5783

Статья. О структурном синтезе передаточных механизмов

Научная статья

Производство и промышленные технологии

О структурном синтезе передаточных механизмов Настоящая статья является продолжением работы. Рассматривается метод образования структуры пространственных передаточных механизмов с использованием схем плоских механизмов. Метод основан на построен...

Русский

2013-06-06

820 KB

1 чел.

О структурном синтезе передаточных механизмов

Настоящая статья является продолжением работы [1]. Рассматривается метод образования структуры пространственных передаточных механизмов с использованием схем плоских механизмов. Метод основан на построении геометрических систем, описанных в работе [2].

Рассматривается геометрическая система, составленная из подвижных фигур I и II (рис. 1, а). Фигура I представляет треугольник 1,2,3 и жестко связанную с ним линию L4, перпендикулярную плоскости треугольника. Фигура II представлена треугольником 4,5,6 и перпендикулярной к нему линией L5. Фигура I может перемещаться в плоскости П1, фигура II – в плоскости П2, при этом точки 3, 4 будут перемещаться по линии L3.

Известными параметрами являются: А(x,y,z), , В(x,y,z), , а также размеры фигур I и II. Орт    перпендикулярен плоскости П1, орт  - плоскости П2.

Степень подвижности геометрической системы равна:

ΣS = 2(1, L1) + 1(2, П1) + 2(3, L3) + 2(4, L3) + 1(5, П2) + 2(6, L2) = 10,

                                       W = 6 ∙ n – ΣS = 6 ∙ 2 – 10 = 2.                                        (1)

Из (1) следует, что на рис. 1, а представлена двухподвижная геометрическая система. За первую обобщенную координату можно принять угол α поворота фигуры I вокруг орта .

Задается угол α и определяются координаты точки 1(x1, y1, z1). Расчет целесообразно выполнять в локальной системе А(см. рис. 1). Ось А проводится параллельно орту , следовательно  А –  la, ma, na . Ось А проводится параллельно линии L3(l1, m1, n1), представляющей пересечение плоскостей  П1 и П2 . Находятся  величины l1, m1, n1 из векторного произведения  ортов  и . Направляющие косинусы оси Аопределяются из векторного произведения осей А и  А:

                                                  l1= ma nbna mb;       

                                                  m1= na lbla nb;

                                                  n1= la mb  ma lb;                                                    (2)   

       

                                                  l2= m1 nan1 ma;                                                                   

                                                 m2= n1 lal1 na;                                

                                                 n2= l1 mam1 la.                                                     (3)

Итак, параметры локальной системы Аимеют вид: А(l1, m1, n1); А( la, ma, na); А(l2, m2, n2).

Риc . 1,  а – двухподвижная геометрическая система;

б – шестизвенный передаточный механизм

Рис. 2,  а – одноподвижная геометрическая система;

б – частный случай механизма, показанного на рис. 1,  б

Рис. 2,  а – одноподвижная геометрическая система;

б – семизвенный передаточный механизм

Определяются координаты точки 1(,,):

                       1 = –R1· sinα;  1 = 0;   1 = R1· cosα.                                          (4)

Вычисляются координаты точки 1(x,y,z):

x1 = xA + l11 + l21;

                                         y1 = yA + m11 + m21;                                                        (5)

z1 = zA + n11 + n21.

Положение точки 3 находится решением системы уравнений

(xx1)2 + (yy1)2 + (zz1)2 = (1,3)2 ;

                                 la (xxA) + ma (yyA) + na (zzA) = 0;                                                (6)

lb (xx1) + mb (yy1) + nb (zz1) = 0.

Здесь первое уравнение описывает сферу с центром в точке 1 и радиусом 1, 3, второе – плоскость П1, третье – плоскость П2.

Для решения системы (6) целесообразно воспользоваться формулами (14) ÷ (18), приведенными в работе [1].

