57900

Решение систем уравнений второй степени

Конспект урока

Педагогика и дидактика

Задание: При каких значениях параметра а система уравнений имеет три решения Решение: парабола y= x2 будет иметь с окружностью x2 y2 = 4 три общие точки только в случае а = 2. Теоретический опрос по вопросам: Что называется системой...

Русский

2014-04-16

185.5 KB

4 чел.

       «Решение систем уравнений второй степени»

                       9 класс

Учитель математики  Победненской ОШ 1-3 ступеней

Пташинский Пётр Степанович

Цель урока: продолжить работу по формированию навыков решения    систем уравнений графическим способом, развивать познавательный интерес и творческую активность учащихся.

                                                              Эпиграф:

Китайская мудрость: « Я слышу – я забываю, я вижу – запоминаю,

я делаю – я усваиваю»

                           

                            ХОД   УРОКА

  1.  Организационный  момент    

Учащимся сообщается тема урока, формируются цель и задачи урока, виды деятельности учащихся для достижения цели.

  1.  Проверка  домашнего  задания

Во  время  перемены  консультанты  проверяют  домашнюю  работу  (предварительно  обсудив  ее  результаты  с  учителем).

а)  В  начале  урока – доклад  консультантов  о  результатах  проверки.

б)  Заслушать  ход  решения  дополнительной  задачи.

                                                       Задание:

 При  каких  значениях  параметра  а  система  уравнений  имеет  три  решения?

                                                                             

Решение: парабола y= x2 +a будет иметь с окружностью x2 + y2 = 4 три общие точки только в случае а = - 2.

Ответ:  а = - 2

  1.  Актуализация  знаний учащихся.

Прежде чем перейти к объяснению новой темы давайте вспомним некоторые знания по данной теме, которые помогут нам.

  1.  Теоретический  опрос  по  вопросам:
  •  Что  называется  системой  уравнений  с  двумя  переменными?
  •  Что  значит  решить  систему  уравнений?
  •  Что  называется  решением  системы  уравнений  с  двумя  переменными?
  •  Сформулируйте  алгоритм  графического  решения  системы  уравнений.
  1.  Проверочная  работа (Приложение 1). Листок  с  заданием  есть  у  каждого.

Ученики  по  очереди  называют ответ,  комментируют  его,  после  обсуждения  каждого  уравнения  вывешивается  верный  номер.  На  обороте  карточек  с  номерами  должно  получиться  слово  «ПРАВИЛЬНО!».

Ответ:  

  1.  Работа  у доски  по  карточкам (Приложение 2).

Двое  учащихся  у  доски  выполняют  индивидуальную  работу  по  карточкам.

  1.  Устный  опрос.

Пока  2  ученика  работают  у  доски,  с  остальными  учащимися  проводится  устная  работа:  один  из  учеников  отвечает,  остальные  при  необходимости  дополняют,  исправляют  ответ  своего  товарища.

Задания.

  1.  Определите  степень  уравнения:

a) xy3 – 2y = 5       б) x2 – y4 = 2xy2 – y4      в) x2 + 3y2 = 0      

Ответ:  a) 4,  б) 3,  в)2.

  1.  Является  ли  пара  чисел  (1;  0)  решением  уравнения  

а) x2 + y = 1      б)  xy + 3 = x      в)  y(x + 2) = 0

Ответ:  да,   нет,    да.

  1.  Укажите какие-нибудь  два  решения  уравнения

а) xy = 6    б)  (x – 3)(y + 2) = 0      в) x2y2 = 0

(Ученики предлагают свои варианты ответа)

  1.  Имеет  ли  решения  система  и  сколько

а)      y = 3,                    б)       x2 + y2 = 4,

        y = x2 – 6.                       y = x2 + 4.

Ответ:  а)  имеет, 2.    б) не  имеет.

А сейчас давайте послушаем своих товарищей, выполнявших работу у доски.  

  1.  Введение  нового  материала  в  форме  фронтальной  работы  с  классом.

Заслушиваются объяснения учащихся, работавших у доски.

Учитель: Давайте сравним ответы. Чем они отличаются?

-У первого ученика значения получены точные:  (-1;0),  (0;1),

а у второго ученика из двух решений системы один корень приближенный:  x1 = -1,  y1 = 0;  x2 ≈ 0,6,  y2 ≈ 0,8.

