5791

Неорганические вяжущие материалы

Реферат

Производство и промышленные технологии

Неорганические вяжущие материалы Общие сведения Вяжущими веществами называют материалы, способные в определенных условиях (при смешивании с водой, нагревании и др.) образовывать пластично-вязкое тесто, которое самопроизвольно или под действием ...

Русский

2012-12-21

439.5 KB

46 чел.

Неорганические вяжущие материалы

1. Общие сведения

Вяжущими веществами называют материалы, способные в определенных условиях (при смешивании с водой, нагревании и др.) образовывать пластично-вязкое тесто, которое самопроизвольно или под действием определенных факторов со временем затвердевает.

Переходя из пластично-вязкого состояния в камневидное, вяжущие вещества могут скреплять между собой камни (например, кирпич) или зерна песка, гравия и щебня. Это свойство вяжущих используется для получения бетонов, строительных растворов различного назначения, силикатного кирпича, асбестоцемента и других безобжиговых искусственных каменных материалов.

Начало использования человеком вяжущих открыло новую эпоху в строительстве: вместо обтесывания камней строители с помощью вяжущих и камней произвольной формы могли делать любые конструкции, не беспокоясь о плотном прилегании одного камня к другому.

Современные вяжущие вещества в зависимости от состава делят на:

неорганические (известь, цемент, гипсовые вяжущие и др.), которые для перевода в рабочее состояние затворяют водой (реже водными растворами солей);

органические (битумы, дегти, синтетические полимеры и олигомеры), которые переводят в рабочее состояние нагревом либо с помощью органических растворителей, либо сами они представляют собой вязкопластичные жидкости.

В строительстве в основном используют неорганические (минеральные) вяжущие вещества.

Далее для краткости неорганические вяжущие вещества будут называться просто вяжущим. Органические вяжущие так и будем называть (см. лекцию 9).

Подавляющее число неорганических вяжущих способно твердеть самопроизвольно, без создания каких-либо условий. Однако находят применение и вяжущие, которые твердеют при определенных условия и при введении специальных добавок, например вяжущие автоклавного твердения, способные твердеть только в среде насыщенного водяного пара при температуре 150...200°С и при повышенном давлении (в автоклаве). К последним относятся известково-кремнеземистые, известково-зольные, известково-шлаковые и другие вяжущие.

Главным качественным показателем вяжущих является отношение к воздействию воды. По этому признаку их делят на воздушные и гидравлические.

Воздушные вяжущие способны затвердевать и длительно сохранять прочность только на воздухе. По химическому составу можно выделить четыре группы воздушных вяжущих:

1 — известковые, состоящие, в основном, из гидрооксида кальция Са(ОН)2;

2 — гипсовые, состоящие из сульфата кальция (CaSO4 • 0,5Н2О или CaSO4);

3 — магнезиальные, главным компонентом которых служит MgO;

4 — жидкое стекло — раствор силиката натрия или калия. Последнее из-за способности сохранять прочность в кислых средах называют кислотоупорным вяжущим.

Гидравлические вяжущие способны твердеть и длительное время сохранять прочность не только на воздухе, но и в воде. Причем, находясь в воде, они могут повышать свою прочность. По химическому составу гидравлические вяжущие представляют собой сложные системы, состоящие в основном из соединений четырех оксидов: СаО - SiO2 - А12О3 - Fe2O3. Эти соединения образуют основные типы гидравлических вяжущих (приводятся в исторической последовательности):

1)  гидравлическая известь и романцемент;

2) силикатные цементы, состоящие преимущественно из силикатов кальция (портландцемент и его разновидности);  

3) алюминатные цементы, состоящие в основном из алюминатов кальция (глиноземистый цемент и его разновидности);

4) вяжущие эттрингитового типа, основными компонентами которых являются алюминаты кальция и сульфат кальция  (расширяющиеся и безусадочные цементы).

Главнейшие показатели качества вяжущих как воздушных, так и гидравлических,— прочность и скорость твердения.

Прочность вяжущих изменяется во времени, поэтому ее оценивают по прочности (обычно на сжатие и изгиб) стандартных образцов, твердевших определенное время в условиях, установленных стандартом. По этим показателям устанавливают марку вяжущего. Например, марка гипсовых вяжущих определяется по прочности образцов из гипсового теста спустя 2 ч после их изготовления, а портландцемента - по прочности образцов из цементно-песчаного раствора — через 28 суток твердения во влажных условиях при температуре (20 ± 2)° С.

Скорость твердения — другая не менее важная характеристика вяжущих. Очень высокой скоростью твердения обладают гипсовые вяжущие: они полностью затвердевают за несколько часов; очень медленно твердеет воздушная известь: процесс ее твердения длится сотни лет.

В процессе твердения строители различают две стадии: схватывание и набор прочности (собственно твердение). Такое членение процесса имеет весьма условный характер, но оно удобно для практических целей.

Схватывание — потеря тестом вяжущего пластично-вязких свойств и формирование структуры с молекулярными, ван-дер-ваальсовыми связями. Момент, когда появляются признаки загустевания теста, т. е. оно начинает терять пластичность, говорит о начале схватывания. Момент, когда тесто превращается в твердое тело, окончательно теряя пластичность, но не приобретая еще практически значимой прочности, называют концом схватывания. Сроки схватывания гипса 4...30 мин, портландцемента — несколько часов. Схватывание — явление, характерное для вяжущих, твердеющих по физико-химическому механизму (гипс, цементы). У простейших вяжущих (глина, известь), твердеющих в результате испарения воды, этап схватывания растягивается на очень длительный период времени, поэтому принято считать, что он просто отсутствует.

Сроки схватывания необходимо знать, так как все работы со смесями на основе вяжущих должны заканчиваться до начала их схватывания, пока они не потеряли пластичности. Повторное перемешивание после схватывания, особенно с добавлением воды, может привести к существенному снижению прочности материала на этом вяжущем.

2. Глина

Глина — осадочная горная порода, основные свойства которой определяются свойствами мельчайших частиц размером менее 5 мкм, которые принято называть глинами. В минералогической энциклопедии глинами называют частицы размером менее 2мкм. Глинистые частицы обычно имеют пластинчатое строение и хорошо смачиваются водой (гидрофильны). Благодаря большой общей поверхности частиц глина способна поглощать и удерживать большое количество воды (до 20...30 % по массе). При этом она разбухает и переходит в вязкопластичное состояние.

При высыхании глиняное тесто уменьшается в объеме (10...20 %): частицы глины, сближаясь, начинают прочно удерживаться друг около друга силами поверхностного натяжения тончайших пленок воды, остающейся между ними. Происходит затвердевание глины. Прочность высохшей глины достаточно велика (до 10 МПа).

Глиняное тесто при высыхании из-за сближения частиц дает значительную усадку. Чтобы уменьшить усадку и предотвратить растрескивание, в глиняное тесто добавляют более крупнозернистые материалы (песок, опилки).

При повторном увлажнении глина вновь размягчается, поэтому затвердевший глиняный материал необходимо предохранять от воздействия воды.

Глину в качестве вяжущего применяют как местный материал в сельском строительстве для штукатурных и кладочных растворов. Особенно широко применяют глины для кладки печей. Из глины с добавлением соломы получают также материал для кладки стен — саман.

Благодаря высокой пластичности и способности удерживать воду на поверхности своих тонкодисперсных частиц глину используют в качестве пластифицирующей добавки к цементу в строительных растворах.

3. Гипсовые вяжущие вещества

Гипсовые вяжущие — группа воздушных вяжущих веществ, в затвердевшем состоянии состоящих из двуводного сульфата кальция (CaSO4 • 2Н2О), включает в себя собственно гипсовые вяжущие (далее для краткости — гипс) и ангидритовые вяжущие (ангидритовый цемент и эстрихгипс).

Гипс (в строительной практике иногда используют устаревший термин алебастр от гр. alebastros — белый) — быстротвердеющее воздушное вяжущее, состоящее из полуводного сульфата кальция CaSO4 • 0,5Н2О, получаемого низкотемпературной (< 200° С) обработкой гипсового сырья.

Сырьем для гипса служит в основном природный гипсовый камень, состоящий из двуводного сульфата кальция (CaSO4•2Н2О) и различных механических примесей (глины и др.). В качестве сырья могут использоваться также гипсосодержащие промышленные отходы, например, фосфогипс, а также сульфат кальция, образующийся при химической очистке дымовых газов от оксидов серы с помощью известняка. Все это указывает на то, что проблем с сырьем для гипсовых вяжущих нет.

Получение гипса включает две операции:

- термообработку гипсового камня на воздухе при 150... 160°С; при этом он теряет часть химически связанной воды, превращаясь в полуводный сульфат кальция β-модификации:

CaSO4 • 2Н2О → CaSO4 • 0,5Н2О + 1,5Н2О

- тонкий размол продукта, который можно производить как до, так и после термообработки; гипс - мягкий минерал (твердость по шкале Мооса - 2), поэтому размалывается он очень легко.

Таким способом производится основное количество гипса; обычно для этого используют гипсоварочные котлы. Гипс β-модификации далее для краткости будем называть просто «гипс».

Доступность сырья, простота технологии и низкая энергоемкость производства (в 4...5 раз меньше, чем для получения портландцемента) делают гипс дешевым и привлекательным вяжущим.

Химизм твердения гипса заключается в переходе полуводного сульфата кальция при затворении его водой в двуводный:

CaSO4 • 0,5Н2О + l,5H2OCaSO4 • 2Н2О

Внешне это выражается в превращении пластичного теста в твердую камнеподобную массу.

Причина такого поведения гипса заключается в том, что полуводный гипс растворяется в воде почти в 4 раза лучше, чем двуводный (растворимость соответственно 8 и 2 г/л в пересчете на CaSO4). При смешивании с водой полуводный гипс растворяется до образования насыщенного раствора и тут же гидратируется, образуя двугидрат, по отношению к которому раствор оказывается пересыщенным. Кристаллы двуводного гипса выпадают в осадок, а полуводный вновь начинает растворяться и т. д. В дальнейшем процесс может идти по пути непосредственной гидратации гипса в твердой фазе.

Конечной стадией твердения, заканчивающегося через 1...2 ч, является образование кристаллического сростка из достаточно крупных кристаллов двуводного гипса. Часть объема этого сростка занимает вода (точнее, насыщенный раствор CaSO4 • 2Н2О в воде), не вступившая во взаимодействие с гипсом. Если высушить затвердевший гипс, то прочность его заметно (в 1,5...2 раза) повысится за счет дополнительной кристаллизации гипса из указанного выше раствора по местам контактов уже сформированных кристаллов. При повторном увлажнении процесс протекает в обратном порядке, и гипс теряет часть прочности.

Причина наличия свободной воды в затвердевшем гипсе объясняется тем, что для гидратации гипса нужно около 20% воды от его массы, а для образования пластичного гипсового теста — 50...60% воды. После затвердевания такого теста в нем останется 30...40 % свободной воды, что составляет около половины объема материала. Этот объем воды образует поры, временно занятые водой, а пористость материала, как известно, определяет многие его свойства (плотность, прочность, теплопроводность и др.).

Разница между количеством воды, необходимым для твердения вяжущего и для получения из него удобоформуемого теста,— основная проблема технологии материалов на основе минеральных вяжущих.

Для гипса проблема снижения водопотребности и, соответственно, снижения пористости и повышения прочности была решена путем получения гипса термообработкой не на воздухе, а в среде насыщенного пара (в автоклаве при давлении 0,3...0,4 МПа) или в растворах солей (СаС12MgCl2 и др.). В этих условиях образуется другая кристаллическая модификация полуводного гипса — α-гипс, имеющая водопотребность 35...40 %.

Гипс α-модификации называют высокопрочным гипсом, так как благодаря пониженной водопотребности он образует при твердении менее пористый и более прочный камень, чем обычный гипс β-модификации. Из-за трудностей производства высокопрочный гипс не нашел широкого применения в строительстве.

Технические свойства гипса. Истинная плотность полуводного гипса — 2,65...2,75 г/см3 (двуводного — 2,32 г/см5); насыпная плотность полуводного гипса — 800... 1100 кг/м3.

По срокам схватывания, определяемым на приборе Вика гипс делят на три группы (А, Б, В):

Вид гипса

Начало схватывания

Конец схватывания

Быстротвердеющий (А)

Не ранее 2 мин

Не позднее 15 мин

Нормальнотвердеющий (Б)

Не ранее 6 мин

Не позднее 30 мин

Медленнотвердеющий (В)

Не ранее 20 мин

Не нормируется

Замедляют схватывание гипса добавкой столярного клея, сульфит-носпиртовой барды (ССБ), технических лигносульфонатов (ЛСТ), кератинового замедлителя, а также борной кислоты, буры и полимерных дисперсий (например, ПВА).

Марку гипса определяют испытанием на сжатие и изгиб стандартных образцов-балочек 4 х 4 х 16 см спустя 2 ч после их формования. За это время гидратация и кристаллизация гипса заканчивается.

Установлено 12 марок гипса по прочности от Г-2 до Г-25 (цифра показывает нижний предел прочности при сжатии данной марки гипса в МПа):

В строительстве используется в основном гипс марок от Г-4 до Г-7.

По тонкости помола, определяемой максимальным остатком пробы гипса при просеивании на сите с отверстиями 0,2 мм, гипсовые вяжущие делят на три группы: грубый, средний, тонкий.

Плотность затвердевшего гипсового камня низкая (1200... 1500 кг/м3) из-за значительной пористости (60...30 % соответственно).

Гипсовое вяжущее — одно из немногих вяжущих, расширяющихся при твердении: увеличение в объеме достигает 0,2 %. Эта особенность гипсовых вяжущих позволяет применять их без заполнителей, не боясь растрескивания от усадки.

При увлажнении затвердевший гипс не только существенно (в 2...3 раза) снижает прочность, но и проявляет нежелательное свойство — ползучесть — медленное необратимое изменение размеров и формы под нагрузкой. Характер водной среды во влажном гипсе — нейтральный (рН = 6,5...7,5), и она содержит ионы Са+2 и SO-24, поэтому стальная арматура в гипсе корродирует. Увлажнению гипса способствует его гигроскопичность — способность поглощать влагу из воздуха.

Гипс хорошо сцепляется с древесиной и поэтому его целесообразно армировать деревянными рейками, картоном или целлюлозными волокнами и наполнять древесными стружками и опилками.

Гипсовые материалы не только являются негорючими материалами, но в силу своей пористости замедляют передачу теплоты, а при действии высоких температур в результате термической диссоциации выделяют воду, тем самым тормозя распространение огня.

В сухих условиях эксплуатации или при предохранении от действия воды (гидрофобизирующие покрытия, пропитки и т. п.) гипс очень перспективное с технической и экологической точек зрения вяжущее.

Области применения. Главнейшая область применения гипса — устройство перегородок. Они могут быть заводского изготовления в виде панелей «на комнату», из гипсовых камней или из гипсокартонных листов. Последние также широко применяют для отделки стен и потолков. Гипсоволокнистые материалы используют как выравнивающий слой под чистые полы. Из гипса делают акустические плиты. В различных вариантах его применяют для огнезащитных покрытий металлических конструкций. Небольшое по объему, но важное направление использования гипса: декоративные архитектурные детали (лепнина) и скульптура.

Гипс используют для изготовления форм (например, для керамики)

- формовочный гипс и в медицине для фиксации при переломах -
медицинский гипс. Два последних вида гипса отличаются от строительного несколько повышенными требованиями к тонкости помола и
химическому составу.

Местные вяжущие материалы из гипсосодержащих пород. В районах Средней Азии и Закавказья применяют местные вяжущие — ганч и гажу. Их получают из пород, содержащих гипс (20...60 %) и глину (80...40 %). Ганч и гажа по свойствам напоминают обычный гипс, отличаясь от него более медленным схватыванием. Эти вяжущие используют для штукатурных и художественных работ.

Ангидритовое вяжущее и высокообжиговый гипс — медленносхва-тывающиеся и медленнотвердеющие вяжущие, состоящие из безводного сульфата кальция CaSO4 и активизаторов твердения.

Безводный сульфат кальция существует в природе в виде минерала -ангидрита, однако даже в тонкоразмолотом состоянии он не обнаруживает вяжущих свойств.