Координаты точки 2 вычисляются по формулам

l1,3 = (x3 x1) : (1,3);                              l1,4 = ma n1,3na m1,3;

                 m1,3 = (y3 y1) : (1,3);                             m1,4 = na l1,3  la n1,3;                             (7)                       

n1,3 = (z3 z1) : (1,3);                              n1,4 = la m1,3  ma l1,3;

x2 = x1 + l1,3 x2 + l1,4 y2;

                                     y2 = y1 + m1,3 x2 + m1,4 y2;                                                      (8)

z2 = z1 + n1,3 x2 + n1,4 y2 .

Здесь l1,3; m1,3; n1,3 и l1,4; m1,4; n1,4 – направляющие косинусы локальной системы  1xyz (см. рис. 1,  а).

За вторую обобщенную координату системы можно принять величину перемещения точки 4 вдоль линии L3. Если положить (условно) расстояние между точками 3 и 4 постоянным в процессе перемещения фигур I и II, то положение точки 4 можно вычислить по формулам

x4 = x3l1 (3,4);

                                             y4 = y3m1 (3,4);                                                             (9)

z4 = z3n1 (3,4).

Вычисляются координаты точек 5, 6 фигуры II. Определяются направляющие косинусы вектора 4В (l3, m3, n3):

X3 = xBx4;                         l3 = X3  : Δ 3;

                          Y3 = yBy4;                         m3 = Y3  : Δ 3;                                        (10)

Z3 = zBz4;                                         n3 = Z3  : Δ 3.

Δ3 = .

Вычисляются величины отрезка 4, 7 из прямоугольных треугольников 6, 7, 4 и  6 , 7,  В (см. рис. 1,  а).

  

 x7 = x4 + l3 (4,7);                                                           (11)

y7 = y4 + m3 (4,7);

z7 = z4 + n3 (4,7).     

         

Положение точки 6 определяется решением системы уравнений

(x-xВ)2 + (y-yВ)2 + (z-zВ)2 = ;

                                                lb (x-xB) + mb (y-yB) + nb (z-zB) = 0;                                               (12)

l3 (x-x7) + m3 (y-y7) + n3 (z-z7) = 0.

Система (12) решается с помощью формул (14) ÷ (18) [1].

Координаты точки 5 определяются с помощью формул преобразования систем 4 и Оxyz (см. рис. 1, а).  Вначале  находятся  направляющие  косинусы  осей 4(l4, m4, n4) и 4 (l5, m5, n5):

                                 l5 = (x6 x4) : (4,6);           l4 = m5 nbn5 mb;                           

                                           m5 = (y6 – y4) : (4,6);                                                                 (13)  

                                 m4 = n5 lbl5 nb;                                                                                         

                                            n5 = (z6 – z4) : (4,6);          n4 = l5 mbm5 lb.                              (14)

                                          x5 = x4 + l45 +  l55 ;      

                                          y5 = y4 + m45 +  m55;                                                  (15)   

                                          z5 = z4 + n45 +  n55 .  

Первоначальное предположение постоянства расстояний между точками 3 и 4 во время перемещения фигур I и II возможно реализовать введением фигуры III, представляющей скрещивающиеся линии L7 и L8, жестко связанные общим перпендикуляром L6 (см. рис. 1, а) Угол между линиями принимается равным β,

              cos β = la lb + ma mb + na nb.                                                  (16)

Длина перпендикуляра L6 принимается равным расстоянию (3, 4). Эта величина считается известной.

Присоединение фигуры III заключается в совмещении линии L6 с отрезком (3, 4), линии L7 – с линией L4 и линии L8 – с линией L5.

Из рис. 1, а следует, что во время перемещения фигур I и II фигура III будет совершать возвратно-поступательное движение вдоль линии L3, перемещаясь при этом по плоскостям  П1 и П2.

На рис. 1, б показана кинематическая схема передаточного механизма, построенная на основе геометрической системы.

Если за обобщенную координату принять величину перемещения ползуна III вдоль линии L3, то возможно преобразовать поступательное движение одновременно в два вращательных движения.

Если через линию L3 провести дополнительно плоскость П3, П4… Пn, то возможно число преобразований увеличить в несколько раз.

