578

Расчёт термодинамических циклов

Курсовая

Физика

Исследование термодинамического цикла ДВС. Определение параметров рабочего тела в характерных точках цикла. Определение количества тепла участвующего в термодинамическом цикле. Определение параметров рабочего тела в характерных точках. Определение КПД паросиловой установки с учётом и без учёта работы насоса.

Русский

2013-01-06

3.66 MB

650 чел.

ЗАДАНИЕ

                       на курсовую работу по технической термодинамике

“Расчёт термодинамических циклов”

Студент:Винокуров Богдан Дмитриевич   ГруппаТП-10

Срок выполнения с ___________ по _____________2012 г.

Дата защиты__________ 2012 г.

Руководитель работы: Лебедев Александр Николаевич

Вариант№5

Задание:

  1.  Определить параметры рабочего тела в точках цикла ДВС (p,v,t).
  2.  Определить изменение энтропии в процессах.
  3.  Определить теплоту и работу во всех процессах.
  4.  Определить КПД цикла.
  5.   Построить графики цикла в pv и Ts координатах.
  6.   Расчетным и графическим путем показать влияние парметров цикла на работу цикла и КПД.
  7.  Определить параметры рабочего тела в характерных точках цикла Ренкина с перегревом пара.
  8.  Определить величины теоретической работы насоса и турбины.
  9.  Определить коэффициент полезного действия ПСУ с учетом работы насоса и без нее, проанализировать величину погрешности.


Исходные данные:

Давление -

Степень сжатия - =9,8

Степень повышения давления - λ = 2,1

Степень предварительного сжатия - ρ = 2,4

Газ – Аргон (Ar)

Масса одного кмоля газа  

Показатель адиабаты  - к =1,67

Давление в  конденсаторе -

Давление перегретого пара -

Температура перегретого пара -

Подпись студента _____________

Подпись руководителя работы ___________________


РЕФЕРАТ

Курсовая работа: 28страница , 4 диаграммы, 3  источника

Объектом исследования является термодинамический цикл ДВС и цикл Ренкина с перегревом пара.

В данной курсовой работе был произведен:

1.Расчет параметров рабочего тела в точках цикла Тринклера двигателя внутреннего сгорания, изменения энтальпии в процессах цикла, теплоты и работы во всех процессах, КПД цикла, влияние парметров цикла на работу цикла и КПД

2.Расчет параметров рабочего тела в характерных точках цикла Ренкина с            перегревом пара, теоретической работы насоса и турбины, КПД паросиловой установки с учетом работы насоса и без нее.

ТЕМПЕРАТУРА, ДАВЛЕНИЕ, ЭНТРОПИЯ, ОБЪЁМ, РАБОТА, ТЕПЛОТА, КПД, ГАЗ, ВОДА, ПЕРЕГРЕТЫЙ ВОДЯНОЙ ПАР

Винокуров Б.Д.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 6

ЧАСТЬ 1.Исследование термодинамического цикла ДВС 7

І.Определениетермодинамических характеристик рабочего тела 8

II.Определение параметров рабочего тела в характерных точках цикла 8

III.Определение количества тепла участвующего в термодинамическом цикле 13

IV.Определение работы цикла 13

V.Определение КПД цикла 14

VI.Построение графиков функции 15

ЧАСТЬ 2.РАСЧЁТ ЦИКЛА РЕНКИНА С ПЕРЕГРЕВОМ ПАРА 20

I.Определение параметров рабочего тела в характерных точках 21

II.Определение теоретической работы насоса и турбины 24

III.Определение КПД паросиловой установки с учётом и без учёта работы насоса 24

ВЫВОДЫ 26

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 27

 

ВВЕДЕНИЕ

Все тепловые машины (тепловые двигатели, теплосиловые установки, компрессоры, холодильные установки) работают по круговым процессам или циклам. Для термодинамического анализа работы таких машин важно знать условия, при которых осуществляется процесс преобразования теплоты в работу. Циклом называют круговой замкнутый процесс, совершающийся в тепловой машине, состояние цикла характеризуется начальным и конечным  значениями параметров.

В термодинамике циклы образуют из термодинамических процессов и графически изображают в системе координат, например, в системе PV или TS, где по оси абсцисс откладываются, в масштабе соответственно удельный объем и энтропия, а по оси ординат - абсолютное давление и температура.

