5790

Термодинамические основы сжатия газов

Реферат

Физика

Термодинамические основы сжатия газов Цель: На примерах термодинамических процессов, протекающих в элементах пневмоэнергетических систем, усвоить применение основных законов термодинамики и гидромеханики для анализа явлений, имеющих место в компресс...

Русский

2012-12-21

151.5 KB

61 чел.

Термодинамические основы сжатия газов

Цель: На примерах термодинамических процессов, протекающих в элементах пневмоэнергетических систем, усвоить применение основных законов термодинамики и гидромеханики для анализа явлений, имеющих место в компрессорных машинах и в оборудовании, которым они оснащаются. Усвоить содержание уравнения сохранения энергии в компрессорных машинах. Выяснить особенности диаграммы TS и получить навыки использования ее для исследования термодинамических процессов, протекающих в элементах пневматической установки.

Тему 1 следует рассматривать как вводную, так как ее содержание в тезисном плане основывается на материале предыдущих курсов физики и ее составных частей - термодинамики и гидромеханики, которые студенты изучали на младших курсах. Контроль остаточных знаний по этой теме будет являться основанием для допуска студентов к дальнейшему изучению тем последующих частей курса.

1.1 Основные параметры состояния газов и связь между  ними         

Состояния газов определяются параметрами, к которым относятся температура, давление, удельный объем, плотность, внутренняя энергия, энтальпия, энтропия и др.

В теории компрессорных машин,  работающих в условиях, когда можно пренебречь  межмолекулярными силами и размерами молекул, используются уравнения состояния идеального газа

,                                               (1)

где  - абсолютное давление, Н/м2;

- объем, занимаемый газом, м3;

-  масса газа, кг;

- газовая постоянная (для воздуха , Дж/кгград.);

- абсолютная температура, К.

Так как

,

где  - удельный объем, м3/кг,

то уравнение состояния (его еще называют  характеристическим уравнением идеального газа) для 1 кг газа имеет вид

.                                                (2)

Давление чаще всего измеряется приборами (манометрами или вакуумметрами), поэтому для определения абсолютного давления следует пользоваться зависимостями

,                                           (3)

,                                             (4)

где  - атмосферное давление;

      -  показание манометра;

       -  показание вакуумметра.

Плотность газа и удельный объем связаны соотношением

.                                                   (5)

Абсолютная температура по шкале Кельвина (Т) и температура по шкале Цельсия (t) связаны соотношением

                                    (6)

В анализах термодинамических процессов компрессорных машин  наравне с температурой часто будут использоваться такие понятия, как теплота и внутренняя (тепловая) энергия. Нужно четко представлять различия между этими понятиями. Температура является  мерой средней кинетической энергии отдельных молекул газа, тепловая или внутренняя энергия газа относится к полной энергии всех молекул газа, т.е. это сумма всех видов энергии всех молекул, принадлежащих газу. Теплота – это энергия, которая переходит от одного тела к другому из-за разницы в их температуре. Другими словами,  теплота – это незаключенная  в теле энергия, а то количество энергии, которое передается  от горячего тела  холодному.

В дальнейшем  нас будет интересовать не абсолютное значение внутренней энергии, а ее изменение, которое она претерпевает в термодинамическом процессе.

Изменение удельной внутренней энергии (для 1 кг газа) в дифференциальной форме определяется по формуле

,                                               (7)

для конечного изменения состояния газа

                                (8)

где  - удельная теплоемкость газа при постоянном объеме, Дж/кгград.

В целях упрощения расчетов многих термодинамических процессов, протекающих в тепловых машинах, в термодинамике часто используется функция (для m кг массы системы) или  (для 1 кг массы системы), называемая энтальпией. Эта  сумма равна внутренней энергии и члена :

.                                            (9)

Изменение энтальпии определяется выражением

Обозначая выражение

,                                           (10)

где  - удельная теплоемкость газа при постоянном давлении, Дж/кгград;

получим

,                                       (11)

В дифференциальном виде для бесконечно малого изменения состояния газа

.                                           (12)

Отношение удельной теплоемкости газа  при постоянном давлении  к удельной теплоемкости при постоянном объеме  называется показателем адиабатического процесса

.                                             (13)

Для воздуха и двухатомных газов К=1,4.

Количество теплоты, передаваемой от одного газа к другому в расчете на 1 кг газа, определяется формулой.

                                     (14)

где с – удельная теплоемкость, Дж/кгград.

В дифференциальной форме

.                                          (15)

Теплоемкость, определяемая выражением (14), зависит от того,  каким образом происходит процесс нагревания. При нагревании при постоянном давлении (изобарный процесс)  и

= Δi.                                     (16)

При постоянном объеме (изохорный процесс)

= Δu.                                     (17)

Необходимо указать, что р, v, u, i являются функциями состояния (т.е. любой параметр состояния системы является функцией от отдельных параметров).

