57900

Решение систем уравнений второй степени

Конспект урока

Педагогика и дидактика

Задание: При каких значениях параметра а система уравнений имеет три решения Решение: парабола y= x2 будет иметь с окружностью x2 y2 = 4 три общие точки только в случае а = 2. Теоретический опрос по вопросам: Что называется системой...

Русский

2014-04-16

185.5 KB

4 чел.

       «Решение систем уравнений второй степени»

                       9 класс

Учитель математики  Победненской ОШ 1-3 ступеней

Пташинский Пётр Степанович

Цель урока: продолжить работу по формированию навыков решения    систем уравнений графическим способом, развивать познавательный интерес и творческую активность учащихся.

                                                              Эпиграф:

Китайская мудрость: « Я слышу – я забываю, я вижу – запоминаю,

я делаю – я усваиваю»

                           

                            ХОД   УРОКА

  1.  Организационный  момент    

Учащимся сообщается тема урока, формируются цель и задачи урока, виды деятельности учащихся для достижения цели.

  1.  Проверка  домашнего  задания

Во  время  перемены  консультанты  проверяют  домашнюю  работу  (предварительно  обсудив  ее  результаты  с  учителем).

а)  В  начале  урока – доклад  консультантов  о  результатах  проверки.

б)  Заслушать  ход  решения  дополнительной  задачи.

                                                       Задание:

 При  каких  значениях  параметра  а  система  уравнений  имеет  три  решения?

                                                                             

Решение: парабола y= x2 +a будет иметь с окружностью x2 + y2 = 4 три общие точки только в случае а = - 2.

Ответ:  а = - 2

  1.  Актуализация  знаний учащихся.

Прежде чем перейти к объяснению новой темы давайте вспомним некоторые знания по данной теме, которые помогут нам.

  1.  Теоретический  опрос  по  вопросам:
  •  Что  называется  системой  уравнений  с  двумя  переменными?
  •  Что  значит  решить  систему  уравнений?
  •  Что  называется  решением  системы  уравнений  с  двумя  переменными?
  •  Сформулируйте  алгоритм  графического  решения  системы  уравнений.
  1.  Проверочная  работа (Приложение 1). Листок  с  заданием  есть  у  каждого.

Ученики  по  очереди  называют ответ,  комментируют  его,  после  обсуждения  каждого  уравнения  вывешивается  верный  номер.  На  обороте  карточек  с  номерами  должно  получиться  слово  «ПРАВИЛЬНО!».

Ответ:  

  1.  Работа  у доски  по  карточкам (Приложение 2).

Двое  учащихся  у  доски  выполняют  индивидуальную  работу  по  карточкам.

  1.  Устный  опрос.

Пока  2  ученика  работают  у  доски,  с  остальными  учащимися  проводится  устная  работа:  один  из  учеников  отвечает,  остальные  при  необходимости  дополняют,  исправляют  ответ  своего  товарища.

Задания.

  1.  Определите  степень  уравнения:

a) xy3 – 2y = 5       б) x2 – y4 = 2xy2 – y4      в) x2 + 3y2 = 0      

Ответ:  a) 4,  б) 3,  в)2.

  1.  Является  ли  пара  чисел  (1;  0)  решением  уравнения  

а) x2 + y = 1      б)  xy + 3 = x      в)  y(x + 2) = 0

Ответ:  да,   нет,    да.

  1.  Укажите какие-нибудь  два  решения  уравнения

а) xy = 6    б)  (x – 3)(y + 2) = 0      в) x2y2 = 0

(Ученики предлагают свои варианты ответа)

  1.  Имеет  ли  решения  система  и  сколько

а)      y = 3,                    б)       x2 + y2 = 4,

        y = x2 – 6.                       y = x2 + 4.

Ответ:  а)  имеет, 2.    б) не  имеет.

А сейчас давайте послушаем своих товарищей, выполнявших работу у доски.  

  1.  Введение  нового  материала  в  форме  фронтальной  работы  с  классом.

Заслушиваются объяснения учащихся, работавших у доски.

Учитель: Давайте сравним ответы. Чем они отличаются?