Высокообжиговый гипс (эстрих-гипс) получают обжигом природного гипсового камня CaSO4 • 2Н2О до высоких температур (800...950° С). При этом происходит его частичная диссоциация с образованием СаО. Последний служит активизатором твердения ангидрита. Окончательным продуктом твердения такого вяжущего является двуводный гипс, определяющий эксплуатационные свойства материала.

Технологические свойства эстрих-гипса существенно отличаются от свойств обычного гипса. Сроки схватывания эстрих-гипса: начало не ранее 2 ч, конец - не нормируется. Благодаря пониженной водопотребности (у эстрих-гипса она составляет 30...35 % против 50...60 % у обычного гипса) эстрих-гипс после затвердевания образует более плотный и прочный материал. Прочность образцов-кубов из раствора жесткой консистенции состава вяжущее: песок =1:3 через 28 суток твердения во влажных условиях — 10...20 МПа. По этому показателю устанавливают марку эстрих-гипса: 100; 150 или 200 (кгс/см2).

Эстрих-гипс применяли в конце XIX — начале XX вв. для кладочных и штукатурных растворов (в том числе и для получения искусственного мрамора), устройства бесшовных полов, оснований под чистые полы и т. п. В настоящее время это вяжущее применяют ограниченно. Весьма вероятно появление интереса к этому вяжущему в недалеком будущем.

4. Магнезиальные вяжущие

Магнезиальные вяжущие вещества (каустический магнезит MgO и каустический доломит MgO + СаСО3) — тонкодисперсные порошки, активной частью которых является оксид магния.

Получают магнезиальные вяжущие умеренным (до 700...800° С) обжигом магнезита (реже доломита). При этом карбонат магния диссоциирует с образованием оксида магния MgCO3MgO + СО2, а карбонат кальция СаСО3 (в доломите) остается без изменения и является балластной частью вяжущего. Обожженный продукт размалывают.

При затворении водой оксид магния гидратируется очень медленно, проявляя слабые вяжущие свойства. Магнезиальные вяжущие принято затворять раствором хлорида или сульфата магния. В этом случае гидратация протекает значительно быстрее с образованием гидрата оксихлорида магния (3MgOMgCl2 • 6Н2О), уплотняющего образующийся материал.

Сроки схватывания каустического магнезита зависят от температуры обжига и тонкости помола и обычно находятся в пределах: начало - не ранее 20 мин; конец - не позднее 6 ч.

Твердение начинается интенсивно, и через сутки вяжущее достигает прочности 10... 15 МПа; через 28 суток воздушного твердения прочность составляет 30...50 МПа. В жестких смесях прочность может достигать 100 МПа.

Магнезиальные вяжущие в XIX — начале XX в. применялись для устройства бесшовных монолитных, так называемых ксилолитовых полов. Ксилолит (от гр. xelon — древесина) — бетон на магнезиальном вяжущем с наполнителем из древесных опилок. Серьезных перспектив у магнезиальных вяжущих из-за дефицитности сырья (магнезиты необходимы для получения огнеупоров) нет, но в последнее время они вновь начали применяться в отечественном строительстве.

 

5. Растворимое стекло и кислотоупорный цемент

Растворимое стекло — силикаты натрия (Na2OmSiO2) или калия (К2О•mSiO2), где m — модуль стекла, находящийся в пределах для натриевого стекла 2,0...3,5, а для калиевого 3,5...4,5. Растворимое стекло получают сплавлением смеси кварцевого песка соответственно с содой Na2CO3 (или сульфатом натрия Na2SO4) и поташем К2СО3 в стекловаренных печах при 1300...1400°С. Образовавшийся расплав быстро охлаждают. При этом он распадается на полупрозрачные желто-зеленые куски, называемые силикат-глыбой.

В строительстве обычно используют раствор силикат-глыбы в воде - жидкое стекло (в быту такой раствор называют силикатный клей).
Растворение производится в автоклаве насыщенным паром. Плотность раствора 1,5...1,3 г/см
3, что соответствует концентрации раствора 70...50 %.

При растворении в воде силикаты натрия и калия гидролизуются с образованием коллоидного раствора кремневой кислоты Si(OH)4 и соответствующих щелочных гидроксидов. В этих условиях (рН = 12...13) раствор кремневой кислоты относительно стабилен. Жидкое стекло имеет повышенную вязкость из-за того, что кремнекислота в нем находится в полимеризованном виде. При обезвоживании (испарении или отсасывании воды) или при нейтрализации щелочей (например, углекислым газом воздуха) раствор теряет стабильность и переходит в гель, уплотняющийся со временем и приобретающий значительную прочность. Так, растворимое стекло проявляет вяжущие свойства. В обычных условиях этот процесс может идти очень долго, поэтому используют добавки — ускорители твердения.

Жидкое стекло применяют для изготовления кислотоупорных и жаростойких замазок и бетонов, а также как связующее в силикатных красках (только калиевое стекло).

Кислотоупорный цемент изготовляют из тонко измельченной смеси кислотоупорного наполнителя (кварца, диабаза, андезита и т. п.) и ускорителя твердения — кремнефтористого натрия Na2SiF6. Название «цемент» для такого порошка имеет условный характер, так как сам он вяжущими свойствами не обладает и при смешивании с водой не твердеет. Вяжущим веществом в таких цементах является жидкое стекло, которым этот «цемент» и затворяют.

Ориентировочное количество Na2SiF6 от массы растворимого стекла (т. е. сухого вещества в составе жидкого стекла) в кислотоупорных растворах и бетонах составляет 10...15 %.

Сроки схватывания кислотоупорного цемента: начало — не ранее 20 мин., конец — не позднее 8 ч. У этого цемента нормируется предел прочности при растяжении после 28 суток твердения — не менее 2,0 МПа. Прочность при сжатии бетонов на кислотоупорном цементе составляет 20...60 МПа.

Основным достоинством и отличием кислотоупорного цемента от других неорганических вяжущих является способность работать в условиях действия большинства кислот (за исключением плавиковой и фосфорной).

Кислотостойкость — сохранение массы при испытании в кислоте — не менее 93 %.

Однако при длительном воздействии воды, пара и растворов щелочей бетоны и растворы на жидком стекле теряют прочность.

6. Воздушная известь

Известь известна человечеству не одно тысячелетие и все это время активно используется им в строительстве и многих других отраслях. Это объясняется доступностью сырья, простотой технологии и достаточно хорошими свойствами извести.

Сырьем для получения извести служат широко распространенные осадочные горные породы: известняки, мел, доломиты, состоящие преимущественно из карбоната кальция (СаСО3). Если куски таких пород прокалить на огне, то карбонат кальция перейдет в оксид кальция:

СаСО3 → СаО + СО2

После прокаливания куски, теряя с углекислым газом 44 % своей массы, становятся легкими и пористыми. При смачивании водой они бурно реагируют с ней, превращаясь в тонкий порошок, а при избытке воды в пластичное тесто. Этот процесс, сопровождающийся сильным выделением теплоты и разогревом воды вплоть до кипения, называют гашением извести. Образующееся при избытке взятой воды пластичное тесто используют в качестве вяжущего. При испарении воды тесто загустевает и переходит в камневидное состояние. Недостаток извести — медленное твердение: процесс набора прочности твердеющей известью растягивается на годы и десятилетия. В реальные сроки строительства прочность затвердевшей извести, как правило, не превышает 0,5...2 МПа.

Производство. Сырье — карбонатные породы (известняки, мел, доломиты), содержащие не более 6...8 % глинистых примесей, обжигают в шахтных или вращающихся печах при температуре 1000... 1200° С. В процессе обжига СаСО3 и MgCO3, содержащиеся в исходной породе, разлагаются на оксиды кальция СаО и магния MgO и углекислый газ. Неравномерность обжига может привести к образованию в извести недожога и пережога.

Недожог (неразложившийся СаСО3), получающийся при слишком низкой температуре обжига, снижает качество извести, так как не гасится и не обладает вяжущими свойствами.

Пережог образуется при слишком высокой температуре обжига в результате сплавления СаО с примесями кремнезема и глинозема. Зерна пережога медленно гасятся и могут вызвать растрескивание и разрушение уже затвердевшего материала.

Куски обожженной извести — комовая известь — обычно подвергают гашению водой:

СаО + Н2О → Са(ОН)2 + 1160 кДж/кг

Выделяющаяся при гашении теплота резко повышает температуру извести и воды, которая может даже закипеть (поэтому негашеную известь называют кипелкой).

При гашении куски комовой извести увеличиваются в объеме и распадаются на мельчайшие (до 1 мкм) частицы.

В зависимости от количества взятой для гашения воды получают: гидратную известь - пушонку (35…40 % воды от массы извести, т. е. в количестве, необходимом для протекания реакции гидратации — процесса гашения); известковое тесто (воды в 3...4 раза больше, чем извести), известковое молоко (количество воды превышает теоретически необходимое в 8... 10 раз).

Виды воздушной извести. По содержанию оксидов кальция и магния воздушная известь бывает:

кальциевая — MgO не более 5 %;

магнезиальная — MgO > 5...20 %;

доломитовая — MgO > 20...40 %.

По виду поставляемого на строительство продукта воздушную известь подразделяют на негашеную комовую (кипелку), негашеную порошкообразную (молотую кипелку) и гидратную (гашеную, или пушонку).

Негашеная комовая известь предстаатяет собой мелкопористые куски размером 5...10см, получаемые обжигом известняка. В зависимости от содержания, активных СаО + MgO и количества негасящихся зерен комовую известь разделяют на три сорта.

По скорости гашения комовая известь бывает:

Вид извести

Время достижения максимальной температуры, мин

Быстрогасящаяся

Среднегасящаяся

Медленногасящаяся

<8

8...25 

>25

Негашеную порошкообразную известь получают помолом комовой в шаровых мельницах в тонкий порошок. Часто в известь во время помола вводят активные добавки (гранулированные доменные шлаки, золы ТЭС и т. п.) в количестве 10...20 % от массы извести. Порошкообразная известь, как и комовая, делится на три сорта.

Преимущество порошкообразной извести перед комовой состоит в том, что при затворении водой она ведет себя подобно гипсовым вяжущим: сначала образует пластичное тесто, а через 20...40 мин схватывается. Это объясняется тем, что вода затворения, образующая тесто, частично расходуется на гашение извести.

При использовании порошкообразной извести воды берут 100...150 % от массы извести в зависимости от качества извести и количества активных добавок в ней. Определяют количество воды опытным путем.

Гидратная известь (пушонка) — тончайший белый порошок, получаемый гашением извести, обычно в заводских условиях, небольшим количеством воды (несколько выше теоретически необходимого). При гашении в пушонку известь увеличивается в объеме в 2...2,5 раза. Насыпная плотность пушонки — 400...450 кг/м3; влажность — не более 5 %.

Гашение извести можно производить как на строительстве объекта, так и централизованно. В последнем случае гашение совмещается с мокрым помолом непогасившихся частиц, что увеличивает выход извести и улучшает ее качество.

На строительстве известь гасят в гасильных ящиках (творилах). В ящик загружают комовую известь не более чем на 1/3 его высоты (толщина слоя обычно около 100 мм), поскольку при гашении известь увеличивается в объеме в 2,5...3,5 раза. Быстрогасящуюся известь заливают сразу большим количеством воды, чтобы не допустить перегрева и кипения воды, медленногасящуюся — небольшими порциями, следя за тем, чтобы известь не охладилась. Из 1 кг извести в зависимости ох ее качества получается 2...2,5 л известкового теста. Этот показатель называют «выход теста».

Воздушная известь — единственное вяжущее, которое превращается в тонкий порошок не только размолом, но и путем гашения водой.

Колоссальная удельная поверхность частиц Са(ОН)2 и их гидрофильность обусловливает большую водоудерживающую способность и пластичность известкового теста. После отстаивания известковое тесто содержит около 50% твердых частиц и 50% воды. Каждая частица окружена тонким слоем адсорбированной воды, играющей роль своеобразной смазки, что обеспечивает высокую пластичность известкового теста и смесей с использованием извести.

По окончании гашения жидкое известковое тесто через сетку сливают в известехранилище, где его выдерживают до тех пор, пока полностью не завершится процесс гашения (обычно не менее двух недель). Известковое тесто с размером непогасившихся зерен менее 0,6 мм можно применять сразу. Крупные непогасившиеся зерна опасны тем, что среди них могут быть пережженные зерна (пережог).

Содержание воды в известковом тесте не нормируется. Обычно в хорошо выдержанном тесте соотношение воды и извести около 1:1.

Твердение. Известковое тесто состоит из насыщенного водного раствора Са(ОН)2 и мельчайших нерастворившихся частиц извести; По мере испарения из него воды образуется пересыщенный раствор Са(ОН)2, из которого выпадают кристаллы, увеличивающие содержание твердой фазы. При этом происходит усадка твердеющей системы, которая в определенных условиях (например, при твердении известковой смеси на жестком основании — штукатурный слой) может вызвать растрескивание материала. Поэтому известь всегда применяют с заполнителями (например, известково-песчаные растворы) или в смеси с другими вяжущими для придания материалу пластичности.

Известковое тесто, защищенное от высыхания, неограниченно долго сохраняет пластичность, т. е. у такой извести «отсутствует» процесс схватывания. Затвердевшее известковое тесто при увлажнении вновь переходит в пластичное состояние (известь — неводостойкий материал).

Однако при длительном твердении (десятилетия) известь приобретает довольно высокую прочность и относительную водостойкость (например, в кладке старых зданий). Это объясняется тем, что на воздухе известь реагирует с углекислым газом, образуя нерастворимый в воде и довольно прочный карбонат кальция, т. е. как бы обратно переходит в известняк:

Са(ОН)2 + СО2 → СаСО3 + Н2О

Процесс этот очень длительный, и полной карбонизации извести практически не происходит.

Существует мнение, что при длительном контакте извести с кварцевым песком в присутствии влаги между этими компонентами происходит взаимодействие с образованием контактного слоя из гидросиликатов. Это так же повышает прочность и водостойкость бетонов и кирпичной кладки на извести, имеющих возраст более 200...300 лет.

Применение, транспортирование, хранение. Воздушную известь применяют для приготовления кладочных и штукатурных растворов как самостоятельное вяжущее, так и в смеси с цементом; при производстве силикатного кирпича и силикатобетонных изделий; для получения смешанных вяжущих (известково-шлаковых, известково-зольных и др.) и для красок.

Негашеную известь, особенно порошкообразную, при транспортировании и хранении предохраняют от увлажнения. Порошкообразная известь - кипелка гасится даже влагой, содержащейся в воздухе. Максимальный срок хранения молотой извести в бумажных мешках 25 сут, в герметичной таре (металлические барабаны) — не ограничен.

Комовую известь транспортируют навалом в закрытых вагонах и автомашинах, порошкообразную — в бумажных мешках, а также в специальных автоцистернах. В таких же цистернах перевозят пушонку и известковое тесто.

Хранят комовую известь в сараях с деревянным полом, поднятым над землей на 30 см. Недопустимо попадание на известь воды, так как это может вызвать ее разогрев и пожар. На складах извести тушение пожара водой запрещается.

7. Гидравлические известьсодержащие вяжущие

Низкая водостойкость извести всегда побуждала людей искать пути ликвидации этого недостатка. Еще в Древнем Риме был найден способ получения водостойкого вяжущего на основе извести. Помогло римлянам в этом наличие вулкана Везувия. Они обнаружили, что при добавлении вулканического пепла к извести образующаяся смесь после твердения на воздухе в течение 7...14 дн. далее могла твердеть в воде (более того, именно влажные условия были обязательны для набора прочности!). Это было первое гидравлическое вяжущее. Добавки из вулканических пород (пепла, туфа и т. п.) впоследствии получили название гидравлические или пуццолановые (по названию местечка у подножия Везувия, где они добывались). Римские постройки (мосты, акведуки, бани-термы и т. п.) на таких смешанных вяжущих сохранились до сих пор.

В Древней Руси проблема придания извести водостойкости была решена несколько иным путем. Там в роли гидравлической добавки использовали молотый бой кирпича; такую смесь на Руси называли цемянкой.