Таким образом, термодинамический цикл, изображенный графически, представляет собой замкнутую фигуру, состоящую из ряда линий, каждая из которых отражает термодинамический процесс. Точки пересечения линий процессов называют характерными точками цикла. Характерная точка графически изображает конечное состояние газа одного процесса и начальное состояние следующего процесса. Циклы бывают обратимыми и не обратимыми.

В данной курсовой работе будем рассматривать циклы работы тепловых машин. Тепловой машиной называется устройство, преобразующее тепловую энергию в механическую работу (тепловой двигатель) или механическую работу в тепло (холодильник). Преобразование осуществляется за счёт изменения внутренней энергии рабочего тела — на практике обычно пара или газа. Основными элементами тепловой машины являются верхний и нижний источники тепла, а так же рабочее тело.

ЧАСТЬ 1.ИССЛЕДОВАНИЕ ТЕРМОДИНАМИЧЕСКОГО ЦИКЛА ДВС

В тепловых машинах в результате совершения круговых термо-динамических процессов (циклов) происходит преобразование тепловой энергии в механическую работу. Для получения непрерывно работающего теплового двигателя необходимо иметь два источника теплоты: с горячей температурой Т1 и холодной температурой Т2, рабочее тело, участвующее в процессе преобразования тепломеханической энергии.     

Совершенство термодинамических циклов оценивается термическим КПД – отношением полезно использованной теплоты в цикле к затрачиваемой в цикле теплоте. Для определения степени совершенства преобразования теплоты в механическую работу используется прямой обратимый цикл Карно, состоящий из двух изотерм и двух адиабат.

Исследование теоретических циклов позволяет установить ряд важных факторов, влияющих на работу теплового двигателя и наметить пути их совершенствования с целью повышения термического КПД.

В качестве преобразователей тепловой энергии в механическую работу широкое применение получили поршневые двигатели внутреннего сгорания, где преобразование теплоты в работу осуществляется по трем следующим циклам :

- со сгоранием топлива при постоянном объеме (v=const) –   цикл Отто;

- со сгоранием топлива при постоянном давлении (p=const) – цикл Дизеля;

- со смешанным сгоранием топлива при (частично при v=const и частично при p=const) – цикл Тринклера

Одним из основных недостатков, присущих поршневым двигателям внутреннего сгорания, является необходимость кривошипно-шатунного механизма и маховика и неизбежная неравномерность работы, обусловливающие невозможность сосредоточения большей мощности в одном агрегате. Это ограничивает сферу применения поршневых двигателей.

Расчёты:

І.Определение термодинамических характеристик рабочего тела

1.Определение характеристической газовой постоянной:

μ-масса 1 кмоля газа, численно равная молекулярной массе газа выраженной

2.Определение теплоёмкости:

- в процессе при постоянном объёме

где k – показатель адиабаты для ( Ar )

- в процессе при постоянном давлении

II.Определение параметров рабочего тела в характерных точках цикла

1.Определение параметров в точке 1 :

- удельный объём:

- энтропия:

2.Определение параметров в точке 2 :

Процесс 1-2 адиабатное сжатие рабочего тела

- давление:

где

- температура:

- удельный объём:

- энтропия:

Так как процесс является адиабатным, то

3.Определение параметров в точке 3 :

Процесс 2-3– изохорный подвод тепла, следовательно

- давление:

где λ – степень повышения давления ( по условию

- Температура:

 

- энтропия:

где

4.Определение параметров в точке 4 :

Процесс 3-4 – изобарный подвод тепла, следовательно

- удельный объём:

где ρ – степень предварительного расширения ( по условию

- температура :

- энтропия :

где

5.Определение параметров в точке 5 :

Процесс 4-5 – процесс адиабатного расширения рабочего тела,  

Процесс 5-1 – изохорный отвод тепла, следовательно

- давление:

- температура:

6.Проверка правильности расчёта :

Относительная погрешность не должна превышать 0,5 %

III.Определение количества тепла участвующего в термодинамическом цикле

1.Колличество подведенного тепла:

2.Колличество отведенного тепла:

3.Колличество полезного тепла цикла:

IV.Определение работы цикла

Проверка правильности расчёта :