На рис. 2, а представлен частный случай геометрической системы, где расстояние между точками 3 и 4 равно нулю. Степень подвижности вновь полученной системы равна:

ΣS = 2(1, L1) + 1(2, П1) + 2(3, L3) + 3(3, 4) + 1(5, П2) + 2(6, L2) = 11,   

    

                                        W = 6 ∙ n – ΣS = 6 ∙ 2 – 11 = 1.                                        (17)

В рассматриваемом примере фигура III будет представлять пересекающиеся линии L7 и L8 с углом β между ними.

На рис. 2, б показан частный случай кинематической схемы передаточного механизма.

Из формулы (17) следует, что соприкосновение фигур I и II в точках 3, 4 образует трехподвижное соединение. В этом случае связь фигур I и II возможно осуществить присоединением к линиям 2, 3 и 4, 6 системы из подвижных фигур Q и F, показанной на рис.10 работы [1]. Основу вновь полученной системы (рис. 3, а) составляют соприкасающиеся фигуры I и II. Положения точек фигур однозначно определяются формулами (2)÷(8) и (10)÷(15). Присоединение фигур Q и F к системе приведет к возникновению пассивных связей, поскольку они не оказывают влияния на траектории перемещений фигур I и II (на рис. 3, а фигуры с пассивными связями показаны пунктирными линиями). Следовательно, степень подвижности системы, вычисленная по (17) остается прежней.

На основе геометрической системы построена кинематическая схема семизвенного передаточного механизма (рис. 3, б). Построение механизма следует выполнять с соблюдением условия:

                                            βmaxδmax,                                                                                              (18)

где β – угол между линиями L4 и L5,  δ – угол между линиями 2, 3 и 4, 6.

Степень подвижности механизмов определяется по известной формуле [3]:

                               W = 6 ∙ n – 5Р5 = 6 ∙ 6 – 5∙7 = 1.                                              (19)

Трехподвижное соединение фигур I и II (см. рис. 3, а) возможно представить эквивалентной сферической парой. На основе такого соединения строится новая кинематическая схема передаточного механизма (рис. 4). Степень подвижности механизма равна:

                           

               W = 6 ∙ n – 5Р5 – 3Р3 = 6 ∙ 4 – 5 ∙ 4 – 3 ∙ 1  = 1.                                       (20)

Рис. 4. Передаточный механизм со сферической парой

В геометрической системе, показанной на рис. 5, а, точка 3 фигуры I может одновременно перемещаться по линиям L3 и L2. Степень подвижности такой системы равна:

ΣS = 2(1, L1) + 1(2, П1) + 2(3, L3) + 2(3, L2) + 1(5, П2) + 3(6, В) = 11,  

      

                                          W = 6 ∙ n – ΣS = 6 ∙ 2 – 11 = 1.                                      (21)

Рис. 5,  а – геометрическая система; б – передаточный механизм с поступательной парой

В формуле (21) отсутствует связь точки 4 с плоскостью П2. Объясняется это тем, что линия однозначно определяется двумя точками (в рассматриваемом примере – точками В и 3). Любая третья точка, расположенная на линии, будет составлять пассивную связь.

Рис. 6,  а – геометрическая система с подвижной фигурой I;

б – четырехзвенный передаточный механизм

Положение точек фигуры I вычисляется по формулам (2) ÷ (8). Координаты точки 4 фигуры II определяются по формулам:

                               X6 = x3xВ;                      l6 = X6  : Δ 6;

                               Y6 = y3yВ;                       m6 = Y6  : Δ 6;                                     (22)

                               Z6 = z3zВ;                                           n6 = Z6  : Δ 6.

                                                Δ6 = ;

                                                         

                                                 x4 = xВ + l6 (4,6);

                                                 y4 = yВ + m6 (4,6);                                                    (23)                            

                                                 z4 = zВ + n6 (4,6).

Вычисляются координаты точки 5:

                              l7 = m6 nbn6 mb;                          x5 = xВ + l65 +  l75 ;      

                          m7 = n6 lbl6 nb;                             y5 = yВ + m65 +  m75;        (24)                                 

                          n7 = l6 mbm6 lb;                           z5 = zВ + n65 +  n75 .  