Учитель: А как быть? Нам нужны точные значения! Неужели нас не устраивает графический способ системы?

Ученики делают вывод, что графический  способ  обычно  позволяет  находить  приближенные  значения  и  не обеспечивает  высокую  точность. Решить систему уравнений другим способом.

Вывод:  получить  точные  значения  системы  уравнений  поможет  нам  аналитический  способ.

Учитель: И такой способ есть - это аналитический способ решения систем уравнений 2-й степени. Он позволяет получить точные значения системы уравнений. Нам известны два метода решения систем аналитическим способом - это метод подстановки и метод сложения.

Какой же из них выбрать для данной системы? Давайте обратимся к учебнику.

  •  Работа с учебником.

Ученики в тексте учебника находят и изучают алгоритм аналитического способа решения систем уравнений методом подстановки.

  •  Применение изученного алгоритма на примере.

   ó      ó    ó   

Ответ: (-1;0), (0,6;0,8).

Вывод:  данную систему можно решить двумя способами - графическим (решение карточки № 2) и аналитическим. Но аналитический способ в отличие от графического способа дает возможность получить точные значения.

V.    Закрепление.

1.   Решение номеров из учебника учащимися у доски.

№ 244 (в)

Решение: (образец записи решения)

   ó      ó    ó   

Ответ: (1;4), (-0,6;0,8).

№ 246 (а)

    

Ответ: (2;-1), (1;-1).    

  2. Из истории...

Учитель: В библейской легенде голубка приносит Ною весть о том, что Бог сменил гнев на  милость и что потоп кончился. Выражение «Голубь мира» приобрело особую популярность после того, как голубь, несущий в клюве оливковую ветвь, был использован художником при создании эмблемы для Всемирного конгресса сторонников мира (1949 год).

Решите систему уравнений. Используя найденные ответы, узнайте методом исключений фамилию художника, создавшего эту эмблему.

I вариант                    II вариант  

                 

Сальвадор Дали

Александр Дейнека

Пабло Пикассо

(-2;0), (1;-3)

(5; -2), (2;-5)

(-2;5), (-5;2)

У доски работают сильные ученики от каждого варианта

Ответы: I вариант  (-2; 0), (1; -3)

              II вариант  (5; -2), (2;-5)

Вывод: Пабло Пикассо.

Учитель: Пикассо-и-Руис, Пабло испанец. Годы жизни: 1881 - 1973. Великий художник 20-го века, живописец, рисовальщик, скульптор, график, керамист. Жил и работал в Париже и разных окрестностях Франции. В Эрмитаже - 35 картин, богатое собрание графики, а также произведения керамики.

VI.     Итог урока

1. Наш урок подошел к концу. Чем мы сегодня занимались на уроке, что нового узнали?

-повторили пройденный материал.

-научились решать системы уравнений 2-й степени аналитическим способом,

- правильно выбирать методы решения.

2.Учитель демонстрирует системы (на карточках), а ученики
указывают «минусы» графического способа решения этих систем.

  Оценки за урок

Комментируются и выставляются оценки за урок ученикам, работавшим у доски, а также наиболее отличившимся на уроке.

VII.    Домашнее задание.

Пункт 13 № 245 (а), № 254 (а), дополнительно  № 256 (а)

Благодарю всех за работу и желаю успехов при выполнении домашнего задания. Урок окончен. До свидания.


                                                
ПРИЛОЖЕНИЕ 1.

Задание. Проанализируйте  уравнения,  их  графики  и  заполните  таблицу. Каждому  уравнению  поставьте  соответствующий  номер  рисунка.

Формула  уравнения

Преобразование  формул

Номер  чертежа

1

x2 – y = 0

2

y + x2 – 1 = 0

3

y = (x – 1)2

4

y + (x +1)2 = 0

5

x3 – y = 0

6

xy = 1

7

x2 + y2 = 1

8

y + 1 =0

9

10

y - |x| = 0

ПРИЛОЖЕНИЕ 2.

Задание  № 1

На  чертеже  дан  график  одного  из  уравнений  системы.  Дополните  чертеж  графиком  другого  уравнения  и  найдите  решения  системы.