(относительная погрешность не должна превышать 0,5 %)

V. Определение КПД цикла

1.По общей формуле:

2.Через параметры цикла:

Проверка правильности расчёта:

Величина относительной погрешности не должна превышать 0,5%

VI. Построение графиков функции

1.Построение в P V координатах:

Для более точного построения графиков функций необходимо найти промежуточные точки

- процесс 1-2

18686,951

- процесс 4-5

2.Построение в T-S координатах:

- процесс 2-3

- процесс 3-4

- процесс 5-1

VII. Построение графиков зависимости КПД и работы цикла от параметров цикла

Подберём несколько значений ε:

Подберём несколько значений ε для работы цикла:

ЧАСТЬ 2.РАСЧЁТ ЦИКЛА РЕНКИНА С ПЕРЕГРЕВОМ ПАРА

Цикл Ренкина - теоретический термодинамический цикл паровой машины, состоящий из четырех основный операций:

-1- испарения жидкости при высоком давлении;

-2- расширения пара;

-3- конденсации пара;

-4- увеличения давления жидкости до начального значения.

Пар большого давления и температуры подается в сопловые аппараты турбины, где происходит превращение потенциальной энергии пара в кинетическую энергию потока пара (скорость потока – сверхзвуковая). Кинетическая энергия сверхзвукового потока превращается на лопатках турбины в кинетическую энергию вращения колеса турбины и в работу производства электроэнергии.

На рис. 1 показана одна турбина, на самом деле турбина имеет несколько ступеней расширения пара.

После турбины пар направляется в конденсатор. Это обычный теплообменник, внутри труб проходит охлаждающая вода, снаружи – водяной пар, который конденсируется, вода становится жидкой.

Схема установки (рис.1)

Расчёты:

I.Определение параметров рабочего тела в характерных точках

1.Определение параметров в точке 1:

 

2.определение параметров в точке 2:

3.Определение параметров в точке 3:

4.Определение параметров в точке 4:

5.Определение параметров в точке 5:

По интерполяционной формуле определяем остальные параметры:

6.определение параметров в точке 6:

II. Определение теоретической работы насоса и турбины

1.Определение теоретической работы насоса:

2.Определение теоретической работы турбины:

III. Определение КПД паросиловой установки с учётом и без учёта работы насоса

1.Определение КПД ПСУ с учётом работы насоса:

2.Определение КПД ПСУ без учёта работы насоса:

3.Проверка правильности расчёта:

 

ВЫВОДЫ

В первой части данной курсовой работы был проведен расчёт двигателя внутреннего сгорания со смешанным подводом тепла (цикл Тринклера). По исходным данным  были найдены все параметры в характерных точках цикл, а затем по этим параметрам были определены теплота и работа цикла, а так же КПД. По расчётным данным были построены графические зависимости.

Во второй части курсовой работы был проведен расчёт паросиловой установки, работающей по циклу Ренкина с перегревом пара. По заданным параметрам рабочего тела по таблицам были найдены параметры в остальных точка. Полученная степень сухости меньше, чем 0,89 , что при использовании данного расчёта на практике может привести к износу установки. Для увеличения степени сухости следует увеличить температуру  

 

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

  1.  Конспект лекций по курсу “Техническая термодинамика ”
  2.  Ривкин С.Л., Александров А.А. “Теплофизические свойства воды и водяного пара”, Москва – 1980 – 425с.
  3.  М.П.Вукалович, Нвиков И.И. “Термодинамика”, Москва – 1972 – 671с.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЁЖИ И СПОРТА УКРАНЫ

ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

                                                    Кафедра «Промышленная теплоэнергетика»

КУРСОВАЯ РАБОТА

по курсу «Техническая термодинамика»

На тему «Расчёт термодинамических циклов»

                                                                             Выполнил:  ст.гр. ТП-10

                                                                             Винокуров Б.Д.

                                                                             Проверил:  Лебедев А.Н.