-У первого ученика значения получены точные:  (-1;0),  (0;1),

а у второго ученика из двух решений системы один корень приближенный:  x1 = -1,  y1 = 0;  x2 ≈ 0,6,  y2 ≈ 0,8.

Учитель: А как быть? Нам нужны точные значения! Неужели нас не устраивает графический способ системы?

Ученики делают вывод, что графический  способ  обычно  позволяет  находить  приближенные  значения  и  не обеспечивает  высокую  точность. Решить систему уравнений другим способом.

Вывод:  получить  точные  значения  системы  уравнений  поможет  нам  аналитический  способ.

Учитель: И такой способ есть - это аналитический способ решения систем уравнений 2-й степени. Он позволяет получить точные значения системы уравнений. Нам известны два метода решения систем аналитическим способом - это метод подстановки и метод сложения.

Какой же из них выбрать для данной системы? Давайте обратимся к учебнику.

  •  Работа с учебником.

Ученики в тексте учебника находят и изучают алгоритм аналитического способа решения систем уравнений методом подстановки.

  •  Применение изученного алгоритма на примере.

   ó      ó    ó   

Ответ: (-1;0), (0,6;0,8).

Вывод:  данную систему можно решить двумя способами - графическим (решение карточки № 2) и аналитическим. Но аналитический способ в отличие от графического способа дает возможность получить точные значения.

V.    Закрепление.

1.   Решение номеров из учебника учащимися у доски.

№ 244 (в)

Решение: (образец записи решения)

   ó      ó    ó   

Ответ: (1;4), (-0,6;0,8).

№ 246 (а)

    

Ответ: (2;-1), (1;-1).    

  2. Из истории...

Учитель: В библейской легенде голубка приносит Ною весть о том, что Бог сменил гнев на  милость и что потоп кончился. Выражение «Голубь мира» приобрело особую популярность после того, как голубь, несущий в клюве оливковую ветвь, был использован художником при создании эмблемы для Всемирного конгресса сторонников мира (1949 год).

Решите систему уравнений. Используя найденные ответы, узнайте методом исключений фамилию художника, создавшего эту эмблему.

I вариант                    II вариант  

                 

Сальвадор Дали

Александр Дейнека

Пабло Пикассо

(-2;0), (1;-3)

(5; -2), (2;-5)

(-2;5), (-5;2)

У доски работают сильные ученики от каждого варианта

Ответы: I вариант  (-2; 0), (1; -3)

              II вариант  (5; -2), (2;-5)

Вывод: Пабло Пикассо.

Учитель: Пикассо-и-Руис, Пабло испанец. Годы жизни: 1881 - 1973. Великий художник 20-го века, живописец, рисовальщик, скульптор, график, керамист. Жил и работал в Париже и разных окрестностях Франции. В Эрмитаже - 35 картин, богатое собрание графики, а также произведения керамики.

VI.     Итог урока

1. Наш урок подошел к концу. Чем мы сегодня занимались на уроке, что нового узнали?

-повторили пройденный материал.

-научились решать системы уравнений 2-й степени аналитическим способом,

- правильно выбирать методы решения.

2.Учитель демонстрирует системы (на карточках), а ученики
указывают «минусы» графического способа решения этих систем.

  Оценки за урок

Комментируются и выставляются оценки за урок ученикам, работавшим у доски, а также наиболее отличившимся на уроке.

VII.    Домашнее задание.

Пункт 13 № 245 (а), № 254 (а), дополнительно  № 256 (а)

Благодарю всех за работу и желаю успехов при выполнении домашнего задания. Урок окончен. До свидания.


                                                
ПРИЛОЖЕНИЕ 1.

Задание. Проанализируйте  уравнения,  их  графики  и  заполните  таблицу. Каждому  уравнению  поставьте  соответствующий  номер  рисунка.

Формула  уравнения

Преобразование  формул

Номер  чертежа

1

x2 – y = 0

2

y + x2 – 1 = 0

3

y = (x – 1)2

4

y + (x +1)2 = 0

5

x3 – y = 0

6

xy = 1

7

x2 + y2 = 1

8

y + 1 =0

9

10

y - |x| = 0

ПРИЛОЖЕНИЕ 2.