Студентам следует подумать, почему теплота,  как и работа, не являются функциями состояния.

Укажем еще на один важный параметр воздуха – это энтропия. Численное  значение энтропии может рассматриваться как показатель большего или меньшего приближения изолированной системы к равновесному состоянию, а значит, и возможности протекания в ней термодинамических процессов. В отличие от температуры, представляющей тепловое напряжение тела,  величина  энтропии характеризует  степень экстенсивности  (диссипации) тепловой энергии системы.

Математическое выражение энтропии в дифференциальной форме

.                                            (18)

Определенный интеграл в пределах от начальной 1 и конечной 2 точек термодинамического процесса дает изменение энтропии

.                                  (19)

В термодинамических расчетах компрессорных машин часто применяются диаграммы Т-S,  что значительно упрощает исследования и дает наглядные представления о происходящих процессах.

1.2 Основные термодинамические процессы. Первый закон   

                 термодинамики

 При изменении хотя бы одного параметра газа состояние системы также будет изменяться. Совокупность изменяющихся состояний газа представляет собой термодинамический процесс.

В компрессоростроении используется только равновесные термодинамические системы, т. е. такие, чтобы в любом промежуточном состоянии система находилась в равновесии, и характеризовалась, в частности, одинаковой температурой и одинаковым давлением по всему объему.

В термодинамике рассматриваются процессы:

1) изохорный, протекающий при неизменном объеме

;

2) изобарный,  протекающий при неизменном давлении

;

3) изотермический, протекающий при неизменной температуре

;

4) адиабатный, совершающийся при отсутствии теплообмена

;

5) политропный, обобщающий процесс, частными случаями которого являются первые четыре процесса.

Ко всем им применим первый закон термодинамики.

Дадим краткие пояснения к реализации первого закона термодинамики  к рассматриваемым процессам.

Напомним, что первый закон термодинамики представляет собой закон сохранения энергии в применении к термодинамическим системам. Другими словами, при сообщении газу некоторого количества тепла часть его может быть использована для совершения механической работы, в то время как остальное тепло затрачивается на повышение энергии газа.

При исследовании процессов изменения состояния покоящегося газа (а это имеет место прежде всего в объемных компрессорах) уравнение первого закона термодинамики применительно к 1 кг газу записывается в дифференциальной форме

                                           (20)

Так как элементарно малая работа

,                                              (21)

то

.                                         (22)

Для конечного изменения состояния 1 кг газа уравнение записывается следующим образом

,                                            (23)

где  - количество тепла, которым 1 кг газа обменивается с окружающей средой, Дж/кг;

- работа, совершенная 1 кг газа или над 1 кг газа в процессе, Дж/кг.

Каждый член уравнения (23) может быть в зависимости от характера изменения состояния газа положительным, отрицательным или равным нулю.

В теории компрессорных машин работу считают положительной, если она подведена к газу. В самом деле, цель компрессора – сообщить газу энергию. Поэтому при дальнейшем использовании зависимостей термодинамики следует учитывать применяемое в теории компрессорных машин правило знаков для работы.

В изохорном процессе работа не совершается, так как . Следовательно, количество тепла, подводимое или отводимое от газа равно изменению внутренней энергии

.                                   (24)

В изотермическом процессе внутренняя энергия газа не меняется, поэтому все тепло переходит в работу

                                               (25)

В адиабатическом процессе нет обмена теплом с окружающей средой, поэтому вся работа совершается за счет изменения внутренней энергии.

Следовательно

                                            (26)

В изобарном и политропическом процессах имеет место и изменение внутренней энергии и производство работы.

Поэтому

                                         (27)

В изобарном процессе

                                (28)

 1.3  Характеристики  тепловых  процессов

Дальше, чтобы не повторяться и не излагать еще раз сведения из курса термодинамики, представим необходимые нам зависимости для определения основных величин, характеризующих тепловые процессы, в таблице 1.


