

- в процессе при постоянном давлении

II.Определение параметров рабочего тела в характерных точках цикла

1.Определение параметров в точке 1 :

- удельный объём:

- энтропия:

2.Определение параметров в точке 2 :

Процесс 1-2 адиабатное сжатие рабочего тела

- давление:

где

- температура:

- удельный объём:

- энтропия:

Так как процесс является адиабатным, то

3.Определение параметров в точке 3 :

Процесс 2-3– изохорный подвод тепла, следовательно

- давление:

где λ – степень повышения давления ( по условию

- Температура:

 

- энтропия:

где

4.Определение параметров в точке 4 :

Процесс 3-4 – изобарный подвод тепла, следовательно

- удельный объём:

где ρ – степень предварительного расширения ( по условию

- температура :

- энтропия :

где

5.Определение параметров в точке 5 :

Процесс 4-5 – процесс адиабатного расширения рабочего тела,  

Процесс 5-1 – изохорный отвод тепла, следовательно

- давление:

- температура:

6.Проверка правильности расчёта :

Относительная погрешность не должна превышать 0,5 %

III.Определение количества тепла участвующего в термодинамическом цикле

1.Колличество подведенного тепла:

2.Колличество отведенного тепла:

3.Колличество полезного тепла цикла:

IV.Определение работы цикла

Проверка правильности расчёта :

(относительная погрешность не должна превышать 0,5 %)

V. Определение КПД цикла

1.По общей формуле:

2.Через параметры цикла:

Проверка правильности расчёта:

Величина относительной погрешности не должна превышать 0,5%

VI. Построение графиков функции

1.Построение в P V координатах:

Для более точного построения графиков функций необходимо найти промежуточные точки

- процесс 1-2

18686,951

- процесс 4-5

2.Построение в T-S координатах:

- процесс 2-3

- процесс 3-4

- процесс 5-1

VII. Построение графиков зависимости КПД и работы цикла от параметров цикла

Подберём несколько значений ε:

Подберём несколько значений ε для работы цикла:

ЧАСТЬ 2.РАСЧЁТ ЦИКЛА РЕНКИНА С ПЕРЕГРЕВОМ ПАРА

Цикл Ренкина - теоретический термодинамический цикл паровой машины, состоящий из четырех основный операций:

-1- испарения жидкости при высоком давлении;

-2- расширения пара;

-3- конденсации пара;

-4- увеличения давления жидкости до начального значения.

Пар большого давления и температуры подается в сопловые аппараты турбины, где происходит превращение потенциальной энергии пара в кинетическую энергию потока пара (скорость потока – сверхзвуковая). Кинетическая энергия сверхзвукового потока превращается на лопатках турбины в кинетическую энергию вращения колеса турбины и в работу производства электроэнергии.

На рис. 1 показана одна турбина, на самом деле турбина имеет несколько ступеней расширения пара.

После турбины пар направляется в конденсатор. Это обычный теплообменник, внутри труб проходит охлаждающая вода, снаружи – водяной пар, который конденсируется, вода становится жидкой.

Схема установки (рис.1)

Расчёты:

I.Определение параметров рабочего тела в характерных точках

1.Определение параметров в точке 1:

 

2.определение параметров в точке 2:

3.Определение параметров в точке 3:

4.Определение параметров в точке 4:

5.Определение параметров в точке 5:

По интерполяционной формуле определяем остальные параметры:

6.определение параметров в точке 6:

II. Определение теоретической работы насоса и турбины

1.Определение теоретической работы насоса:

2.Определение теоретической работы турбины:

III. Определение КПД паросиловой установки с учётом и без учёта работы насоса

1.Определение КПД ПСУ с учётом работы насоса:

2.Определение КПД ПСУ без учёта работы насоса:

3.Проверка правильности расчёта:

 

ВЫВОДЫ

В первой части данной курсовой работы был проведен расчёт двигателя внутреннего сгорания со смешанным подводом тепла (цикл Тринклера). По исходным данным  были найдены все параметры в характерных точках цикл, а затем по этим параметрам были определены теплота и работа цикла, а так же КПД. По расчётным данным были построены графические зависимости.