Механизм твердения этих вяжущих заключается в образовании из смеси извести, активных кремнезема и глинозема (пепла, молотого кирпича и т. п.) и воды водонерастворимых гидросиликатов и гидроалюминатов:

nСа(ОН)2 + SiO2 + mH2OnСаО • SiO2mH2O

Другой путь получения водостойких вяжущих на основе извести также был найден очень давно. Он базировался на обжиге известняков, имеющих примесь глины от 6 до 20%. В этом случае в обожженном продукте помимо СаО появлялись низкоосновные силикаты и алюминаты (например, 2СаО • SiO2), способные к твердению в воде. Естественно, механизм твердения этих вяжущих был расшифрован только в XX в. Все эти вяжущие в несколько измененном виде применяют до сих пор.

Современные известьсодержащие вяжущие гидравлического твердения — группа низкомарочных (малопрочных) так называемых местных вяжущих. В эту группу входят смешанные вяжущие (известково-пуццолановые и известково-шлаковые), а также гидравлическая известь.

Смешанные вяжущие получают совместным измельчением негашеной извести (10...30%), гидравлической добавки (85...70%) и гипса (до 5%). В качестве добавки используют горные породы, содержащие активный кремнезем: вулканический пепел, пемзу, туф, диатомит, трепел и др. Такие вяжущие называют известково-пуццолановыми. Если в качестве добавки взят доменный гранулированный шлак, такие вяжущие называют известково-шлаковыми.

Известьсодержащие гидравлические вяжущие на начальной стадии (около 7 дн) должны твердеть в сухих условиях, а затем во влажных. По пределу прочности при сжатии стандартных образцов через 28 суток твердения известьсодержащие вяжущие делятся на марки 50; 100; 150 и 200 (кг/см2).

Известьсодержащие гидравлические вяжущие применяют для приготовления растворов для кладки подземных частей зданий и бетонов. Срок хранения таких вяжущих из-за наличия в них негашеной извести не должен превышать 30 суток, причем во время хранения их тщательно предохраняют от увлажнения.

Строительная гидравлическая известь — продукт умеренного обжига при температуре 900... 1100° С мергелистых известняков (содержание глины 8..20 %). В состав гидравлической извести входят свободные оксиды кальция и магния (50...65 %) и низкоосновные силикаты и алюминаты кальция, которые и придают извести гидравлические свойства.

Гидравлическая известь, смоченная водой, полностью гасится, образуя пластичное тесто. В отличие от воздушной она быстрее твердеет, приобретая со временем водостойкость. Однако первые 1...2 недели гидравлическая известь должна твердеть в воздушно-влажных условиях, и только после этого ее можно помещать в воду.

Предел прочности при сжатии затвердевшей гидравлической извести 2...5 МПа. Применяют ее для низкомарочных растворов и бетонов, используемых в том числе и во влажных условиях.

8. Портландцемент

Гидравлическая известь обладает рядом недостатков. Главные из них: необходимость твердения на воздухе первые 7... 14 сут, низкие прочность, морозо- и воздухостойкость. Поэтому велись поиски более совершенного вяжущего вещества. Практически одновременно (1824— 1825) независимо друг от друга Егор Челиев в России и Джозеф Аспдин в Англии путем высокотемпературного обжига до спекания смеси известняков и глины получили вяжущее, обладающее большей водостойкостью и прочностью. Производство нового вяжущего, названного впоследствии портландцементом, совершенствовалось и быстро расширялось. Уже в начале XX в. портландцемент стал одним из основных строительных материалов.

Портландцемент — гидравлическое вяжущее, получаемое тонким измельчением портландцементного клинкера и небольшого количества гипса (1,5...3 %). Клинкер получают обжигом до спекания сырьевой смеси, обеспечивающей в портландцементе преобладание силикатов кальция. К клинкеру для замедления схватывания цемента добавляют гипс. Для улучшения некоторых свойств и снижения стоимости портландцемента допускается введение минеральных добавок.

Кроме портландцемента на основе портландцементного клинкера выпускают много других видов цементов.

Производство. Основные операции при получении портландцемента: приготовление сырьевой смеси, обжиг ее до получения цементного клинкера и помол клинкера совместно с добавками.

Соотношение компонентов сырьевой смеси выбирают с таким расчетом, чтобы полученный при обжиге клинкер имел следующий химический состав (%): СаО — 62...68, SiO2 — 18..26, А12О3 — 4...9, Fe2O3 — 2...6. В природе есть горная порода, обеспечивающая получение клинкера такого состава,— мергель, который представляет собой тесную смесь известняка с глиной. Но чаще используют известняк и глину (добываемые отдельно) в соотношении 3 : 1 (по массе). Кроме основных компонентов в сырьевую смесь вводят корректирующие добавки и промышленные отходы, обеспечивающие требуемый состав клинкера.

Тщательно подготовленную сырьевую смесь подают на обжиг во вращающуюся печь, которая представляет собой стальную трубу диаметром до 7 м и длиной до 185 м. Изнутри труба выложена огнеупорным кирпичом. Печь установлена под небольшим (3...4о) углом к горизонту и вращается (0,8... 1,3 мин-1), благодаря чему сырьевая смесь перемещается в ней от верхнего конца к нижнему, куда подается топливо. Максимальная температура обжига 1450°С. При таких высоких температурах оксид кальция СаО, образовавшийся в результате разложения известняка, взаимодействует с кислотными оксидами SiO2, А12О3 и Fe2O3, образующимися при разложении глины.

Таблица 8.1. Минеральный состав портлацщементного клинкера

Минерал

Формула

Количество, %

Трехкальциевый силикат (алит)

ЗСаО• SiO2(C3S)

42...65

Двухкальциевый силикат (белит)

2СаО• SiO2(C2S)

12...35

Трехкальциевый алюминат

ЗСаО• А12О33А)

4...14

Четырехкальциевый алюмоферрит

4СаОА12О3•Fe2O3 (C4AF)

10...18

В скобках сокращенное обозначение клинкерных минералов.

Продукты взаимодействия, частично плавясь и спекаясь друг с другом, образуют так называемый портландцементный клинкер — плотные твердые куски серого цвета. В состав портландцементного клинкера входят четыре основных минерала (табл. 8.1) и небольшое количество стеклообразного вещества.

Как видно из таблицы, портландцементный клинкер в основном (на 60...80%) состоит из силикатов кальция, из-за чего портландцемент также называют силикатным цементом.

Для получения портландцемента клинкер размалывают в трубных или шаровых мельницах с гипсом и другими добавками. Свойства портландцемента зависят от его минерального состава и тонкости помола клинкера.

При взаимодействии с влагой воздуха активность портландцемента падает, поэтому его предохраняют от действия влаги. Портландцемент хранят в силосах (высоких цилиндрических емкостях из бетона или металла). На строительство его доставляют в специальных вагонах, автомобилях-цементовозах или упакованным в многослойные бумажные или полиэтиленовые мешки.

Твердение. При смешивании с водой частицы портландцемента
начинают растворяться, причем одновременно может происходить гидролиз (разложение водой) и гидратация (присоединение воды) продуктов растворения с образованием гидратных соединений.

По этой схеме (гидролиз и гидратация) взаимодействуют с водой главные компоненты клинкера алит C3S и белит C2S:

2(ЗСаО • SiO2) + 6Н2О → ЗСаО • SiO2 • ЗН2О + ЗСа(ОН)2

2(2СаО• SiO2) + 4Н2О→ ЗСаО  •  SiO2  •  ЗН2О + Са(ОН)2

Необходимо подчеркнуть особенности этих реакций:

C3S взаимодействует с водой намного активнее, чем C2S;

•при взаимодействии силикатов кальция с водой выделяется
растворимый в воде компонент Са(ОН)
2 — воздушная известь, создающая щелочную реакцию в твердеющем цементе;

C3S выделяет Са(ОН)2 в 3 раза больше, чем C2S; общее количество Са(ОН)2 достигает 15 % от массы цементного камня.

Алюминат кальция С3А подвергается только гидратации, причем этот процесс идет очень быстро с образованием крупных кристаллов

ЗСаО  • А12О3 + 6Н2О → ЗСаО •  А12О3 • 6Н2О

Добавка гипса, вводимая при помоле клинкера, изменяет характер начального периода твердения С3А и замедляет схватывание цемента на несколько часов из-за образования эттрингита ЗСаО • А12О3 • 3CaSO4 • (31 - 33)Н2О.

Четырехкальциевый алюмоферрит C4AF взаимодействует с водой медленнее, чем С3А, образуя гидроалюминат и гидроферрит кальция.

Основной продукт твердения портландцемента — гидросиликаты кальция — практически нерастворимы в воде. Они выпадают из раствора сначала в виде геля (жесткого студня). Этот гель пронизывают, укрепляя его, кристаллы Са(ОН)2. Гель гидросиликатов кальция со временем кристаллизуется. Остальные продукты взаимодействия клинкера с водой также участвуют в формировании структуры цементного камня и, естественно, влияют на его свойства.

Процесс гидратации зерен портландцемента из-за малой их растворимости растягивается на длительное время (месяцы и годы). Чтобы этот процесс мог протекать, необходимо постоянное присутствие воды в твердеющем материале. Однако нарастание прочности со временем замедляется. Поэтому качество цемента принято оценивать по прочности, набираемой им в первые 28 суток твердения.

Технические характеристики портландцемента. К основным характеристикам портландцемента относятся истинная и насыпная плотность, тонкость помола, сроки схватывания, равномерность изменения объема при твердении и прочность затвердевшего цементного камня.

Плотность портландцемента в зависимости от вида и количества добавок составляет 2900...3200 кг/м3, насыпная плотность в рыхлом состоянии 1000... 1100 кг/м3, в уплотненном — до 1700 кг/м3.

Тонкость помола характеризуется количеством цемента, проходящим через сито с сеткой № 008 (размер отверстий 0,08 мм) и его удельной поверхностью. Согласно ГОСТу через сито с сеткой № 008 должно проходить не менее 95 % цемента, при этом удельная поверхность у обычного портландцемента должна быть в пределах 2900...3000 см2/г и у быстротвердеющего портландцемента 3500...5000 см2/г.

Сроки схватывания портландцемента, рассчитываемые от момента затворения, должны быть: начало — не ранее 45 мин; конец — не позднее 10 ч. Эти показатели определяют при температуре 20°С. Если цемент затворяют горячей водой (более 40°С), может произойти очень быстрое схватывание.

Прочность портландцемента характеризуется его маркой. Марку портландцемента определяют по пределу прочности при сжатии и изгибе образцов-балочек 40х40х160 мм, изготовленных из цементно-песчаного раствора (состава 1 : 3) стандартной консистенции и твердевших 28 суток (первые сутки в формах на влажном воздухе и 27 сут. в воде при 20°С).

Промышленность выпускает портландцемент четырех марок: 400; 500; 550 и 600 (цифра соответствует округленной в сторону уменьшения средней прочности образцов при сжатии выраженной в кгс/см2).

Тепловыделение при твердении. Твердение портландцемента сопровождается выделением большого количества теплоты. Так как эта теплота выделяется в течение длительного времени (дни, недели), заметного разогрева цементного бетона или раствора не происходит. Однако если объем бетона велик (например, при бетонировании плотин, массивных фундаментов), то потери теплоты в окружающее пространство будут незначительны по сравнению с общим количеством выделяющейся теплоты и возможен разогрев бетона до температуры 70...80° С, что приведет к его растрескиванию.

Равномерность изменения объема. При твердении цементное тесто уменьшается в объеме. Усадка на воздухе составляет около 0,5... 1 мм/м. При твердении в воде цемент немного набухает (до 0,5 мм/м). Однако изменение объема при твердении должно быть равномерным. Это свойство проверяют на лепешках из цементного теста, которые не должны растрескиваться после пропаривания в течение 3 ч (до пропаривания лепешки 24 ч твердеют на воздухе). Неравномерность изменения объема возникает из-за присутствия в цементе свободных СаО и MgO, находящихся в виде пережога.

9. Разновидности портландцемента

Для удовлетворения требований современного строительства к цементам промышленность на основе портландцементного клинкера выпускает различные виды портландцемента.

Быстротвердеющий портландцемент (БТЦ) отличается быстрым ростом прочности в первые дни твердения. Выпускают БТЦ двух марок: 400 и 500, которые в трехсуточном возрасте должны иметь предел прочности при сжатии соответственно не ниже 25 и 28 МПа.

В составе БТЦ преобладают активные минералы: трехкальциевый силикат C3S — 50...55 % и трехкальциевый алюминат С3А— 5... 10 %. Тонкость помола у БТЦ выше, чем у обычного портландцемента (удельная поверхность до 5000 см2/г), поэтому при хранении он, впитывая пары воды из воздуха, комкуется и быстро теряет активность. БТЦ применяют для бетонов сборных конструкций с повышенной отпускной прочностью и монолитных конструкций. Коррозионная стойкость у БТЦ пониженная.

Пластифицированный портландцемент получают, добавляя к клинкеру при помоле гидрофильные поверхностно-активные вещества (например, сульфитно-спиртовую барду ССБ) в количестве 0,15...0,25 %. Такой цемент повышает пластичность бетонных и растворных смесей по сравнению с обычным портландцементом при одинаковом расходе воды. Это позволяет уменьшить расход портландцемента, повысить прочность и морозостойкость бетонов и растворов.

Гидрофобный портландцемент получают, добавляя к клинкеру при помоле гидрофобные поверхностно-активные вещества ПАВ (0,05...0,5 % от массы цемента), образующие на зернах цемента водоотталкивающие пленки. В качестве таких добавок используют главным образом отходы переработки нефти (мылонафт, асидол).

Гидрофобный портландцемент благодаря наличию защитных пленок при хранении и транспортировании даже во влажных условиях не намокает, не комкуется и почти не теряет своей активности.

При перемешивании гидрофобного цемента с водой и заполнителями ПАВ сдирается с цементных зерен и переходит в состав бетона или раствора. Поэтому бетонные и растворные смеси на гидрофобном цементе отличаются повышенной пластичностью, а после затвердевания — повышенной морозостойкостью и водонепроницаемостью.

Применяется гидрофобный цемент в тех случаях, когда трудно обеспечить необходимые условия хранения обычного цемента.

Сульфатостойкий портландцемент изготовляют из клинкера с пониженным содержанием трехкальциевого силиката C3S (не более 50 %) и трехкальциевого алюмината С3А (не более 5%). При таком составе цемента уменьшается возможность образования в цементном камне гидросульфоалюмината кальция («цементной бациллы») и тем самым повышается стойкость бетона к сульфатной коррозии. Кроме того, сульфатостойкий цемент характеризуется пониженным тепловыделением при твердении. Сульфатостойкий цемент выпускают марок 300, 400, 500.

Белый портландцемент получают из белых каолиновых глин и чистых известняков или мела с минимальным содержанием окислов железа, марганца и хрома. В таком цементе практически нет алюмоферрита кальция С4АF, имеющего серо-зеленый цвет. На основе белого цемента и щелочестойких пигментов (сурика, ультрамарина и др.) получают цветные цементы. Марки таких цементов 300, 400 и 500. Применяют белый и цветные цементы для отделочных работ.

10. Портлавдцементы с минеральными добавками

Цементный клинкер — энергоемкий в производстве и дорогостоящий продукт. Поэтому во всех случаях, когда это допустимо, его заменяют более дешевыми природными продуктами или промышленными отходами. К таким смешанным цементам относятся шлакопортландцемент, пуццолоновый цемент и кладочные цементы.

Шлакопортландцемент получают путем совместного помола доменного гранулированного шлака (21...80 %), портландцементного клинкера (79...20 %) и гипса (не более 5 %).

Доменный шлак — отход производства чугуна (на 1 т чугуна приходится около 0,6 т шлака), поэтому шлакопортландцемент экономически выгоднее, чем портландцемент. Выпуск шлакопортландцемента в России составляет около 1/3 от общего выпуска цемента. Химический состав доменного гранулированного шлака близок к составу клинкера. К самостоятельному твердению шлак не способен, но в присутствии портландцемента и гипса он проявляет вяжущие свойства.

Шлакопортландцемент выпускают трех марок: 300, 400 и 500. По коррозионной стойкости и водостойкости он превосходит обычный портландцемент, но твердеет несколько медленнее и при этом выделяет меньше теплоты. Недостаток шлакопортландцемента — пониженная по сравнению с обычным портландцементом морозостойкость.