По геометрической системе строится кинематическая схема передаточного механизма (рис. 5, б).

На рис. 6, а показана геометрическая система с одной подвижной фигурой. Степень подвижности системы равна:

ΣS = 1(1, П1) + 3(2, А) + 1(3, П2) = 5,

                                                W =  6 ∙ 1 – 5 = 1.                                                 (25)

За обобщенную координату системы можно принять угол α поворота точки 1 вокруг точки А. Координаты точки 1 можно вычислить по формулам (2)÷(5).

Положение точки 3 находится решением системы уравнений:

                                 (x-xТ)2 + (y-yТ)2 + (z-zТ)2 = (Т,3)2;

                                 lb (x-xB) + mb (y-yB) + nb (z-zB) = 0;                                          (26)

                                 l8 (x-xТ) + m8 (y-yТ) + n8 (z-zТ) = 0.

Здесь третье уравнение описывает плоскость, проведенную через точку Т перпендикулярно вектору А1(l8, m8, n8). Вычисляются параметры вектора А1:

                                

                                l8 = (x1 xА) : (1,2);                        xT = xA + l8 (T,2);

                                m8 = (y1 – yА) : (1,2);                       yT = yA + m8 (T,2);                      (27)                     

                                n8 = (z1 – zА) : (1,2);                        zT = zA + n8 (T,2).

Система  (26) решается с помощью формул (14) ÷ (18) [1].

На рис. 6. б показана построенная на основе геометрической системы кинематическая схема четырехзвенного механизма, являющегося дополнением к механизмам, описанным в работе [1]. Механизм может быть использован для передачи вращательного движения между пересекающимися осями.

Геометрическая система, показанная на рис. 7, а, построена на основе системы с одной подвижной фигурой (см. рис. 6, а) путем присоединения фигуры II.

Степень подвижности вновь полученной системы равна:

ΣS = 3(2, А) + 1(1, П1) + 1(3, П2) + 3(3, 4) + 1(5, П2) + 2(6, П2) = 11,      

  

                                              W = 6 ∙ n – ΣS = 6 ∙ 2 – 11 = 1.                                  (28)

За обобщенную координату системы можно принять угол α поворота точки 1 вокруг точки А. Положения точек 1,3 фигуры I можно определить по (2) ÷ (5) и (26) ÷ (27), положения точек 5, 6 фигуры II – по (10) ÷ (15).

На рис. 7, б показана эквивалентная кинематическая схема передаточного механизма.

На рис. 8, а показана модификация геометрической системы (см. рис. 7, а) путем совмещения точки 6 фигуры II с точкой В и заменой трехподвижного соединения фигур I и II двухподвижным соединением точки 3 с линией 4, 6.

Степень подвижности системы равна:

ΣS = 3(2, А) + 1(1, П1) + 1(3, П2) + 2(3, L2) + 1(5, П2) + 3(6, B) = 11,  

      

                                              W = 6 ∙ n – ΣS = 6 ∙ 2 – 11 = 1.                                  (29)

Положения точек фигуры I  определяются по (2) ÷ (5) и (26) ÷ (27), положения точек фигуры II – по (22) ÷ (24).

На рис. 8, б показана эквивалентная кинематическая схема передаточного механизма.

На рис. 9, а показана плоскость П с расположенными на ней линиями L1 и L2, представляющими собой окружность и эллипс. Последняя является линией пересечения цилиндра с плоскостью. Фигура I представляет собой треугольник 1, 2, 3 и линию L3, перпендикулярную треугольнику. Степень подвижности системы равна:

ΣS = 2(1, L1) + 1(2, П) + 2(3, L2) = 5,   

    

                                                     W = 6 ∙ 1 – 5 = 1.                                                (30)

Положения точек фигуры I первоначально целесообразно определять в системе Т(см. рис. 9,  а). Вычисляются параметры Т :

                

                                           (31)

zT = zВ nb · ρ1;                           zК = zВ nа · ρ2.