                                    

Задание  № 2

В  данную  систему  впишите  уравнение  окружности,  изображенной  на  чертеже.  Дополните  чертеж  линией,  уравнение  которой  уже  записано  в  системе.  Напишите  решение  системы.                                     


 

А также другие работы, которые могут Вас заинтересовать

22650. Випромінення електромагнітних хвиль. Електричне дипольне випромінення 156 KB
  З останньої формули випливає що найбільша енергія випромінюється в площині перпендикулярній до напрямку коливань диполя . У напрямку коливань диполя електричні хвилі не випромін. Інтенсивність випромінювання пропорційна частоті коливань диполя в четвертому степені і квадрату амплітуди коливань.
22651. Розсіяння електромагнітних хвиль. Формула Томсона 102 KB
  поле хвилі в частинці створює коливання зарядів частота яких збігається з частотою коливань ел. хвилі які поширюються в усі сторони. При наявності на шляху променя деякого тіла зявляються хвилі напрям поширення яких не збігається з напрямом поширення променя це явище називається розсіянням . Позначимо: і для падаючої хвилі і для розсіяної.
22652. Рівняння Максвела в чотиривимірній формі 144.5 KB
  Рівняння електродинаміки повинні бути однаковими в усіх інерціальних системах відліку і тому їх можна записати через 4вектори. Запишемо рівняння Максвела: ; ; ; . Скористаємося також рівнянням неперервності: ; де чотири вектор координати; 4вектор густини струму. Рівняння Максвела перетворюються на рівняння для потенціалів за умови калібровки Лоренца: .
22653. Фотони, квантування електромагнітного поля. Фотони 114.5 KB
  Якщо розглядати поля в обмеженому об`ємі то можна розкласти в ряд Фур`є накладаючи умови періодичності на біжучі плоскі хвилі з урахуванням того що дійсне : і хвильове рівняння перетвориться на рівняння для гармонічного осцилятора: Повна енергія електромагнітного поля в об`ємі : Якщо перейти від комплексних до дійсних т.; То вираз для енергії набуває вигляду Оскільки а отже то можна розкласти ці вектори на два компоненти в площині перпендикулярній: це система гармонічних осциляторів нормальні координати....
22654. Поширення світла в діелектричних середовищах. Дисперсія і поглинання 121.5 KB
  Поширення світла в діелектричних середовищах. Дисперсією світла називається залежність абсолютного показника заломлення від частоти падаючого на дану речовину світла Елм хвилі З означення швидкості світла слідує що також залежить від частоти Дисперсія світла виникає в результаті вимушених коливань заряджених частинок електронів і іонів під дією змінного поля елм хвилі. В класичній теорії дисперсії оптичний електрон розглядається як затухаючий гармонічний осцилятор: где частота власних коливань радіус вектор электрона...
22655. Когерентність хвиль. Явище інтерференції. Інтереферометри 2.34 MB
  Інтереферометри Якщо при складанні двох коливань різніця фаз коливань хаотично змінюється за час спостереження то коливання називаються некогерентними. Тоді середня енергія результуючого коливання дорівнює сумі середніх енергій початкових коливань. амплітуди початкових коливань. Якщо при складанні двох коливань різніця фаз коливань зберігається за час спостереження то коливання називаються когерентними.
22656. Явище дифракції світла. Дифракція Фраунгофера. Дифракція Френеля 1.35 MB
  Дифракція Фраунгофера. Дифракція Френеля. Дифракція світла явище огинання світлом контурів тіл і відповідно проникнення світла в область геометричної тіні. Дифракція є проявом хвильових властивостей світла.
22657. Роздільна здатність оптичних приладів 70 KB
  Характеризує здатність давати зображення двох близько розташованих одна від одної точок обєкта рознесених в просторі. Найменша лінійна кутова відстань між двома точками починаючи з якої їх зображення зливаються і не розрізняються наз. Релей ввів критерій згідно до якого: зображення двох точок можна розрізнити якщо дифр. Предмет знаходиться на а зображення утворюється в фокальній площині об`єктива телескопа з фокусною відстанню f .
22658. Принципы объединения сетей на основе протоколов сетевого уровня 138.5 KB
  Протоколы сетевого уровня реализуется, как правило, в виде программных модулей и выполняются на конечных узлах-компьютерах, называемых хостами, а также на промежуточных узлах-маршрутизаторах, называемых шлюзами. Функции маршрутизаторов могут выполнять как специализированные устройства, так и универсальные компьютеры с соответствующим программным обеспечением.