Пуццолановый портландцемент получают либо путем совместного помола портландцементного клинкера (79...60 %), активной минеральной добавки (21...40 %) и небольшого количества гипса, либо тщательным смешиванием этих же компонентов, но предварительно каждый из них измельчают. К активным минеральным добавкам относятся: вулканические туфы, пеплы и пемзы, диатомит, трепел, опока, золы ТЭС и другие вещества. Активные добавки связывают выделяющийся при твердении цемента Са(ОН)2 в нерастворимые гидросиликаты, благодаря чему повышаются водостойкость и коррозионная стойкость цементного камня. Пуццолановые цементы отличаются низким тепловыделением при твердении и пониженной скоростью твердения. Морозо- и воздухостойкость пуццолановых цементов ниже, чем портландцемента. Пуццолановый портландцемент выпускают марок: 300 и 400. Пуццолановый портландцемент применяют для гидротехнического строительства, а также для подземных и подводных сооружений.

Пуццолановый портландцемент и шлакопортландцемент, требуют увлажнения во время твердения.

Цементы для строительных, растворов (кладочные цементы) – это  как бы разбавленный портландцемент. Содержание клинкера в таких цементах 20...30 %, а остальная часть цемента состоит из молотых активных и инертных (известняк, песок) добавок. Марка кладочных цементов 200. Такие цементы применяют для кладочных и штукатурных растворов и неармированных бетонов классов В12,5 и ниже. Использование кладочных цементов дает экономию цементного клинкера — наиболее дорогой части цементов.

11. Глиноземистый цемент

Глиноземистый цемент — быстротвердеющее гидравлическое вяжущее, состоящее преимущественно из моноалюмината кальция (СаО•А12О3). Свое название этот цемент получил от технического названия оксида алюминия А12О3 — «глинозем».

Промышленное производство глиноземистого цемента началось во Франции в 1912 г. под названием «цемент Фондю» (в Европе этот цемент до сих пор носит это название).

Получение. Сырьем для глиноземистого цемента служат бокситы и чистые известняки. Бокситы — горная порода, состоящая из гидратов глинозема (А12О3nН2О) и примесей (в основном Fe2O3, SiO2, СаО и др.). Бокситы широко используются в различных отраслях промышленности: для получения алюминия, абразивов, огнеупоров, адсорбентов и т.п., а месторождений с высоким содержанием А12О3 очень немного.

Производство глиноземистого цемента более энергоемко, чем производство портландцемента. Клинкер глиноземистого цемента получают либо плавлением в электрических или доменных печах (при 1500...1600° С), либо спеканием (при 1200...1300° С). Размол клинкера затруднен из-за его высокой твердости. В целом из-за того, что производство глиноземистого цемента очень энергоемко, а сырье (бокситы) — дефицитно, его стоимость в несколько раз выше, чем стоимость портландцемента.

Состав. Химический состав глиноземистого цемента, получаемого разными методами, находится в следующих пределах: СаО - 35...45 %; А12О3 - 30...50 %; Fe2O3 - 0...15 %; SiO2 - 5...15 %. В минеральном составе клинкера глиноземистых цементов преобладает однокальциевый алюминат СаО • А12О3 (СА), определяющий основные свойства этого вяжущего. Кроме того, в нем присутствуют алюминаты — СА2, С12А7; двухкальциевый силикат C2S, отличающийся, как известно, медленным твердением, и в качестве неизбежной балластной примеси — геленит - 2СаО • А12О3 • 2SiO2.

Твердение. Процесс твердения глиноземистого цемента и прочность образующегося цементного камня существенно зависят от температуры твердения. При нормальной температуре (до + 25° С) основной минерал цемента — СА взаимодействует с водой с образованием кристаллического гидроалюмината кальция и гидроксида алюминия в виде гелевидной массы:

2(СаО • А12О3) + 11Н2О = 2СаО • А12О3 • 8Н2О + 2А1(ОН)3 + Q

Суммарное тепловыделение (Q) у глиноземистого цемента немного ниже, чем у портландцемента (около 300...400 кДж/кг), но протекает оно в очень короткие сроки (в первые сутки выделяется 70...80 % от общего количества теплоты). Поэтому возможен перегрев бетонов на глиноземистом цементе в случае больших объемов бетонирования.

Свойства. У глиноземистого цемента удивительное сочетание свойств.

Сроки схватывания почти такие же, как у портландцемента: начало — не ранее 30 мин, конец — не позднее 12 ч (реально 4...5 ч).

После окончания схватывания прочность нарастает очень быстро (лавинообразно). Уже через сутки глиноземистый цемент набирает до 90 % от марочной прочности, которая у него определяется в 3-суточном возрасте. Марки у глиноземистого цемента такие же, как у портландцемента: 400; 500 и 600

Усадка глиноземистого цемента при твердении на воздухе ниже, чем у портландцемента, в 3...5 раз. Пористость цементного камня также ниже (приблизительно в 1,5 раза). Это связано с тем, что при одинаковой с портландцементом водопотребности глиноземистый цемент при твердении химически связывает 30...45 % воды от массы цемента (портландцемент — около 20 %).

Области применения. Глиноземистый цемент целесообразно использовать при аварийных и срочных работах, при зимних работах и в тех случаях, когда от бетона требуется высокая водостойкость и водонепроницаемость. Кроме того, глиноземистый цемент является компонентом многих расширяющихся цементов.

Специальная область использования глиноземистых цементов — жаростойкие бетоны. Объясняется это тем, что, во-первых, в продуктах твердения этого цемента нет Са(ОН)2, и, во-вторых, при температуре 700...800°С между продуктами твердения цемента и заполнителями бетона начинаются реакции в твердой фазе, по мере протекания которых прочность бетона не падает, а повышается, так как бетон превращается в керамический материал (опасность присутствия Са(ОН)2 заключается в том, что при нагреве он переходит в СаО, который при любом контакте с водой гасится, разрушая при этом бетон).

12. Расширяющиеся цементы

Портландцемент и материалы на его основе при твердении на воздухе обнаруживают усадку. Так, тесто на портландцементе при В/Ц = 0,45 имеет усадку на воздухе около 2,5 мм/м, а раствор на том же цементе ~1 мм/м. Из-за этого при бетонировании протяженных конструкций, например, покрытий полов, на них появляются трещины. В то же время растрескивание бетона абсолютно недопустимо, например, для конструкций, работающих под давлением воды, таких, как трубы, резервуары и т. п. Для этих целей применяют специальные расширяющиеся и безусадочные цементы.

Расширяющиеся цементы даже при твердении на воздухе имеют небольшое увеличение в объеме при твердении. Безусадочные цементы это расширяющиеся цементы, у которых расширение только компенсирует усадку. Поэтому такие цементы как бы сами уплотняют себя, делая бетон водонепроницаемым. В случае, если расширяющиеся цементы используются в железобетонных конструкциях, эффект расширения вяжущего может вызывать натяжение арматуры и сжатие самого бетона, что дополнительно защитит бетон от образования трещин. Такие цементы называют напрягающими.

Для строительных целей в основном используют цементы, в которых расширение достигается с помощью образования эттрингита — гидросульфоалюмината кальция ЗСаО • А12О3 • 3CaSO4 • (31 - 32) Н2О. Образование эттрингита возможно при взаимодействии алюминатов и сульфатов кальция в водной среде. Как видно из формулы, в состав эттрингита входит большое количество воды. Именно это обстоятельство обеспечивает эффект расширения: исходные твердые продукты, взаимодействуя друг с другом и гидратируясь (т. е. присоединяя воду), увеличиваются в объеме в 2...2,5раза.

В твердеющем материале на расширяющемся цементе протекают два процесса — расширение, обусловленное процессом кристаллизации эттрингита с увеличением объема новообразований и ростом внутренних растягивающих напряжений, и препятствующий расширению процесс — рост прочности самого цементного камня.

Если образование эттрингита будет протекать раньше, чем у цементного камня появится хотя бы небольшая прочность, то эттрингит будет сжимать податливую гелеобразную массу и заметного расширения не произойдет.

Если эттрингит будет образовываться в то время, когда цементный камень набрал достаточно высокую прочность, то напряжения, обусдовленные ростом кристаллов эттрингита в ограниченном объеме, могут вызвать падение прочности и даже разрушение цементного камня, как это имеет место при сульфатной коррозии.

Таким образом, главная задача при разработке составов расширяющихся и безусадочных вяжущих - правильный выбор не только количества образующегося эттрингита, но и момента его образования относительно процесса формирования структуры цементного камня. Для различных видов расширяющихся цементов период наиболее интенсивного и безопасного расширения цементного камня составляет от 12 ч до 3…7 суток в зависимости от свойств основного структурообразующего вяжущего.

При изготовлении железобетонной конструкции на напрягающем цементе энергия расширения вяжущего частично идет на создание растягивающих напряжений в арматуре. Реакция арматуры вызывает в бетоне сжимающие напряжения. Таким образом, получаются самонапряженные железобетонные конструкции высокой плотности и трещиностойкости. Такой метод самонапряжения используется при бетонировании емкостей для хранения газов и жидкостей, устройстве гидроизоляционных слоев. Например, при бетонировании чаши стадиона в Лужниках, которая одновременно является и крышей для помещений внизу, и полом, на котором находятся скамьи для зрителей, для обеспечения водонепроницаемости использовалась смесь на основе напрягающего цемента.

Перспективная область применения бетонов и растворов на расширяю-щихся и безусадочных вяжущих — бесшовные тонкослойные стяжки или лицевые покрытия полов большой площади. С помощью полимерных модификаторов таким смесям придают свойство самовыравнивания, а эффект безусадочности гарантирует трещиностойкость. Быстрое твердение и защитные полимерные добавки обеспечивают необходимое количество воды для протекания полной гидратации без какого-либо специального ухода.

Лекция 9. МАТЕРИАЛЫ НА ОСНОВЕ ВЯЖУЩИХ ВЕЩЕСТВ

9.1. Заполнители для бетонов и растворов

1.  Общие сведения

В силу ряда причин изделия из одних только вяжущих не изготавливают. Вяжущие имеют высокую стоимость, обладают повышенной усадкой и ползучестью. Для исправления этих недостатков в изделия на основе минеральных (неорганических) вяжущих при их изготовлении вводят инертные материалы различной крупности, которые принято называть заполнителями.

Заполнители для бетонов и растворов — это природные или искусственные каменные сыпучие материалы, состоящие из отдельных зерен. Термин «заполнитель» указывает на роль этого материала в бетонах и растворах: заполнитель занимает до 85 % от общего объема бетона. Стоимость обычных заполнителей значительно меньше, чем стоимость вяжущего. Следовательно, чем больше в бетоне заполнителей, тем бетон дешевле.

Однако этим не исчерпывается роль заполнителей. Так, в цементных бетонах и растворах они снижают усадку материала и повышают его трещиностойкость. Кроме того, заполнители во многом определяют свойства бетона. Например, используя в качестве заполнителя чугунную дробь и железные руды, получают особо тяжелый бетон, защищающий от ионизирующих излучений, а применяя пемзу, керамзит или вспученные шлаки — легкий бетон, обладающий хорошими теплоизолирующими свойствами.

В зависимости от размера зерен заполнитель бывает:

мелкий (песок) — зерна 0,16...5 мм;

крупный — зерна 5...70 мм.

Крупный заполнитель в зависимости от формы зерен называют щебнем — зерна неправильной формы с шероховатой поверхностью или гравием — зерна округлой формы с гладкой поверхностью. Щебень получают дроблением более крупных кусков, в том числе и гравия.

Заполнители как крупные, так и мелкие могут быть:

природными, добываемыми в карьерах и подвергаемые только рассеву, промывке и, если это необходимо, дроблению;

искусственными, получаемыми из промышленных отходов (металлургических шлаков, зол электростанций и т. п.) или специальной
обработкой природного сырья (из глины получают керамзит, из перлита — вспученный перлит и др.).

В последнее время начинают использовать «вторичные» заполнители, выделяемые из отслуживших свой срок бетонных и железобетонных конструкций дроблением и рассевом.

Структура заполнителя характеризуется двумя показателями: межзерновой пустотностью и пористостью самих зерен заполнителя. Обобщенной характеристикой, учитывающей и межзерновую пустотность, и внутреннюю пористость зерен, служит насыпная плотность заполнителя ρнас, которая представляет собой массу единицы объема сыпучего материала, взятого вместе с пустотами:

По плотности зерен заполнители подразделяют: на плотные (тяжелые) с плотностью зерен более 2000 кг/м3 и пористые (легкие) имеющие пористую структуру зерен с плотностью менее 2000 кг/м (обычно 1600...400 кг/м3).

Заполнители для бетонов и растворов должны отвечать следующим требованиям:

иметь определенный зерновой состав (соотношение зерен различного размера) для того, чтобы объем пустот между зернами (межзерновая пустотность) был минимальный, т. е. пустоты между крупными зернами были заняты более мелкими;

поверхность зерен заполнителя должна обеспечивать хорошее сцепление с твердеющим вяжущим, т. е. по возможности быть шероховатой, и на ней не должно быть глинистых и пылеватых примесей;

заполнитель не должен содержать примесей, отрицательно действующих на твердение вяжущего и на последующую прочность и стойкость бетона и раствора.

2. Мелкий заполнитель (песок)

Различают природный и искусственный  мелкие заполнители.

Природный песок — рыхлая смесь зерен крупностью 0,16...5 мм — состоит главным образом из зерен кварца SiO2; возможна примесь полевых шпатов, слюды, известняка. Реже встречаются пески иного состава, например полевошпатные, известняковые. Насыпная плотность природного песка 1300... 1600 кг/м3.

По происхождению природные пески разделяют на горные (овражные), речные и морские.

Искусственные пески, используемые значительно реже, бывают тяжелые и легкие. Тяжелые пески, получаемые дроблением плотных горных пород (базальта, диабаза, мрамора), применяют для специальных целей (отделочные растворы, кислотостойкие растворы и бетоны).

Легкие пески получают дроблением пористых горных пород (пемза, туф) или изготовляют специально. Например, перлитовый песок получают термическим вспучиванием вулканических стекол; керамзитовый — обжигом глиняного сырья. Эти пески применяют для теплоизоляционных и акустических растворов и бетонов.

Поступающий на строительство песок должен отвечать требованиям ГОСТ 8736—93 и 8735—88 по зерновому составу, наличию примесей и загрязнений.

Зерновой состав песка определяют на стандартном наборе сит с размерами ячеек: 5; 2,5; 1,25; 0,63; 0,315 и 0,16 мм. Навеску сухого песка просеивают через набор сит и определяют сначала частные (%) (а 2,5; а 1,25; а 0.63 и т. д.), а затем полные {A2,5 ; A 1,25 и А 0,63 и т. д.) остатки на каждом сите. Полный остаток на любом сите равен сумме частных остатков на этом сите и всех ситах большего размера. Размеры полных остатков характеризуют зерновой состав песка.

На основании результатов ситового анализа рассчитывают модуль крупности песка:

Мк = (A2,5 + A 1,25  +  А 0,63 + А 0,315  + А 0,16 )/100

В зависимости от Мк и А 0,16 пески подразделяют на группы по крупности. Для строительных растворов рекомендуется применять пески с модулем крупности не менее 1,2, а для бетонов — не менее 2.

Для бетонов применяют песок крупностью не более 5 мм, для растворов, используемых для замоноличивания сборных железобетонных конструкций и заполнения швов при монтаже панелей,— также не более 5 мм; для растворов, служащих для кладки кирпича, камней правильной формы и блоков,— не более 2,5 мм; для штукатурных отделочных растворов — не более 1,25 мм.

Присутствие в песке пылеватых и особенно глинистых примесей снижает прочность и морозостойкость бетонов и растворов. Количество таких примесей определяют отмучиванием (многократной промывкой водой). В природном песке пылеватых и глинистых примесей должно быть не более 3 % по массе, причем содержание собственно глины не должно превышать 0,5 %.

Присутствие в песке органических примесей замедляет схватывание и твердение цемента и тем самым снижает прочность бетона или раствора. Для оценки количества органических примесей пробу песка обрабатывают раствором едкого натра NaOH и сравнивают цвет раствора с эталоном. Если цвет раствора темнее эталона, песок нельзя использовать в качестве заполнителя.