ρ2 =  lа (xВ xА) + ma (yВ yА) + na (zВ zА),

                                         

Рис. 7,  а – геометрическая система с двумя подвижными фигурами;

б – шестизвенный передаточный механизм

Рис. 8,  а – модификация системы, показанной на рис. 7. а;

б – разновидность шестизвенного передаточного механизма

Рис. 9,  а – геометрическая система; б – передаточный  механизм с цилиндрической парой

Определяются направляющие косинусы осей Т(l9, m9, n9) и Т(l10, m10, n10):

                  X9 = xК xT;             l9 = X9  : Δ 9;              l10 = m9 nan9 ma;

                  Y9 = yКyT;             m9 = Y9  : Δ 9;            m10 = n9 lal9 na;                     (32)

                  Z9 = zКzT;             n9 = Z9  : Δ 9;             n10 = l9 mam9 la.

                                       

Δ9 = .

Здесь точка K – проекция точки В на плоскость П.

Приняв за обобщенную координату угол α поворота точки 1 вокруг точки А, можно вычислить координаты точки 1 по (2) ÷ (5). Положение точки 3 определяется решением системы уравнений

                                            ,                                        (33)

здесь γ – угол между ортом  и плоскостью П,

                                                     .    

Положение точки 2 вычисляется по (7) ÷ (8).

К фигуре I и образующей цилиндра можно присоединить фигуру II, представляющую собой пересекающиеся под углом β линии  L4 и L5. β – угол между ортами  и . Значение угла определяется по (16). В процессе присоединения линию  L4 совмещают с линией L3, линию L5 – с образующей цилиндра. Фигура II будет обладать пассивной связью, т.к. ее присоединение не оказывает влияние на траекторию движения фигуры I.

На основе геометрической системы строится схема передаточного механизма с цилиндрической парой (рис. 9,  б).

Из рассмотренных примеров можно сделать выводы: 1) передачу вращательного движения между произвольно расположенными в пространстве скрещивающимися осями возможно выполнить механизмами, представляющими совокупность плоских механизмов с общим (пространственным) звеном. 2) Если механизмы, показанные на рис. 1,  б, рис. 2, б и рис. 4 выполнить симметричными (аналогично рис. 18 [1]), то возможно построить механизмы передачи равных угловых скоростей.

Рассмотренные в работе механизмы для наглядности представлены на рис. 10 совокупностью плоских схем с общим (пространственным) звеном. Механизм, показанный на рис. 10, з получен заменой шатунов II и IV (см. рис. 10, а) на ползуны II и IV.

Рис. 10. Условное изображение передаточных механизмов с использованием плоских

кинематических схем.  а – механизм, показанный на рис. 1. б; б –на  рис. 2. б; в – на рис. 3. б; г –на  рис. 4;  д – на рис. 5. б;  е –на  рис. 7. б;  ж –на  рис. 8. б; з – модификация рис. 10. а

СПИСОК ЛИТЕРАТУРЫ

  1.  Романцев А.А. Исследование структур рычажных механизмов с вращательными парами. // Теория механизмов и машин. 2006. № 2(8). C. 13-22.
  2.  Романцев А.А. Основы кинематической геометрии. – Ульяновск, 2004. – 150 с.
  3.  Артоболевский И.И. Теория механизмов и машин. – М.: Наука, 1975.      C.19-135.


 