Во второй части курсовой работы был проведен расчёт паросиловой установки, работающей по циклу Ренкина с перегревом пара. По заданным параметрам рабочего тела по таблицам были найдены параметры в остальных точка. Полученная степень сухости меньше, чем 0,89 , что при использовании данного расчёта на практике может привести к износу установки. Для увеличения степени сухости следует увеличить температуру  

 

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

  1.  Конспект лекций по курсу “Техническая термодинамика ”
  2.  Ривкин С.Л., Александров А.А. “Теплофизические свойства воды и водяного пара”, Москва – 1980 – 425с.
  3.  М.П.Вукалович, Нвиков И.И. “Термодинамика”, Москва – 1972 – 671с.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЁЖИ И СПОРТА УКРАНЫ

ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

                                                    Кафедра «Промышленная теплоэнергетика»

КУРСОВАЯ РАБОТА

по курсу «Техническая термодинамика»

На тему «Расчёт термодинамических циклов»

                                                                             Выполнил:  ст.гр. ТП-10

                                                                             Винокуров Б.Д.

                                                                             Проверил:  Лебедев А.Н.

Донецк 2012


 

А также другие работы, которые могут Вас заинтересовать

42366. Разработка программного обеспечения управления технической системой 694.5 KB
  Необходимо разработать алгоритм и программу управления угловым движением спутника по углу тангажа в процессе поддержания нулевых угловых отклонений относительно заданного положения. Для обеспечения проверки правильности и отладки этих алгоритмов необходимо разработать имитационную математическую модель внешней среды. Алгоритм управления должен быть реализован в управляющей БЦВМ. Она эмулируется в ПК. В рамках этой эмуляции реализуется заданная дискретная во времени работа управляющего алгоритма. В рамках данной работы недостижима отладка на системной ЦВМ.
42367. Побудова лексичного аналізатора 370 KB
  Граматика створена під впливом мов Pascal та C , зокрема аналогічно першій програма починається з ключового слова program, для початку оголошення використовується слово var. Від мови С було перейнято дужки, що позначають початок і кінець програми, ключове слово main, конструкції умови, циклу та присвоєння.
42368. Побудова синтаксичного аналізатора 198.5 KB
  Синтаксичний аналізатор отримує послідовність лексем з лексичного аналізатора і перевіряє чи може ця послідовність бути утворена за заданим алогритмом граматикою. оп ввід вивід присвоєння цикл...
42370. ВИЗНАЧЕННЯ ВІДНОШЕНЬ ПЕРЕДУВАНЬ ЗА ПРАВИЛАМИ ГРАМАТИКИ 142.5 KB
  Задачею висхідного розбору є зведення вхідного термінального ланцюжка до аксіоми. Для висхідного розбору критичним є тип виводу. Вивід зліва направо визначається таким чином, що на кожному кроці замінюється основа поточної синтенсійної форми. Тоді ланцюжок справа від основи завжди буде складатися лише з термінальних символів. Ключовим питанням при висхідному розборі є питання – як знайти основу та на який не термінал її замінити? Це питання легко вирішується для граматик простого передування.
42371. Системы программирования Turbo Pascal 7.0 1.16 MB
  End Переместиться к концу строки. CtrlEnd Переместиться к последней строке окна. Найдите первое вхождение строки end в тексте программы. Замените все end на 234 .
42372. Нанесення плівок металів і сплавів у вакуумі методом термічного випаровування у вакуумі 320 KB
  Нанесення тонких плівок у вакуумі полягає в створенні потоку частинок, який направлений у бік оброблюваної підкладинки, які конденсуються з утворенням тонкоплівкових шарів на підкладинці.
42373. ПОЛУЧЕНИЕ ПЛЕНОК КАТОДНЫМ РАСПЫЛЕНИЕМ 107.5 KB
  Изучение катодного распыления привело к широкому использованию этого явления для создания весьма чистых поверхностей всевозможных тонких пленок металлов и сплавов полупроводников и диэлектриков для травления указанных выше материалов многие из которых не поддаются травлению другими способами. Поэтому в круксовом темном пространстве создается положительный пространственный заряд что приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала. С точки зрения физики разряда наиболее важной является...
42374. Измерение толщины металлических пленок с помощью интерферометра МИИ-4 175 KB
  В результате интерференции двух систем волн в фокальной плоскости окуляра наблюдаются характерные интерференционные полосы. в результате интерференции волн получаются светлые полосы а в точках где разность хода равна λ 2 3λ 2 5λ 2 и т. темные полосы. В отъюстированном микроинтерферометре при работе в монохроматическом свете в поле зрения должны быть видны чередующиеся черные и светлые полосы.