3.  Крупные заполнители

В качестве крупного заполнителя для бетона используют гравий и щебень. В зависимости от насыпной плотности и структуры зерен крупного заполнителя различают плотные (тяжелые) заполнители (ρнас > 1200. кг/м3), используемые для тяжелого бетона, и пористые (ρнас < 1200 кг/м3), используемые для легкого бетона.

Насыпная плотность крупного заполнителя — один из важных качественных показателей. Она зависит от плотности зерен заполнителя и от его межзерновой пустотности. Насыпная плотность ρнас определяется путем взвешивания пробы заполнителя в сосуде.

Межзерновая пустотность показывает, какую долю составляют пустоты между зернами крупного заполнителя от его объема в рыхло-насыпном состоянии. Она может быть рассчитана по формуле для расчета пористости, если известны насыпная плотность ρнас заполнителя и его плотность в куске ρm

α =(ρm - ρнас )/ ρm

Межзерновая пустотность α обычно составляет 0,4...0,5. Это означает, что около половины объема крупного заполнителя занимает воздух. При использовании в бетоне важно, чтобы межзерновая пустотность заполнителя была возможно меньше. В этом случае снижается расход цемента при сохранении требуемых свойств бетона. Уменьшить межзерновую пустотность заполнителя можно правильным подбором зернового состава так, чтобы мелкие зерна занимали пустоты между крупными.

К плотным заполнителям для тяжелого бетона относятся гравий, получаемый из природных залежей (его обработка заключается в сортировке по фракциям и промывке), и щебень, получаемый дроблением горных пород, крупных фракций гравия и плотных металлургических шлаков.

Прочность крупного заполнителя для тяжелых бетонов должна быть в 1,5...2 раза выше прочности бетона. Оценка прочности заполнителя может производиться по прочности той горной породы, из которой получен заполнитель, путем испытания выпиленных из нее кернов (цилиндрических образцов) или путем оценки дробимости самого заполнителя. Дробимость заполнителя оценивается по количеству мелочи, образующейся при сдавливании пробы заполнителя (гравия или щебня) в стальной форме под определенным усилием.

Морозостойкость заполнителя должна также быть выше проектной морозостойкости бетона.

Вредными примесями в крупном заполнителе, как и в песке, являются органические, пылеватые и глинистые. Методы их определения такие же, как и для песка.

Пористые заполнители для легких бетонов получают главным образом искусственным путем (например, керамзит, шлаковую пемзу, аглопорит и перлит). Из природных пористых заполнителей применяют щебень из пемзы, туфа и пористых известняков, которые используют в качестве местного материала. Марку пористых заполнителей устанавливают по их насыпной плотности (кг/м3).

Для пористых заполнителей еще в большей степени, чем для плотных, имеет значение правильный зерновой состав. Пористые заполнители выпускают в виде фракций размерами 5... 10 мм; 10...20 мм и 20...40 мм. При приготовлении бетонной смеси их смешивают в требуемом соотношении.

Керамзит — гранулы округлой формы с пористой сердцевиной и плотной спекшейся оболочкой. Благодаря такому строению прочность керамзита сравнительно высокая при небольшой насыпной плотности (250...600 кг/м3). Получают керамзит быстрым обжигом во вращающихся печах легкоплавких глинистых пород с большим содержанием оксидов железа и органических примесей до их вспучивания.

Керамзит выпускают в виде гравия (гранулы 5...40 мм) и песка (зерна менее 5 мм). Марки керамзита от 250 до 600 кг/м3. Морозостойкость керамзита не менее F15.

Шлаковая пемза — пористый щебень, получаемый вспучиванием расплавленных металлургических шлаков путем их быстрого охлаждения водой или паром. Этот вид пористого заполнителя экономически очень эффективен, так как сырьем служат промышленные отходы, а переработка их крайне проста. Марки шлаковой пемзы от 400 до 1000. Прочность ее соответственно от 0,4 до 2 МПа.

Аглопорит — пористый заполнитель в виде гравия, щебня, получаемый спеканием (агломерацией) сырьевой шихты из глинистых пород топливных отходов. Марки аглопорита от 400 до 900.

Вспученные перлитовый песок и щебень — пористые зерна белого или светло-серого цвета, получаемые путем быстрого (1...2 мин) нагрева до температуры 1000... 1200° С вулканических горных пород, содержащих небольшое количество (1...3 %) гидратной воды (перлит и др.).

9.2. Строительные растворы

1. Общие сведения

Строительным раствором называют материал, получаемый в результате затвердевания рационально подобранной смеси вяжущего вещества (цемента, извести), мелкого заполнителя (песка) и воды, а в необходимых случаях и специальных добавок. До затвердевания этот материал называют растворной   смесью.

Принципиальным отличием строительных растворов от мелкозернистых бетонов является то, что растворные смеси укладываются тонкими слоями обычно на пористое основание и одним из главных свойств растворов является хорошее сцепление с основанием.

По назначению строительные растворы бывают: кладочные — для кладки из кирпича, штучных камней и блоков; отделочные (штукатурные) — для оштукатуривания наружных и внутренних поверхностей конструкций; специальные — для омоноличивания сборных железобетонных конструкций, для устройства гидроизоляции и других специальных целей.

Растворы называют по свойствам входящего в них вяжущего (гидравлические, воздушные) и его виду (цементные, известковые, гипсовые и смешанные: цементно-известковые, цементно-глиняные, известково-гипсовые).

По плотности различают растворы обыкновенные тяжелые (плотность более 1500 кг/м3), получаемые на плотных заполнителях (природный песок и др.), и легкие (менее 1500 кг/м3), изготовляемые на пористых заполнителях (керамзитовый песок, вспученный перлит и др.). Легкие растворы, кроме того, получают с помощью специальных пенообразующих добавок — поризованные растворы.

2. Свойства растворных смесей и затвердевших растворов

Растворная смесь должна обладать следующими свойствами: хорошей удобоукладываемостью и высокой водоудерживающей способностью, чтобы легко распределяться по пористому основанию и не давать ему отсасывать в себя воду. Вода необходима для твердения раствора.

Удобоукладываемость - способность растворной смеси легко распределяться по поверхности сплошным тонким слоем, хорошо сцепляясь с поверхностью основания. Удобоукладываемая растворная смесь даже при укладке на неровной поверхности заполняет все впадины и плотно примыкает к камням кладки. Удобоукладываемость оценивается подвижностью смеси, которую оценивают по глубине погружения эталонного конуса.

В зависимости от назначения применяют растворы различной подвижности. например для бутовой кладки применяют растворы подвижностью 4...6 см, для кладки из пустотелого кирпича и керамических камней  - 7...8см, для кладки из обыкновенного керамического кирпича - 9... 13см, для штукатурных растворов -                              7...12 см.

Для повышения пластичности в раствор вводят пластифицирующие добавоки.

Водоудерживающая способностьэто способность растворной смеси удерживать воду при нанесении на пористое основание или при транспортировании. Если растворную смесь с малой водоудерживающей способностью нанести, например, на кирпич, то она быстро обезводится в результате отсасывания воды в поры кирпича. В этом случае затвердевший раствор будет пористым и непрочным.

При транспортировании растворные смеси с низкой водоудерживающей способностью могут расслоиться: песок осядет вниз, а вода окажется сверху. Чем ниже водоудерживающая способность, тем вероятнее расслоение растворной смеси.

Водоудерживающая способность зависит от количества вяжущего вещества в растворе, так как тончайший порошок вяжущего образует с водой вязкое тесто, препятствуя отделению воды и заполнителя. Повысить водоудерживающую способность без увеличения расхода цемента можно введением в растворную смесь тонкодисперсньгх минеральных порошков, в том числе и более дешевых вяжущих (извести, глины) или загущающих (водоудерживающих) водораство-римых полимерных добавок, таких, как метилцеллюлоза, карбоксиметил-целлюлоза, и т. п.

Затвердевший раствор должен иметь требуемые прочность и морозостойкость.

Прочность строительных растворов характеризуется маркой, определяемой по пределу прочности при сжатии образцов-кубов размером 70,7 х 70,7 х 70,7 мм. Образцы, изготовленные из рабочей растворной смеси, твердеют на воздухе в течение 28 сут при температуре (20 ± 5)° С. Чтобы приблизить условия твердения образцов к реальным условиям твердения кладочных растворов, используют формы без дна и устанавливают их на пористое основание (кирпич).

По прочности на сжатие, выраженной в кгс/см2, строительные растворы делят на марки: 4…200. Растворы марок 4; 10; 25 изготовляют обычно на извести и местных вяжущих; растворы более высоких марок — на смешанном цементно-известковом, цементно-глиняном и цементном вяжущих.

Прочность строительных растворов, так же, как и бетонов, зависит от марки вяжущего и его количества. Однако водовяжущее отношение в данном случае не имеет существенного значения, так как пористое основание, на которое наносят раствор, отсасывает из него воду, и количество воды в разных растворах становится приблизительно одинаковым.

Марки наиболее часто применяемых кладочных и штукатурных растворов значительно ниже марок бетона. Это объясняется тем, что прочность кладочных растворов существенно не влияет на прочность кладки из камней правильной формы, а штукатурные растворы практически не несут никакой нагрузки. Более высокие требования предъявляются к прочности растворов для омоноличивания несущих сборных конструкций.

Морозостойкость растворов, так же, как и бетонов, определяется числом циклов «замораживания-оттаивания» до потери 25 % первоначальной прочности (или 5 % массы). По морозостойкости растворы подразделяют на марки: F10...F200.

3. Подготовка сырьевых материалов.

Для кладочных растворов применяют песок максимальной крупности 2,5 мм; содержание в нем глинистых и органических примесей ограничено стандартом. Известь применяют в виде известкового молока или реже известкового теста, предварительно пропущенного через сито № 025, чтобы в раствор не попали не погасившиеся частицы.

Когда вместо извести используют глину, то ее тщательно размачивают в течение нескольких дней. Делают это для того, чтобы разъединить частицы глины. Затем глину и воду приблизительно в равных объемах загружают в смеситель и перемешивают в течение 3...5 мин. Получившееся глиняное молоко сливают из смесителя через сетку, а в смеситель добавляют новую порцию воды и глины. Через 10...20 замесов смеситель очищают от не распавшихся комьев и камней. 

Поверхностно-активные и пластифицирующие добавки вводят в растворы, предварительно смешав их с водой, применяемой для затворения.

4. Приготовление растворов.

Процесс приготовления растворной смеси состоит из дозирования исходных материалов, загрузки их в барабан растворосмесителя и перемешивания до получения однородной массы в растворосмесителях периодического действия с принудительным перемешиванием.

По конструкции различают растворосмесители с горизонтальным  или вертикальным лопастными валами. Последние называют турбулентными смесителями.

Чтобы раствор обладал требуемыми свойствами, необходимо добиться однородности его состава. Для этого ограничивают минимальное время перемешивания. Средняя продолжительность цикла перемешивания для тяжелых растворов должна быть не менее 3 мин. Легкие растворы перемешивают дольше.

Растворы, как правило, приготовляют на централизованных бето-норастворных заводах или растворных узлах, что обеспечивает получение продукции высокого качества.

Зимой для получения растворов с положительной температурой составляющие раствора (песок и воду) подогревают до температуры не более 60° С. Вяжущее подогревать нельзя.

Транспортирование. Растворные смеси с заводов перевозят автосамосвалами или специальными машинами, в которых смесь постоянно перемешивается, что предохраняет ее от расслоения. Если используют автосамосвалы, во избежание расслоения смеси нормируется дальность ее перевозок (например, дальность перевозок цементно-известковых растворов по асфальтовой дороге — не более 10 км, по булыжной — 5..6 км).

На крупных стройках растворную смесь подают к месту использования по трубам с помощью растворонасосов.

Сроки хранения растворных смесей зависят от вида вяжущего и ограничиваются сроками его схватывания. Известковые растворы сохраняют свои свойства долго (пока из них не испарится вода).

В высохший известковый раствор можно добавить воду и вторично перемешать его. Цементные растворы необходимо использовать в течение 2...4 ч; разбавление водой и повторное перемешивание схватившихся цементных растворов не допускаются, так как это приводит к резкому падению марки раствора.

4. Кладочные растворы

При монтаже стен горизонтальные швы между панелями из тяжелого бетона заполняют раствором марки не ниже 100, из легкого бетона — не ниже 50. При монтаже стен из крупных блоков марки раствора для заполнения горизонтальных швов указываются в проекте (обычно 10...50). Для расшивки вертикальных швов панельных и крупноблочных стен марка раствора должна быть не ниже 50.

Для монтажа несущих железобетонных конструкций марка цементного раствора должна быть не ниже класса бетона этой конструкции.

При работах в зимних условиях марки растворов должны быть на одну ступень выше, чем растворов, используемых для этих же целей летом. Растворы для зимних работ могут выпускаться подогретыми. Температура раствора в момент его применения должна быть не менее 10° С.

В зимних условиях применяют также растворы, твердеющие при отрицательных температурах. В их состав входят соли, понижающие температуру замерзания воды (поташ К2СО3, хлорид натрия NaCl, хлорид кальция СаС12, нитрит натрия NaNO2 и др.). Например, при температуре от -10 до -20°С рекомендуется применять растворы с добавкой поташа (10% от массы вяжущего) или нитрита натрия (5% от массы вяжущего). При более низкой температуре добавки солей увеличивают.

При применении химических добавок к растворам следует руководствоваться специальными инструкциями.

5. Штукатурные растворы

При выборе штукатурных растворов можно руководствоваться следующими рекомендациями.

Для оштукатуривания наружных каменных и бетонных стен, в том числе подвергающихся увлажнению, применяют цементные и цементно-известковые растворы, для деревянных и гипсовых стен — известковые растворы с добавкой глины или гипсового вяжущего.

Для оштукатуривании стен в помещениях с влажностью воздуха во время эксплуатации не более 60 % используют следующие растворы:

известковые и цементно-известковые — для внутренних поверхностей наружных каменных и бетонных стен, а также поверхностей бетонных покрытий;

известковые - для поверхностей внутренних каменных или бетонных стен и перегородок;

известково-гипсовые и гипсовые с добавлением наполнителя - для гипсовых перегородок.

Штукатурные растворы должны иметь хорошее сцепление с оштукатуриваемой поверхностью как после твердения, так и в момент нанесения. Последнее обеспечивается правильным составом растворной смеси и правильно выбранной подвижностью. В таком случае благодаря тиксотропным свойствам смеси она легко наносится и хорошо удерживается на вертикальных и потолочных поверхностях.

7. Специальные растворы

Кроме обычных штукатурных и кладочных растворов в строительстве используют много разнообразных растворов специального назначения: гидроизоляционных, теплоизоляционных, акустических, рентгенозащитных, кислотоупорных и т. п. Каждый из таких растворов является штукатурным раствором, выполняющим еще одну специальную функцию. Такие растворы используют для покрытия поверхностей специальных сооружений: хранилищ, отстойников, тоннелей и т. п.

Гидроизоляционные растворы — это, как правило, жирные цементные растворы (состава 1:1...1:3), приготовленные на специальных цементах или с добавками, снижающими до минимума капиллярную пористость и (или) придающими гидрофобные свойства растворам.

Растворы на расширяющихся и напрягающих (НЦ) цементах — наиболее распространенный простой по составу и надежный вид гидроизоляционных растворов. Минимальная пористость раствора достигается за счет эффекта расширения твердеющего цемента и связывание цементом большого количества воды затворения. При это расширение и уплотнение цементного камня идет тем интенсивнее чем больше на него действует вода из окружающей среды.

Растворы на жидком стекле дают не только водонепроницаемые, но и непроницаемые для нефтепродуктов покрытия. Чтобы получить водонепроницаемый раствор, жидкое стекло разводят в воде и этим составом затворяют сухую цементно-песчаную смесь. Затвердевая, жидкое стекло образует на поверхности штукатурного слоя водонепроницаемую пленку. Однако эта пленка может разрушаться под действием углекислого газа, содержащегося в воздухе, поэтому накрывку обычно выполняют жирным цементным раствором и поверхность железнят (посыпают сухим цементом и заглаживают).