Задание  № 1

На  чертеже  дан  график  одного  из  уравнений  системы.  Дополните  чертеж  графиком  другого  уравнения  и  найдите  решения  системы.

                                    

Задание  № 2

В  данную  систему  впишите  уравнение  окружности,  изображенной  на  чертеже.  Дополните  чертеж  линией,  уравнение  которой  уже  записано  в  системе.  Напишите  решение  системы.                                     


 

А также другие работы, которые могут Вас заинтересовать

49105. Прогнозирование результатов спортсменов 486 KB
  Работа над проектом Для решения поставленной задачи будем использовать персептрон основанный на нейронной сети с 14ю входами с 1 выходным и с одним скрытым слоем. Одна из наиболее привлекательных для пользователя сторон нейросетевой технологии обеспечившая ей нынешнюю всеобщую популярность отсутствие необходимости в детальном программировании процесса решения задачи; возможность решения даже тех задач для которых отсутствуют алгоритмы решения; возможность адаптации к условиям функционирования обучения и переобучения....
49107. Ревизия (аудит) расчетов с депонентами, по претензиям, по возмещению материального ущерба, с разными дебиторами и кредиторами 103.25 KB
  Дебиторская задолженность - сумма долгов, причитающихся объединению, предприятию, организации, учреждению от юридических или физических лиц в итоге хозяйственных взаимоотношений с ними. Кредиторская задолженность - денежные средства предприятия, организации или учреждения, подлежащие уплате соответствующим юридическим или физическим лицам.
49108. Дослідження соціалізації дітей дошкільного віку 361.5 KB
  Пошук основних особистісних та середовищних детермінант, що визначають ті проблеми, з якими стикаються діти дошкільного віку, а також основні підходи щодо процесу соціалізації та адаптації, є актуальним завданням в сучасних умовах трансформації освіти України.
49109. Архитектура и системы команд микропроцессора К580. Достоинства и недостатки ассемблера 119.5 KB
  Недостатки ассемблера ВВЕДЕНИЕ Достоинства ассемблера Обеспечение максимального использования специфических возможностей конкретной платформы что позволяет создавать более эффективные программы с меньшими затратами ресурсов. АНАЛИЗ ЗАДАЧИ И РАЗРАБОТКА АЛГОРИТМА В результате выполнения программы мы должны получить в регистре В значение равное 0. РАЗРАБОТКА СТРУКТУРЫ ПРОГРАММЫ Для реализации поставленной задачи нужно запомнить входные данные В программе осуществляется последовательное увеличение содержимого ячейки 6000h на 1 путем...
49110. Загрузить в ячейку памяти с адресом 6000h число 100 и уменьшать его на единицу, пока результат не станет равен нулю 146.5 KB
  Именно языки программирования высокого уровня и их наследники в основном используются в настоящее время в индустрии информационных технологий. Однако, языки ассемблера сохраняют свою нишу, обуславливаемую их уникальными преимуществами в части эффективности и возможности полного использования специфических средств конкретной платформы.
49111. Вычесть содержимое ячейки памяти с адресом 6001H из содержимого ячейки памяти с адресом 6000Н. Занести результат в ячейку памяти с адресом 6002H, если результат положительный, иначе — в ячейку 6003Н 433 KB
  Директивы ассемблера позволяют включать в программу блоки данных (описанные явно или считанные из файла); повторить определённый фрагмент указанное число раз; компилировать фрагмент по условию; задавать адрес исполнения фрагмента, менять значения меток в процессе компиляции; использовать макроопределения с параметрами и др.
49113. Диэлектрическая линзовая антенна 1.83 MB
  Расчёт параметров линзы. Линзовые антенны представляют собой совокупность электромагнитной линзы и облучателя. В основе проектирования линзовых антенн лежит использование оптических свойств электромагнитных волн которые проявляются при размерах и радиусах кривизны поверхности линзы много больших длины волны. Сейчас зачастую используются металлодиэлектрические линзы которые обладают лучшими массогабаритными показателями но при этом коэффициент преломления таких линз оказывается сильно зависящим...