А также другие работы, которые могут Вас заинтересовать

80792. Правовая охрана недр 49.69 KB
  правовые меры охраны водных объектов Статья 55. Основные требования к охране водных объектов 1. Собственники водных объектов осуществляют мероприятия по охране водных объектов предотвращению их загрязнения засорения и истощения вод а также меры по ликвидации последствий указанных явлений. Охрана водных объектов находящихся в федеральной собственности собственности субъектов Российской Федерации собственности муниципальных образований осуществляется исполнительными органами государственной власти или органами местного самоуправления в...
80793. Правовые меры охраны морской воды 36.9 KB
  Конкретизированы экологически значимые виды деятельности которые могут ими осуществляться проведение исследований разведка и разработка добыча водных биологических ресурсов и других природных ресурсов внутренних морских вод и территориального моря а также другая деятельность в том числе с борта летательного аппарата. Экономические отношения по эксплуатации природных ресурсов внутренних морских вод и территориального моря строятся на основе принципов: платности пользования; ответственности за нарушения условий хозяйственной...
80794. Правовое регулирование охоты и рыболовства 34.38 KB
  Законодательство о рыболовстве и сохранении водных биоресурсов основывается на следующих принципах: 1 учет значения водных биоресурсов как основы жизни и деятельности человека согласно которому регулирование отношений в области рыболовства и сохранения водных биоресурсов осуществляется исходя из представлений о них как о природном объекте охраняемом в качестве важнейшей составной части природы природном ресурсе используемом человеком для потребления в качестве основы осуществления хозяйственной и иной деятельности и одновременно как об...
80795. Правовая охрана атмосферного воздуха 34.01 KB
  Это Федеральный закон Об охране атмосферного воздуха акты федерального уровня о санитарноэпидемиологическом благополучии населения об отходах и т. Российское законодательство об охране атмосферного воздуха базируется на принципах приоритета охраны жизни и здоровья человека обеспечения благоприятных условий для жизни труда и отдыха недопущения необратимых последствий загрязнения атмосферного воздуха для окружающей среды обязательности государственного регулирования выбросов загрязняющих веществ и вредных физических воздействий на...
80796. Правовая охрана памятников природы, редких и находящихся под угрозой исчезновения растений и животных 32.41 KB
  Природные объекты и комплексы объявляются памятниками природы федерального значения а территории занятые ими особо охраняемыми природными территориями федерального значения Правительством Российской Федерации по представлению федеральных органов исполнительной власти в области охраны окружающей среды. Природные объекты и комплексы объявляются памятниками природы регионального значения а территории занятые ими особо охраняемыми природными территориями регионального значения соответствующими органами государственной власти субъектов...
80797. Правовой режим государственных природных заповедников 30.95 KB
  Исторически заповедники первая форма особо охраняемых природных территорий. 8 Федерального закона Об особо охраняемых природных территориях принимает Правительство РФ по представлению специально уполномоченного на то государственного органа Российской Федерации в области охраны окружающей природной среды. Природные комплексы и объекты земля воды недра растительный и животный мир на территории государственных природных заповедников полностью изымаются из хозяйственного использования ст.
80798. Правовой режим национальных парков 32.53 KB
  С учетом специфики данного вида особо охраняемой территории и задач которые на них возлагаются при создании на территориях национальных парков устанавливается дифференцированный режим особой охраны с учетом их природных историкокультурных и иных особенностей. Для этого в пределах национальных парков могут быть выделены следующие функциональные зоны: заповедная в пределах которой запрещены любая хозяйственная деятельность и рекреационное использование территории; особо охраняемая в пределах которой обеспечиваются условия для...
80799. Требования в области охраны окружающей среды при осуществлении хозяйственной и иной деятельности 30.56 KB
  При этом должны предусматриваться мероприятия по охране окружающей среды восстановлению природной среды рациональному использованию и воспроизводству природных ресурсов обеспечению экологической безопасности. Нарушение требований в области охраны окружающей среды влечет за собой приостановление по решению суда размещения проектирования строительства реконструкции ввода в эксплуатацию эксплуатации консервации и ликвидации зданий строений сооружений и иных объектов. Прекращение в полном объеме размещения проектирования...
80800. Правовое регулирование обращения с химическими и биологическими веществами 29.88 KB
  Закон о санитарноэпидемиологическом благополучии населения предусмотрел в качестве одной из основных мер обеспечения безопасного обращения с потенциально опасными для человека химическими биологическими веществами и отдельными видами продукции государственную регистрацию ст. Потенциально опасные для человека химические биологические вещества и отдельные виды продукции допускаются к производству транспортировке закупке хранению реализации и применению использованию после их государственной регистрации. Правовое регулирование...