Растворы с жидким стеклом схватываются уже через 1...2 мин после их затворения. Схватывание происходит тем быстрее, чем больше в растворе жидкого стекла. Поэтому приготовлять раствор надо малыми порциями, сразу же их используя. Быстрое схватывание растворов на жидком стекле позволяет заделывать ими такие трещины, из которых сочится вода.

Водонепроницаемые штукатурки получают также из растворных смесей с алюминатом натрия (Na2O • А12О3). Эти растворы используют реже, чем растворы на жидком стекле, так как они раздражающе действуют на кожу и слизистые оболочки. Растворы с алюминатом натрия применяют для заделки трещин в бетоне, через которые просачивается вода, для устройства водонепроницаемых штукатурок по сырым, невысыхающим поверхностям бетона и каменной кладки, а также для устройства водонепроницаемых цементных стяжек в санузлах.

Для приготовления штукатурных растворов сухую цементно-песчаную смесь состава 1:(2...3) затворяют 2...3 %-ным раствором алюмината натрия. Растворы эти приготовляют на портландцементе марки 400...500.

Растворы с органическими добавками. К таким растворам относятся полимерцементные растворы, содержащие 10... 15 % (в пересчете на сухое вещество) водных дисперсий полимеров (поливинилацетата–ПВА, синтетических каучуков, акриловых полимеров и др.). Такие растворы имеют высокую адгезию к любым основаниям и низкую проницаемость для воды, нефтепродуктов и других жидкостей.

Гидрофобизированные растворы получают, вводя в состав растворной смеси кремнийорганические полимерные продукты (например, ГКЖ-94).

Растворы для оштукатуривания печей. Кирпичные печи в большинстве случаев оштукатуривают глиняными растворами. Состав этих растворов зависит от жирности глины. Так, для глины средней жирности оптимальный состав раствора 1 : 2.

Лучшие результаты дают смешанные растворы с добавкой асбеста; например, глиноизвестковые или глиноцементные состава 1:1:2 с добавкой 0,1 ч асбеста. При составлении таких растворов асбест перемешивают с песком или с цементно-песчаной смесью. Затворяют смесь глиняным или известковым молоком.

Теплоизоляционные растворы получают, используя в качестве заполнителя пористые материалы (вспученный перлит, керамзитовый песок, опилки и т. п.). Составы и способы их приготовления не отличаются от составов и способов приготовления растворов с песчаным заполнителем; обычно несколько увеличивается время перемешивания.

Акустические растворы. Чтобы снизить шумы в помещениях, например, радиостудиях, их стены оштукатуривают акустическими растворами. Для этого применяют легкие растворы плотностью 600... 1200 кг/м3, заполнителем в которых служат пористые пески крупностью 3...5 мм, получаемые из пемзы, шлаков, вспученного перлита, керамзита и др. Так, например, производят сухие гипсоперлитовые смеси для устройства теплоизоляционных и акустических штукатурок. В состав таких смесей входят песок из вспученного перлита, гипс и замедлитель схватывания.

Огнезащитные растворы имеют состав, аналогичный акустическим и теплоизоляционным растворам, но с добавлением асбеста или минераловатных гранул. В качестве связующего рекомендуется гипсовое вяжущее.

Ренттенозащитные растворы. Это тяжелые растворы с плотностью более 2200 кг/м5, применяемые для оштукатуривания рентгеновских кабинетов и помещений, в которых ведутся работы, связанные с рентгеновским или γ-излучением. Такая штукатурка заменяет обшивку свинцовыми листами. В качестве вяжущих материалов используется портландцемент или шлакопортландцемент и специальные тяжелые заполнители — барит, железные руды — магнезит, лимонит и т. п. в виде песка и пыли крупностью не более 1,25 мм.

Кислотоупорные растворы. Это растворы на кислотоупорном жид-костекольном вяжущем, применяемые для устройства антикоррозионных покрытий конструкций, которые в процессе эксплуатации подвергаются воздействию кислот.

В кислотоупорные растворы кроме песка вводят тонкомолотый наполнитель - порошок из кислотостойких пород (андезита, диабаза). В наполнителе должно быть не менее 70 % зерен размером до 0,075 мм.

В качестве отвердителя растворов на жидком стекле применяют мелко измельченный кремнефтористый натрий, в количестве около 15 % от массы жидкого стекла.

9.3. Бетоны

1. Общие сведения

Бетон — искусственный каменный материал, получаемый в результате формования и затвердевания бетонной смеси. Бетонной смесью называют перемешанную до однородного состояния пластичную смесь, состоящую из вяжущего вещества, воды, заполнителей и специальных добавок.

Состав бетонной смеси подбирают таким образом, чтобы при данных условиях укладки и твердения бетон обладал заданными свойствами (прочностью, морозостойкостью, плотностью и др.).

Бетон состоит из большого количества зерен заполнителя (до 80...85 % объема), связанных затвердевшим вяжущим веществом. Так как в качестве заполнителей применяют дешевые природные материалы или отходы промышленности, бетон экономически весьма эффективный материал.

Бетон известен давно. В Древнем Риме, например, из бетона на извести был построен ряд сложных инженерных сооружений. Существует мнение, что блоки внутренней части египетских пирамид также изготовлены из бетона, вяжущим в котором служила известь. Широкое применение бетона начинается после освоения промышленного производства портландцемента. Современное строительство немыслимо без бетона — бетон стал основным строительным материалом. Это объясняется его экономичностью, технологичностью и доступностью основных сырьевых материалов.

Бетонная смесь представляет собой пластично-вязкую массу, сравнительно легко принимающую любую форму и затем самопроизвольно переходящую в камневидное состояние. Таким образом, легко получают каменные конструкции и изделия любой заданной формы.

В наше время получают бетоны с самыми разнообразными физико-механическими свойствами. Помимо обычного тяжелого бетона, производят легкий бетон плотностью меньшей, чем у кирпича. Такой бетон обладает хорошими теплоизолирующими свойствами и применяется для возведения стен жилых и промышленных зданий. И наоборот, при строительстве ядерных установок, например атомных электростанций, для защиты от ионизирующего излучения применяют особо тяжелые бетоны, плотность бетона которых в 1,5..2 раза больше плотности гранита.

Прочность бетонов достигает 100 МПа, и для конструкционных бетонов предел прочности служит основной характеристикой. Бетон - огнестойкий материал. В настоящее время получены бетоны, стойкие к самым разнообразным агрессивным воздействиям, и в том числе жароупорные бетоны, способные работать при температуре свыше 1000°С. При сочетании бетона и стали получается композиционный материал с еще более совершенными свойствами — железобетон.

По плотности бетоны делят на особо тяжелые (плотность более 2500 кг/м3), тяжелые обыкновенные (2200...2500 кг/м3), облегченные (1800...2200 кг/м3), легкие (500... 1800 кг/м3), особо легкие теплоизоляционные (500 кг/м3).

По структуре различают бетоны со слитной структурой, ячеистые и крупнопористые бетоны. Чаще других используются бетоны со слитной структурой — это обычный тяжелый бетон и легкие бетоны на пористых заполнителях.

Легкие и особо легкие бетоны можно получить вспенивая тесто вяжущего — так получают бетоны ячеистой структуры (с равномерно распределенными порами размером 0,2...2 мм).

Бетоны крупнопористой структуры, также относящиеся к легким бетонам, получают исключая из состава бетона мелкий заполнитель и скрепляя зерна крупного заполнителя вяжущим веществом.

Бетоны — главнейший строительный материал. В нем сочетаются очень важные для строительства свойства: большая сырьевая база (до 85 % объема бетона - заполнители); простота технологии и достаточно высокие физико-механические свойства.

Наиболее распространен тяжелый цементный бетон. Рассмотрим свойства бетонной смеси и затвердевшего бетона на примере тяжелого цементного бетона и будем называть его просто бетон.

2. Свойства бетонной смеси

Бетонная смесь состоит из цементного теста, мелкого и крупного заполнителя. Каждый из этих компонентов влияет на вязкопластичные свойства смеси. Так, если увеличить содержание заполнителей, смесь становится более жесткой; если цементного теста — более пластичной и текучей. Существенно влияет на свойства бетонной смеси и вязкость цементного теста. Чем больше в цементном тесте воды, тем пластичнее получается тесто и соответственно пластичнее бетонная смесь.

Одно из основных свойств бетонной смеси — тиксотропия — способность разжижаться при периодически повторяющихся механических воздействиях (например, вибрации) и вновь загустевать при прекращении этого воздействия. Механизм тиксотропного разжижения заключается в том, что при вибрировании силы внутреннего трения и сцепления между частицами уменьшаются и бетонная смесь становится текучей. Это свойство широко используют при укладке и уплотнении бетонной смеси.

Удобоукладываемость - обобщенная техническая характеристика вязкопластичных свойств бетонной смеси. Под удобоукладываемостью понимают способность бетонной смеси под действием определенных приемов и механизмов легко укладываться в форму и уплотняться, не расслаиваясь. Удобоукладываемость смесей в зависимости от их консистенции оценивают по подвижности или жесткости.

Подвижность служит характеристикой удобоукладываемости пластичных смесей, способных деформироваться под действием собственного веса. Подвижность характеризуется осадкой стандартного конуса, отформованного из испытуемой бетонной смеси. Для этого металлическую форму-конус, установленную на горизонтальной поверхности, заполняют бетонной смесью в три слоя, уплотняя каждый слой штыкованием. Избыток смеси срезают, форму-конус снимают и измеряют осадку конуса из бетонной смеси — ОК, значение которой (в сантиметрах) служит показателем подвижности.

Жесткость — характеристика удобоукладываемости бетонных смесей, у которых не наблюдается осадки конуса (ОК = 0). Ее определяют по времени вибрации (в секундах), необходимому для выравнивания и уплотнения предварительно отформованного конуса из бетонной смеси с помощью специального прибора – вискозиметра.

В зависимости от удобоукладываемости различают жесткие и подвижные бетонные смеси.

Жесткие бетонные смеси содержат небольшое количество воды и соответственно пониженное количество цемента в сравнении с подвижными смесями у бетонов равной прочности. Жесткие смеси требуют интенсивного механического уплотнения: длительного вибрирования, вибротрамбования и т. п. Используют такие смеси при изготовлении сборных железобетонных изделий в заводских условиях (например, на домостроительных комбинатах); в построечных условиях жесткие смеси применяют редко.

Подвижные смеси отличаются большим расходом воды и соответственно цемента. Эти смеси представляют собой густую массу, которая легко разжижается при вибрировании. Подвижные смеси можно транспортировать бетононасосами по трубопроводам.

Связность — способность бетонной смеси сохранять однородную структуру, т. е. не расслаиваться  в процессе транспортирования, укладки и уплотнения. При механических воздействиях часть воды как наиболее легкого компонента отжимается вверх. Крупный заполнитель, плотность которого обычно больше плотности растворной части (смеси цемента, песка и воды), опускается вниз. Легкие заполнители (керамзит и др.), наоборот, могут всплывать. Все это делает бетон неоднородным, снижая его прочностные показатели и морозостойкость.

Указанные свойства бетонной смеси обеспечиваются правильным подбором состава бетона.

3. Основной закон прочности бетона

Прочность бетона зависит от прочности составляющих его материалов и от прочности сцепления их друг с другом. Прочность заполнителя (песка, щебня, гравия) в тяжелом бетоне, как правило, выше заданной прочности бетона, поэтому мало влияет на последнюю. Таким образом, прочность бетона определяется в основном двумя факторами:

прочностью затвердевшего цементного камня;

прочностью его сцепления с заполнителем.

Прочность цементного камня зависит от двух факторов: активности (марки) используемого цемента  и соотношения количеств цемента и воды (Ц/В).

Цемент при твердении химически связывает не более 20...25 % воды от своей массы. Чтобы обеспечить необходимую пластичность цементного теста и, соответственно, подвижность бетонной смеси, необходимо вводить 40...80 % воды от массы цемента. Чем больше в бетоне будет свободной, химически не связанной воды, тем больше впоследствии будет пор в цементном камне и соответственно ниже станет его прочность.

С другой стороны, если не обеспечить необходимую удобоукладываемость бетонной смеси, соответствующую принятому в данном конкретном случае методу уплотнения, то из-за недоуплотнения в структуре бетона появятся крупные пустоты и участки с нарушенной связью «цементный камень - заполнитель», что приведет к резкому снижению прочности бетона.

Для каждой бетонной смеси существует оптимальное количество воды, которое позволяет получить при данном способе уплотнения бетон с минимальной пористостью и наибольшей прочностью.

Прочность сцепления между цементным камнем и заполнителем определяется в основном качеством поверхности заполнителя. Для обеспечения высокой прочности сцепления поверхность зерен заполнителя должна быть чистой и шероховатой. Например, бетон на щебне при прочих равных условиях прочнее бетона на гравии.

Высказанные теоретические предпосылки были положены в основу экспериментальных исследований зависимости прочности бетона от Ц/В, марки цемента и качества заполнителей (под прочностью здесь и далее подразумевается марочная прочность, т. е. прочность после 28 суток твердения в стандартных условиях). Полученные экспериментальные зависимости R = (Ц/В) представляют довольно сложную кривую, имеющую точку перегиба. С некоторым приближением эту кривую в реальном интервале Ц/В (от 1,4 до 3,3) можно аппроксимировать двумя прямыми, описываемыми уравнением вида

Rб = АRц(Ц/В ± b)

Приведенная формула предложена И. Боломеем и уточнена Б.Г, Скрамтаевым. Она выражает основной закон прочности бетона и используется для определения состава бетона по заданным параметрам.

Для обычных бетонов (марок ниже М500) в интервале Ц/В = 1,4...2,5 формула Боломея - Скрамтаева имеет вид

Rб = АRц(Ц/В – 0,5)

а для высокопрочных бетонов при Ц/В = 2,5...3,3

Rб = АRц(Ц/В + 0,5)

Эта зависимость справедлива лишь при условии обеспечения плотной укладки бетонной смеси.

4. Основы технологии бетона

Изготовление бетонных и железобетонных конструкций включает в себя следующие технологические операции: подбор состава бетона, приготовление и транспортирование бетонной смеси, ее укладку и уплотнение и обеспечение требуемого режима твердения бетона.

Подбор состава бетона. Состав бетона должен быть таким, чтобы бетонная смесь и затвердевший бетон имели заданные значения свойств (удобоукладываемости, прочности, морозостойкости и т. п.), а стоимость бетона при этом была возможно более низкой.

Рассчитывают состав бетона для данных сырьевых материалов, используя зависимости, связывающие свойства бетона с его составом, в виде формул, таблиц и номограмм. Общая схема расчета следующая.

Требуемая подвижность бетонной смеси обеспечивается выбором (по таблицам и графикам) необходимого количества воды (В).

Требуемая прочность бетона достигается: 1) выбором марки цемента; 2) расчетом требуемого соотношения цемента и воды (Ц/В) по формуле основного закона прочности бетона (см. выше).

Количество цемента определяется по известным значениям В и В/Ц: Ц = В : (В/Ц).

Количество крупного и мелкого заполнителей рассчитывают так, чтобы расход цемента был минимальным. Это достигается в том случае, если количество крупного заполнителя будет максимально возможным (обычно оно составляет 0,75...0,85 от объема бетона), а мелкий заполниитель (песок) заполнит пустоты между зернами крупного заполнителя.

В этом случае цементное тесто должно будет заполнить пустоты в песке и покрыть поверхность заполнителей для обеспечения связи всех частиц друг с другом .

Увеличивая или уменьшая содержание цементного теста (но не изменяя при этом рассчитанного Ц/В), т. е, увеличивая и уменьшая долю воды в бетонной смеси, можно соответственно повысить или снизить подвижность бетонной смеси, сохраняя заданную прочность бетона.

Приготовление бетонной смеси осуществляют в специальных агрегатах - бетоносмесителях разных конструкций и различной вместимости (от 100 до 4500 дм3).

Вместимость смесителя указывается по суммарному объему сухих компонентов бетонной смеси, который может быть загружен.

При перемешивании мелкие компоненты смеси входят в межзерновые пустоты более крупных (песок в пустоты между зерен крупного заполнителя, цемент — в пустоты песка). Этому способствует введение в смеситель воды затворения. В результате объем готовой бетонной смеси составляет не более 0,6...0,7 от объема исходных сухих компонентов. Этот показатель, называемый коэффициент выхода бетонной смеси.