 Таблица 1 – Характеристика тепловых процессов

Наиме-нование процесса

Значение показателя политропы

Уравнение кривой процесса в системе

координат

Зависимость между параметрами

Работа процесса

l,

Дж

Теплота процесса,

q

Вид основ-ного уравне-ния термоди-намики

P-V

T-S

1

2

3

4

5

6

7

8

Изохор-ный

Изобар-ный

0

Изотер-мический

1

 

 

Продолжение таблицы 1

1

2

3

4

5

6

7

8

Адиабати-ческий

К

Политроп-ный



 

А также другие работы, которые могут Вас заинтересовать

27977. Мышление как регулятор деятельности и как самостоятельная деятельность Психология управления: объект, предмет, задачи. Основные теоретические школы менеджмента 65.33 KB
  Роль посредника в разрешении конфликтов Психология управления: объект предмет задачи. Поэтому в современном менеджменте навык управления конфликтами рассматривается как один из критически важных для менеджера. Цикл конфликта Первое чему необходимо научиться для успешного управления конфликтом это вовремя распознавать сигналы его эскалации. Схема выбора способа управления конфликтом Уровни конфликта в организации и их источники В любой организации существует несколько уровней конфликтов: внутриличностные межличностные межгрупповые...
27978. Мышление и интеллект, структура интеллекта, тестирование интеллекта и креативности 74.06 KB
  Проблема группы в социальной психологии. Оценка интеллекта Наибольшей популярностью пользуется так называемый коэффициент интеллектуальности сокращенно обозначаемый IQ который позволяет соотнести уровень интеллектуальных возможностей индивида со средними показателями своей возрастной и профессиональной группы. Две другие группы по 16 в каждой результаты которых соответствуют крайним показателям шкалы рассматриваются или как умственно отсталые люди со сниженным интеллектом IQ от 10 до 84 или как обладающие высокими выше среднего...
27979. Диалектическое мышление как высшая форма теоретического мышления 30.93 KB
  Понятие группы основные характеристики групп и их классификация. Детальный анализ социальнопсихологических представлений о природе социальной группы сложившихся в русле различных теоретических ориентации к числу главных отличительных признаков социальной группы позволяет отнести следующие: 1 включенность человеческой общности в более широкий социальный контекст систему общественных отношений определяющих возможность возникновения смысл и пределы существования группы и задающих прямо или от противного модели нормы или правила...
27980. Культурно-историческая детерминация процессов формирования и развития мышления 37.95 KB
  Понятие малой группы ее границы и классификация малых групп. Переход от субъективной группы к объективной Стадия конкретных операций81 2 лет Характеризуется группировкой наглядных представлений появлением обратимости интеллектуальных операций. Понятие форма мышления в которой отражаются общие и притом существенные свойства однородной группы предметов и явлений. Понятие малой группы ее границы и классификация малых групп.
27981. Язык и речь. Виды речи и их психологические характеристика 23.6 KB
  Язык и речь. Например понятия язык и речь часто используются как синонимы. Упрощая можно сказать что язык это иерархически упорядоченная система особых знаков а речь это использование языка людьми то есть деятельность которая выражается либо в устной либо в письменной форме конкретным продуктом речевой деятельности является текст.
27982. Роль внимания в становлении мотивационной сферы личности 51.88 KB
  Маслоу дал стройную классификацию и систему потребностей выделяя их группы: физиологические потребности потребности в безопасности в социальных связях самоуважении самоактуализации. При этом он считает что эти группы потребностей находятся в иерархической зависимости от первой к последней т. о межгрупповом восприятии: это не простая сумма восприятия чужой группы индивидами но именно совершенно новое качество групповое образование .: Для группысубъекта тот кто воспринимает: целостность которая определяется как степень...
27983. Понятие и теория каузальной атрибуции. Традиционные концепции и инновационные подходы к проблеме организационного лидерства 26.61 KB
  Возложения или принятия членами группы персональной ответственности за успехи и неудачи в совместной деятельности. Основные социально-психологические характеристики малой группы. Представление о числе членов малой группы колеблется между двумя и семью.
27984. Подходы к исследованию мотивации в различных школах психологии 27.29 KB
  Подходы к исследованию мотивации в различных школах психологии В рамках мировой научной психологии существует множество теоретических подходов к объяснению процессов мотивации человека. Адлера индивидуальная психология главный врожденный мотив человека стремление к превосходству и совершенству которое может приобретать как конструктивный так и деструктивный характер. При этом предполагается что: зависимость в раннем детстве от родителей вызывает чувство неполноценности которое может перерастать в комплекс неполноценности у взрослого...
27985. Развитие мотивационной сферы в онтогенезе. Особенности мотивационной сферы детей и подростков 61.71 KB
  Как ее конкретные показатели обычно рассматриваются: 1 уровень взаимной симпатии в межличностных отношениях: чем большее количество членов группы нравятся друг другу тем выше ее сплоченность; 2 степень привлекательности полезности группы для ее членов чем больше число людей удовлетворенных своим пребыванием в группе тех для кого субъективная ценность приобретаемых благодаря группе преимуществ превышает значимость затрачиваемых усилий тем выше сила ее притяжения и сплоченность. К числу основных факторов ГС чаще всего относятся: 1...