Донецк 2012


 

А также другие работы, которые могут Вас заинтересовать

25561. Ф. Бэкон и оформление эмпирического принципа в философии и психологии 41.5 KB
  Бэкон и оформление эмпирического принципа в философии и психологии Ф. Бэкон 1561 1626 английский философ историк политический деятель основоположник эмпиризма. Бэкон родоначальник английского материализма и эмпирического направления в философии и психологии. Человек: Чувственная часть души проявляется в теле занимается наука Разум божественный занимается теология Суть основной философской идеи Френсиса Бэкона эмпиризма в том что в основе познания лежит исключительно опыт.
25562. Р. Декарт о «страстях души» 34 KB
  Декарт о страстях души Рене Декарт 15961650 лат. В трактате Страсти души 1649 представлена вся система философскопсихологических взглядов Декарта Картезианский дуализм: существует 2 субстанции: Протяженная телесная физика материализм в учении Мыслящая духовная метафизика светский идеализм в учении осн. Страсти тип или уровень деятельности который является продуктом взаимодействия тела и души. Состояния души кот.
25563. Детерминистическое учение Б. Спинозы о психике 31.5 KB
  Учение о единой субстанции ее атрибутах и модусах Стремился объяснить природу из самой себя. Ее сущность раскрывается в атрибутах Атрибуты такие существенные и всеобщие аспекты субстанции которые ей не тождественны и по отношению к которой они вторичные и производные. конкретные фундаментальные свойства субстанции Человеку доступны только 2 атрибута: мышления и протяжения Кстати Декарт Модусы частные состояния и видоизменения субстанции все многообразие мира различные явления и события По отношению к атрибуту протяжения каждый...
25564. Г. Лейбниц и его монадология 29 KB
  Монады истинные атомы природы душеподобные единицы. Они просты неделимы вечны автономны не влияют друг на друга Свойства монад: Активность стремление Изначально заданное содержание врожденные представления Жизнь монады стремление и переход от смутных представлений Перцепций к более ясным представлениям апперцепции Иерархия монад: Земные: Чистые монады есть активность нет представлений неживая вечно движущаяся материя Монадыдуши смутные представления низкая степень стремления к ясности растения животные...
25565. Т. Гоббс и его представления о природе психического 33.5 KB
  Состояния Чувственные эффекты внутренних противодвижений призраки или образы: Противодвижения в мозге возникновение образов вещей и представлений Противодвижения в сердце вызывают усиление торможение и следовательно удовлетворение неудовлетворение Исходная форма психического чувственный опыт Крайняя форма сенсуализма: в основе всего лежат ощущения и все психические состояния производные от них и все проходит через ощущение. Мышление целенаправленное оперирование образами представлений. Операции: Сложение соединение...
25566. Психологическая система взглядов Дж. Локка 33.5 KB
  от рождения идеи бога души добра и зла не даны. Сны по Локку это идеи бодрствующего человека соединенные между собой причудливым образом. Сами же идеи не возникают пока органы чувств не снабдят нас ими. Идеи содержание опыта ощущения образы восприятия представления памяти общие понятия аффективноволевые состояния Первоначально душа чистый лист на который при жизни внешний мир наносит воздействия.
25567. Учение И. Канта об априорных формах сознания 32 KB
  Группы связей в априорных формах мышления: Категории рассудка: Категории количества: единство множество цельность Категории качества: реальность отрицание ограничение Категории отношения: субстанция и принадлежность причина и следствие взаимодействие Категории модальности: возможность и невозможность существование и несуществование предопределенность и случайность Идеи чистого разума: Идея абсолютного субъекта предмет рациональной психологии Идея мира предмет рациональной космологии Идея бога предмет рациональной...
25568. Наброс нагрузки на асинхронный двигатель 482.5 KB
  Если при этом механический момент Ммех окажется больше максимального Ммех Мm то двигатель будет увеличивать свое скольжение до s= 1 т. Пусть при этом моменте двигатель находится в установившемся состоянии точка а на рис. Электромагнитныи момент двигателя упадет при этом в Уравнение движения будет иметь вид: При уменьшении электромагнитного момента с М0 до M1 двигатель будет тормозиться и остановится.
25569. Возникновение ассоциативной психологии 33.5 KB
  Он определял ассоциации как неверные ненадежные способы комбинирования простых идей случайные и пассивные связи. Это основа возникновения идей и произвольных движений. Всем этим ассоциациям соответствуют ассоциированные дрожания нервных волокон для ощущений и движений или вибрации мозгового вещества для осознаваемых идей и сложных психических процессов. Все они различные виды ассоциаций ощущений или идей.