Так, для бетона с коэффициентом выхода 0,65 за один замес в бетоносмесителе вместимостью 500 дм3 получится 500 • 0,65 = 325 дм3 = 0,325 м3 бетонной смеси.

По принципу действия различают бетоносмесители свободного падения и принудительного перемешивания.

Время перемешивания зависит от подвижности бетонной смеси и вместимости бетоносмесителя. Чем меньше подвижность бетонной смеси и больше вместимость бетоносмесителя, тем больше время, необходимое для перемешивания. Например, для бетоносмесителя 500 дм3 оно составляет 1,5...2 мин, а для бетоносмесителя 2400 дм3 - 3 мин и более.

Бетоносмесительные установки могут быть передвижные и стационарные. Чаще бетонные смеси приготовляют на специализированных бетонных заводах, имеющих высокую степень механизации и автоматизации. В этом случае будет выше стабильность свойств бетонной смеси и бетона. Такие готовые смеси называют товарным   бетоном.

Транспортирование бетонной смеси. Обязательное требование ко всем видам транспортирования бетонной смеси - сохранение ее однородности и подвижности. На большие расстояния транспортирование осуществляется в специальных машинах — бетоновозах, имеющих грушевидную емкость. При движении емкость бетоновоза медленно вращается, постоянно подмешивая бетонную смесь. Это необходимо для того, чтобы смесь не расслаивалась от вибрации во время перевозки, что часто происходит, когда смесь транспортируют в кузовах самосвалов. В зимнее время должен быть предусмотрен подогрев перевозимой бетонной смеси.

На строительных объектах и заводах сборного железобетона смесь транспортируют в вагонетках, перекачивают бетононасосами и подают транспортерами.

Укладка бетонной смеси. Качество и долговечность бетона во многом зависят от правильности укладки, а методы укладки и уплотнения определяются видом бетонной смеси (пластичная или жесткая, тяжелый или легкий бетон) и типом конструкции. Укладка должна обеспечивать максимальную плотность бетона (отсутствие пустот) и неоднородность состава по сечению конструкции.

Пластичные текучие смеси уплотняются под действием собственного веса или путем штыкования, более жесткие смеси — вибрированием

Вибрирование — наиболее эффективный метод укладки, основанный на использовании тиксотропных свойств бетонной смеси. При вибрировании частицам бетонной смеси передаются быстрые колебательные движения от источника колебаний - вибратора. Применяют главным образом электромехани-ческие вибраторы, основная часть которых - электродвигатель. На валу электродвигателя эксцентрично установлен груз - дебаланс, при вращении которого возникают колебательные импульсы.

При вибрировании жесткая бетонная смесь как бы превращается в тяжелую жидкость, которая плотно заполняет все части формы, а воздух, содержащийся в бетонной смеси, при этом поднимается вверх и выходит из смеси. Бетонная смесь приобретает плотную структуру.

При недостаточном времени вибрирования бетонная смесь уплотняется не полностью, при слишком долгом - она может расслоиться: тяжелые компоненты - щебень, песок концентрируются внизу, а вода выступает сверху.

Твердение бетона. Нормальный рост прочности бетона происходит при положительной температуре (15...25° С) и постоянной влажности. Соблюдение этих условий особенно важно в первые 10... 15 суток твердения, когда бетон интенсивно набирает прочность.

Чтобы поверхность бетона предохранить от высыхания, ее покрывают песком, опилками, периодически увлажняя их. Эффективна защита поверхности бетона от испарения влаги полимерными пленками, битумными и полимерными эмульсиями. В зимнее время твердеющий бетон предохраняют от замерзания различными методами: методом термоса, когда подогретую бетонную смесь защищают теплоизоляционными материалами, и подогревом бетона во время твердения (в том числе и электропрогрев).

На заводах сборного железобетона для ускорения твердения бетона применяют тепловлажностную обработку - прогрев при постоянном поддерживании влажности бетона насыщенным паром при температуре 85...90°С. При этом время твердения железобетонных изделий до набора ими отпускной прочности (70...80 % марочной) сокращается до 10... 16 ч (при твердении в естественных условиях для этого требуется 10...15 дн).

Для силикатных бетонов используют автоклавную обработку в среде насыщенного пара высокой температуры 175...200°С и при давлении 0,8...1,3 МПа. В этом случае процесс твердения длится 8...10 ч.

Для ускорения набора прочности бетоном применяют быстротвердеющие (БТЦ) и особо быстротвердеющие (ОБТЦ) цементы. Быстрее других достигает марочной прочности (за три дня) бетон на глиноземистом цементе, однако последний нельзя использовать при температуре окружающей среды вовремя твердения выше 30...35° С.

5. Прочность, марка и класс бетона

Тяжелый бетон — основной конструкционный строительный материал, поэтому оценке его прочностных свойств уделяется большое внимание. Прочностные характеристики бетона определяются строго в соответствии с требованиями стандартов. Используется несколько показателей, характеризующих прочность бетона. Неоднородность бетона как материала учитывается в основной прочностной характеристике — классе бетона.

Прочность. Как и у всех каменных материалов, предел прочности бетона при сжатии значительно (в 10... 15 раз) выше, чем при растяжении и изгибе. Поэтому в строительных конструкциях бетон, как правило, работает на сжатие. Когда говорят о прочности бетона, подразумевают его прочность на сжатие.

Прочность бетона принято оценивать по среднему арифметическому значению результатов испытания образцов данного бетона через 28 суток нормального твердения. Для этого используют образцы - кубы размером 150 х 150 х 150 мм, изготовленные из рабочей бетонной смеси и твердевшие при (20 ± 2)°С на воздухе при относительной влажности 95% (или в иных условиях, обеспечи-вающих сохранение влаги в бетоне). Методы определения прочности бетона регламентированы стандартом.

Марка бетона. По среднему арифметическому значению прочности бетона устанавливают его марку — округленное значение прочности (причем округление идет всегда в нижнюю сторону). Для тяжелого бетона установлены следующие марки по прочности на сжатие: 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700 и 800 кгс/см2. При обозначении марки используют индекс «М»; так, например, марка бетона М35О означает, что его средняя прочность не менее 35 МПа (но не более 40).

Отличительная особенность бетона — значительная неоднородность его свойств. Это объясняется изменчивостью в качестве сырья (песка, крупного заполнителя и даже цемента), нарушением режима приготовления бетонной смеси, ее транспортировки, укладки (степени уплотнения) и условии твердения. Все это приводит к разбросу прочности бетона одного и того же состава. Чем выше культура производства (лучше качество подготовки материалов, приготовления и укладки бетона и т. п.), тем меньше будут возможные колебания прочности бетона. Для строителя важно получить бетон не только с заданной средней прочностью, но и с минимальными отклонениями (особенно в низшую сторону) от этой прочности. Показателем, который учитывает возможные колебания качества бетона, является класс бетона.

Класс бетона — это численная характеристика прочности, принимаемая с гарантированной обеспеченностью (обычно 0,95). Это значит, что установленное классом свойство, например прочность бетона, достигается не менее чем в 95 случаях из 100.

Понятие «класс бетона» позволяет назначать прочность бетона с учетом ее фактической или возможной вариации. Чем меньше изменчивость прочности, тем выше класс бетона при одной и той же средней прочности.

Соотношение между классами и марками бетона неоднозначно и зависит от однородности бетона, оцениваемой с помощью коэффициента вариации. Чем меньше коэффициент вариации, тем однороднее бетон.

 

6. Основные свойства тяжелого бетона

Помимо прочности к основным свойствам принять относить деформативность, морозостойкость и теплофизические свойства, которые во многом зависят от пористости и способности бетона поглощать воду в период эксплуатации.

К деформативным свойствам, как мы уже знаем, относят модуль упругости, модуль деформаций, модуль Пуассона и пр. Начальный модуль упругости зависит от пористости и прочности и составляет для тяжелых бетонов (2,2….3,5) . 104 МПа. У ячеистых бетонов – 1 . 104. Важными для бетонов являются деформации бетона, возникающие при усадке бетона и его ползучести

Ползучесть — склонность бетона к росту пластических деформаций при длительном действии статической нагрузки. Ползучесть бетона также связана с пластическими свойствами цементного геля и микро-трещинообразованием. Она носит затухающий во времени характер. Абсолютные значения ползучести зависят от многих факторов. Особенно активно ползучесть развивается, если бетон нагружается в раннем возрасте. Ползучесть можно оценивать двояко: как положительный процесс, помогающий снижать напряжения, возникающие от термических и усадочных процессов, и как отрицательное явление, например, снижающее эффект от предварительного напряжения арматуры.

Усадка — процесс сокращения размеров бетонных элементов при их нахождении в воздушно-сухих условиях. Основная причина усадки — сжатие гелевой составляющей при потере воды. Усадка бетона тем выше, чем больше объем цементного теста в бетоне. В среднем усадка тяжелого бетона составляет 0,3...0,4 мм/м.

Вследствие усадки бетона в бетонных и железобетонных конструкциях могут возникнуть большие усадочные напряжения, поэтому элементы большой протяженности разрезают усадочными швами во избежание появления трещин. При усадке бетона 0,3 мм/м в конструкции длиной 30 м общая усадка составит 10 мм. Усадочные трещины в бетоне на контакте с заполнителем и в самом цементном камне могут снизить морозостойкость и послужить очагами коррозии бетона.

Пористость. Как это ни покажется странным, такой плотный материал, как бетон  имеет заметную пористость. Причина ее возникновения, как, это уже не раз говорилось, кроется в избыточном количестве воды затворения. Бетонная смесь после правильной укладки представляет собой плотное тело. При твердении часть воды химически связывается минералами цементного клинкера (для портландцемента около 0,2 от массы цемента), а оставшаяся часть постепенно испаряется, оставляя после себя поры. В этом случае пористость бетона можно определить по формуле

П = [(В - ω•Ц)/1000]100,

где В и Ц - расходы воды и цемента на 1м3 (1000дм3 );

ω — количество химически связанной воды в долях от массы цемента.

Пример. В возрасте 28 суток цемент связывает 17 % воды от своей массы; расход воды в этом бетоне - 180 кг, а цемента — 320 кг. Тогда пористость этого бетона будет:

П = [(180 - 0,17•320)/1000]100 = 12,6 %.

Это общая пористость, включающая микропоры геля и капиллярные поры (объем вовлеченного воздуха мы не рассматриваем). С точки зрения влияния на проницаемость и морозостойкость бетона важно количество капиллярных пор. Относительный объем таких пор можно вычислить по формуле, %:

Пк = [(В-2ωЦ)/1000]100.

Для нашего случая количество капиллярных пор будет — 7,1 %.

Водопоглощение и проницаемость. Благодаря капиллярно-пористому строению бетон может поглощать влагу как при контакте с ней, так и непосредственно из воздуха. Гигроскопическое влагопоглощение у тяжелого бетона незначительно, но у легких бетонов (а в особенности у ячеистых) может достигать соответственно 7...8 и 20...25 %.

Водопоглощение характеризует способность бетона впитывать влагу в капельно-жидком состоянии; оно зависит, главным образом, от характера пор. Водопоглощение, как мы уже знаем, тем больше, чем больше в бетоне капиллярных сообщающихся между собой пор. Максимальное водопоглощение тяжелых бетонов на плотных заполнителях достигает 4...8 % по массе (10...20 % по объему). У легких и ячеистых бетонов этот показатель значительно выше.

Большое водопоглощение отрицательно сказывается на морозостойкости бетона и его теплозащитных свойствах. Для уменьшения водопоглощения прибегают к гцдрофобизации бетона, а также к устройству паро- и гидроизоляции конструкций.

Водопроницаемость бетона определяется в основном проницаемостью цементного камня и контактной зоны «цементный камень — заполнитель»; кроме того, путями фильтрации жидкости через бетон могут быть микротрещины в цементном камне и дефекты сцепления арматуры с бетоном. Высокая водопроницаемость бетона может привести его к быстрому разрушению из-за коррозии цементного камня.

Для снижения водопроницаемости необходимо применять заполнители надлежащего качества (с чистой поверхностью), а также использовать специальные уплотняющие добавки (жидкое стекло, хлорное железо) или расширяющиеся цементы. Последние используются для устройства бетонной гидроизоляции.

По водонепроницаемости бетон делят на марки W0,2; W0,4; W0,6; W0,8 и Wl,2. Марка обозначает давление воды (МПА), при котором образец-цилиндр высотой 15 см не пропускает воду при стандартных испытаниях.

Морозостойкость — главный показатель, определяющий долговечность бетонных конструкций в нашем климате. Морозостойкость бетона оценивается путем попеременного замораживания при минус (18 ± 2)° С и оттаивания в воде при (18 ± 2)° С предварительно насыщенных водой образцов испытуемого бетона. Продолжительность одного цикла - 5... 10 ч в зависимости от размера образцов.

За марку по морозостойкости принимают наибольшее число циклов «замораживания - оттаивания», которое образцы выдерживают без снижения прочности на сжатие более 5% по сравнению с прочностью контрольных образцов в начале испытаний. Установлены следующие марки бетона по морозостойкости: F25; F35; F50; F75; F100...F1000. Стандартом разрешается применять ускоренные методы испытаний в растворе соли или глубоким замораживанием до минус (50 ± 5)° С.

Мы уже знаем, что причиной разрушения бетона в рассматриваемых условиях является капиллярная пористость. Вода по капиллярам попадает внутрь бетона и, замерзая там, постепенно разрушает его структуру. Установлена зависимость марки по морозостойкости бетона от величины капиллярной пористости. Так, согласно этой зависимости бетон, пористость которого мы рассчитывали выше, должен иметь морозостойкость F150...F200.

Для получения бетонов высокой морозостойкости необходимо добиваться минимальной капиллярной пористости (не выше 6,5...6 %). Это возможно путем снижения содержания воды в бетонной смеси, что, в свою очередь, возможно путем использования:

• жестких бетонных смесей, интенсивно-уплотняемых при укладке;

• пластифицирующих добавок, повышающих удобоукладываемость бетон-ных смесей без добавления воды. Есть еще один путь повышения морозостойкости бетона - гидрофобизация (объемная или поверхностная); в этом случае снижается водопоглощение бетона и соответственно повышается его морозостойкость.

Теплофизические свойства. Из них важнейшими являются теплопроводность, теплоемкость и температурные деформации.

Теплопроводность тяжелого бетона даже в воздушно-сухом состоянии велика — около 1,2... 1,5 Вт/(м • К), т. е. в 1,5...2 раза выше, чем у кирпича. Поэтому использовать тяжелый бетон в ограждающих конструкциях можно только совместно с эффективной теплоизоляцией. Легкие бетоны, в особенности ячеистые, имеют невысокую теплопроводность 0,1...0,5 Вт/(м • К), и их применение в ограждающих конструкциях предпочтительнее.

Теплоемкость тяжелого бетона, как и других каменных материалов, находится в пределах 0,75...0,92Дж/(кг • К); в среднем — 0,84 Дж/(кг • К).

Температурные деформации. Температурный коэффициент линейного расширения тяжелого бетона (10...12)•10-6К-1. Это значит, что при увеличении температуры бетона на 50°С расширение составит примерно 0,5 мм/м. Поэтому во избежание растрескивания сооружения большой протяженности разрезают температурными швами.

Большие колебания температуры могут вызвать внутреннее растрескивание бетона из-за различного теплового расширения крупного заполнителя и цементного камня.

7.  Легкие бетоны

Существенный недостаток обычного тяжелого бетона — большая плотность (2400...2500 кг/м3). Снижая плотность бетона, строители достигают как минимум двух положительных результатов:

снижается масса строительных конструкций;

повышаются их теплоизоляционные свойства.

Легкие бетоны бетоны с плотностью менее 1800 кг/м3 - универсальный материал для ограждающих и несущих конструкций жилых и промышленных зданий. Из них изготовляют большинство стеновых панелей и блоков, плит кровельных покрытий и камней для укладки стен. Термин «легкие бетоны» объединяет большую группу различных по составу, структуре и свойствам бетонов.

По назначению легкие бетоны подразделяют на:

конструкционные (класс прочности - В7,5...В35; плотность - 400...1800кг/м3);

конструкционно-теплоизоляционные (класс прочности не менее ВЗ,0, плотность - 600... 1400 кг/м3);

теплоизоляционные - особо легкие (плотность < 600 кг/м3).

По строению и способу получения пористой структуры легкие бетоны подразделяют на следующие виды:

    •бетоны слитного строения на пористых заполнителях;

ячеистые бетоны, в составе которых нет ни крупного, ни мелкого
заполнителя, а их роль выполняют мелкие сферические поры (ячейки);

крупнопористые, в которых отсутствует мелкий заполнитель, в результате чего между частицами крупного заполнителя образуются пустоты.

Легкие бетоны на пористых заполнителях — наиболее распространенный вид легких бетонов. Свидетельства их применения известны еще в Древнем Риме. Для получения легких бетонов тогда использовали природный заполнитель — пемзу и туф, а также бой керамики и даже пустые глиняные сосуды. В настоящее время эти заполнители также используют как местный материал.

Широкое развитие легкие бетоны получили во второй половине XX в., когда началось массовое производство искусственных пористых заполнителей: керамзита, аглопорита, шлаковой пемзы и др.

Особенности технологии легких бетонов связаны со спецификой пористых заполнителей: их плотность меньше плотности воды, поверхность частиц шероховатая и они активно поглощают воду.

Низкая плотность не позволяет эффективно использовать традиционные бетоносмесители «свободного падения», в которых перемешивание интенсифицируется за счет падения тяжелых зерен заполнителя. Шероховатая поверхность также затрудняет перемешивание. Поэтому для приготовления легкобетонных смесей желательно использовать смесители принудительного перемешивания.

При вибрировании легких бетонов расслоение смеси имеет обратный характер в сравнении с тяжелым. Вверх всплывают легкие зерна заполнителя, а вниз опускается цементное тесто.

Твердение цемента в легких бетонах происходит в более благоприятных условиях, чем в тяжелом бетоне, так как заполнитель, поглотивший воду во время приготовления смеси, служит как бы аккумулятором воды, обеспечивающим влажное твердение бетона в длительные сроки.

Структура и свойства легких бетонов. Пористые заполнители имеют шероховатую поверхность, поэтому сцепление цементного камня с заполнителем не является слабым звеном легких бетонов. Этому способствует также химическая активность вещества заполнителей, содержащих аморфный SiO2, способный взаимодействовать с Са(ОН)2 цементного камня. Плотность и прочность контактной зоны «цементный камень — пористый заполнитель» объясняют парадоксально высокую водонепроницаемость и прочность легких бетонов на пористых заполнителях.

Морозостойкость легких бетонов при их пористой структуре довольно высокая. Рядовые легкие бетоны имеют морозостойкость в пределах F25...F100. Для специальных целей могут быть получены легкие бетоны с морозостойкостью F200, F300 и F400.

Водонепроницаемость у легких бетонов высокая и увеличивающаяся по мере твердения бетона за счет уплотнения контактной зоны «цементный камень — заполнитель», являющейся самым уязвимым местом для проникновения воды в обычном бетоне. Установлены следующие марки легких бетонов по водонепроницаемости: W0,2; W0,4; W0,6; W0,8; W1; W1,2 (давление воды, МПа, не вызывающее Фильтрации при стандартных испытаниях).

Ячеистые бетоны

Ячеистые бетоны на 60...85 % по объему состоят из замкнутых пор (ячеек) размером 0,2...2 мм. Ячеистые бетоны получают при затвердевании насыщенной газовыми пузырьками смеси вяжущего, кремнезимистого компонента и воды. Благодаря высокопористой структуре средняя плотность ячеистого бетона невелика - 300... 1200 кг/м3; он имеет низкую теплопроводность при достаточной прочности. Бетоны с желаемыми характеристиками (плотностью, прочностью и теплопроводностью) сравнительно легко можно получать, регулируя их пористость в процессе изготовления.

Состав и технология ячеистых бетонов. Вяжущим в ячеистых бетонах может служит портландцемент (или известь) с кремнеземистым компонентом. При применении известково-кремнеземистых вяжущих получаемые бетоны называют газо- и пеносиликаты.

Кремнеземистый компонент — молотый кварцевый песок, гранулированные доменные шлаки, зола ТЭС и др. Кремнеземистый компонент снижает расход вяжущего и уменьшает усадку бетона. Применение побочных продуктов промышленности (шлаков и зол) для этих целей экономически выгодно и экологически целесообразно.

Соотношение между кремнеземистым компонентом и вяжущим устанавливается опытным путем.

Для получения ячеистых бетонов используют как естественное твердение вяжущего, так и активизацию твердения с помощью пропа-ривания (t = 85...90°С) и автоклавной обработки (t = 175° С). Лучшее качество имеют бетоны, прошедшие автоклавную обработку. В случае применения извести в составе вяжущего автоклавная обработка обязательна.

По способу образования пористой структуры (методу вспучивания вяжущего) различают: газобетоны и газосиликаты; пенобетоны и пеносиликаты.

Газобетон и газосиликат получают, вспучивая тесто вяжущего газом, выделяющимся при химической реакции между веществом-газообразователем и вяжущим. Чаще всего газообразователем служит алюминиевая пудра, которая, реагируя с гидратом оксида кальция, выделяет водород

ЗСа(ОН)2 + 2А1 + 6Н2О → ЗСаО • А12О3 • 6Н2О + H2

Согласно уравнению химической реакции, 1 кг алюминиевой пудры выделит до 1,25 м3 водорода, т. е. для получения 1 м3 газобетона требуется 0,5...0,7 кг пудры.

Пенобетоны и пеносиликаты получают, смешивая тесто вяжущего с заранее приготовленной устойчивой технической пеной. Для образования пены используют пенообразователи, получаемые как модификацией побочных продуктов других производств (гидролизованная кровь, клееканифольный пенообразователь), так и синтезируемые специально (сульфанол и т. п.).

Cойства ячеистых бетонов определяются их пористостью, видом вяжущего и условиями твердения. Как уже говорилось, пористость ячеистых бетонов - 60...85%. Характер пор - замкнутый, но стенки пор состоят из затвердевшего цементного камня, который, как известно, пронизан порами, в том числе и капиллярными. Для движения воздуха поры в ячеистом бетоне замкнуты, а для проникновения воды — открыты. Поэтому водопоглощсние ячеистого бетона довольно высокое (табл. 12.4) и морозостойкость соответственно пониженная по сравнению с бетонами слитной структуры.

Гидрофильность цементного камня и большая пористость обусловливают высокую сорбционную влажность. Это сказывается на теплоизоляционных показателях ячеистого бетона (табл. 12.4). Поэтому при использовании ячеистого бетона в ограждающих конструкциях его наружную поверхность необходимо защищать от контакта с водой или гидрофобизировать.

Прочность ячеистых бетонов зависит от их средней плотности и находится в пределах 1,5... 15 МПа. Модуль упругости ячеистых бетонов ниже, чем у обычных бетонов, т. е. они более деформативны. Кроме того, у ячеистого бетона повышенная ползучесть.

Ячеистые бетоны и изделия из них обладают хорошими звукоизоляционными свойствами, они огнестойки и легко поддаются механической обработке (пилятся и сверлятся).

Наиболее рациональная область применения ячеистых бетонов — ограждающие конструкции (стены) жилых и промышленных зданий: несущие — для малоэтажных зданий и ненесущие — для многоэтажных, имеющих несущий каркас.

Крупнопористый бетон

Крупнопористый бетон получают при затвердевании бетонной смеси, состоящей из вяжущего (обычно портландцемента), крупного заполнителя и воды. Благодаря отсутствию песка и пониженному Расходу цемента (70... 150 кг/м3), используемого лишь для склеивания зерен крупного заполнителя, плотность крупнопористого бетона на 600...700 кг/м3 ниже, чем у аналогичного бетона слитного строения.

Крупнопористый бетон целесообразно изготовлять на основе пористых заполнителей (керамзитового гравия, шлаковой пемзы и др.) В этом случае средняя плотность бетона составляет 500...700 кг/м и плиты из такого бетона эффективны для тегшоизоляции стен и покрытий зданий.

8. Специальные виды бетонов

Специальные бетоны способны работать в экстремальных условиях или обладают свойствами, не характерными для обычных бетонов. Но при этом их технология и принципиальный состав остаются «бетонными».

Особо тяжелые бетоны используют для устройства конструкций, защищающих людей от рентгеновского и γ-излучения. Для этого в состав бетона вводят заполнители, содержащие железо, барий и другие тяжелые элементы, хорошо поглощающие жесткое ионизирующее излучение. В качестве заполнителей используют: железные руды (магнетит, лимонит), барит, металлическую дробь и т. п. Плотность таких бетонов достигает 4000...5000 кг/м3.

Гидратные бетоны предназначены для защиты от нейтронного излучения. Как известно из физики, потоки нейтронов лучше всего поглощают атомы легких элементов (водорода, лития, бора). Для этих целей чаще всего используют бетоны, содержащие большое количество химически связанной воды. Этого можно добиться, используя вяжущие, образующие при твердении эттрингит— ЗСаО • А12О3 • 3CaSO4 • 32Н2О, а также применяя заполнители, содержащие кристаллизационную воду, например, серпентин (змеевик) 3MgO  •  2SiO2 • 2H2O.

Жаростойкие бетоны характеризуются способностью сохранять в определенных пределах физико-механические свойства при длительном воздействии высоких температур.

Для изготовления жаростойких бетонов в качестве вяжущих используют глиноземистый цемент, шлакопортландцемент и жидкое стекло. Заполнителями и тонкомолотыми наполнителями служат металлургические шлаки, бой керамических и огнеупорных изделий, базальт, андезит и т. п.

Жаростойкие бетоны приготовляют по обычной технологии, а затем в процессе работы при высоких температурах они сами превращаются в монолитный керамический материал. Из таких бетонов выполняют футеровку промышленных печей, фундаменты доменных и мартеновских печей и т. п. Применение жаростойких бетонов взамен штучных материалов снижает стоимость и ускоряет строительство.

Кислотоупорные бетоны получают на кислотоупорном цементе и кислотостойких заполнителях. Применяют кислотоупорные бетоны на химических предприятиях для облицовки несущих конструкций, устройства бетонных полов и т. п.

9.4.  Железобетон и железобетонные изделия

1. Общие сведения

Бетон имеет недостаток, присущий всем каменным как природным, так и искусственным материалам,— он хорошо работает на сжатие, но плохо сопротивляется изгибу и растяжению. Прочность бетона при растяжении составляет всего около 1/10…1/15 его прочности на сжатие. Чтобы повысить прочность бетонных конструкций на растяжение и изгиб, в бетон укладывают стальную проволоку или стержни, называемой арматурой. Арматура в переводе с латинского означает «вооружение», т. е. стальная арматура как бы вооружает, укрепляет бетон. Армированный стальными стержнями бетон называют железобетоном. Каменные конструкции армированные металлом, были известны давно, но в современном виде железобетон появился лишь во второй половине XIX века, когда было освоено промышленное производство портландцемента. Патент на изобретение железобетона был выдан французу Ж. Монье в 1867г., хотя известны попытки использования железобетона и до него (например, в 1849г. инженером Г.Е. Паукером в России и в 1845г. В. Уилкинсоном в Англии). Первоначально железобетон применялся довольно ограниченно. В настоящее время это основной конструкционный материал в жилищном и промышленном строительстве.

Железобетон — это не два разнородных материала: бетон и сталь, а новый материал, в котором сталь и бетон работают совместно, помогая друг другу. Это объясняется следующим. Бетон при твердении на воздухе уменьшается в объеме, плотно охватывая арматуру. Прочность сцепления арматуры с бетоном достигает больших значений. Так, чтобы выдернуть из бетона стержень диаметром 30 мм, введенный в бетон на глубину 300 мм, требуется сила не менее 10 кН. Сцепление стали с бетоном не нарушается и при сильных перепадах температуры, так как коэффициенты теплового расширения стали и бетона почти одинаковы. Хорошее сцепление стали с бетоном приводит к тому, что под нагрузкой эти два материала работают как одно целое.

Смысл армирования можно пояснить на элементах, работающих на изгиб (балках, ригелях). В таких элементах часть поперечного сечения элемента подвергается сжатию, а другая — растяжению. Если балку изготовить из неармированного бетона, то вследствие низкой его прочности на растяжение (1...4 МПа) уже под небольшой нагрузкой бетон в растянутой зоне растрескивается и балка разрушится. Если же в растянутую зону ввести стальную арматуру, то она примет на себя растягивающие напряжения (прочность стали при растяжении более 200 МПа), и балка, хотя на ней могут появиться трещины, не разрушится даже при больших нагрузках. В ряде случаев армируют элементы, работающие и на сжатие (колонны, сваи), так как и на сжатие сталь в 5... 10 раз прочнее бетона.

Причиной, почему арматура принимает на себя большую часть нагрузки, является различие в модулях упругости стали 2 • 105 МПа и бетона (2...3) х 104 МПа. Из-за того, что модуль упругости стали в 10 раз выше модуля упругости бетона, при нагружении железобетонного элемента напряжения, возникающие в стали, приблизительно в 10 раз выше, чем напряжения в бетоне, т. е. в материале происходит как бы перераспределение нагрузки.

Бетон благодаря своей плотности и водонепроницаемости, с одной стороны, и щелочной реакции цементного камня в бетоне, с другой, защищает сталь от коррозии. Кроме того, бетон как сравнительно плохой проводник теплоты защищает сталь от быстрого нагрева при пожарах. Стальные конструкции при пожаре быстро нагреваются, сталь размягчается и вся конструкция начинает деформироваться даже под собственным весом. В железобетонных конструкциях стальная арматура защищена от огня слоем бетона. Так, опыты показали, что при температуре поверхности бетона 1000°С арматура, находящаяся на глубине 50мм, через 2 ч нагреется лишь до 500°С.

В современном строительстве все большее применение находит напряженно-армированный бетон. Как уже говорилось, прочность бетона на растяжение в 10...20 раз ниже, чем на сжатие. В железобетоне этот недостаток устраняют введением в растянутую зону арматуры. Однако вследствие малой растяжимости бетона в растянутой его зоне возникают трещины, после чего всю нагрузку воспринимает только арматура. Пока ширина трещины менее 0,1...0,2 мм (так называемые волосяные трещины), они не опасны с точки зрения сцепления арматуры с бетоном и коррозии арматуры.

При применении для армирования высокопрочных сталей полное использование их прочности сопровождается относительно большим удлинением арматуры, что приводит к сильному растрескиванию бетона, а это, в свою очередь,— к коррозии арматуры из-за обнажения ее поверхности. Отсюда следует, что при обычном способе армирования применение высокопрочной арматуры нерационально. При армировании такой арматурой применяют метод предварительного натяжения арматуры.

Сущность этого метода состоит в том, что до загрузки железобетонной конструкции полезной нагрузкой ее арматуру растягивают наподобие резинового жгута; упором при этом служит бетон. Естественно, что чем сильнее растянута арматура, тем больше будет сжат бетон. Когда же к конструкции приложена полезная нагрузка, напряжения от нее, возникающие в растянутой зоне бетона, частично компенсируются предварительно созданными сжимающими напряжениями. Поэтому в растянутой зоне бетона не возникнут трещины, а предварительно напряженная арматура получит от нагрузки дополнительное напряжение и ее высокая прочность будет реализована в большой степени.

В настоящее время применяют два способа получения напряженно-армированного бетона. Один из них заключается в том, что арматуру натягивают и закрепляют на специальных анкерах, а затем укладывают бетон. После того как бетон достаточно затвердеет, арматуру освобождают и она, сжимаясь, сжимает бетон. Другой способ: в бетоне оставляют специальные каналы для напрягаемой арматуры. После затвердевания бетона арматуру вводят в каналы и натягивают, используя в качестве опоры затвердевший бетон. При этом в бетоне возникают сжимающие напряжения. После натяжения арматуры каналы заполняют цементным раствором.

В предварительно напряженных железобетонных конструкциях более полно используется прочность стали и бетона, поэтому уменьшается масса изделий. Кроме того, предварительное обжатие бетона, препятствуя образованию трещин, повышает его долговечность.

Благодаря универсальности и комплексу ценных свойств железобетон на тяжелом и легком бетоне используют для строительства всех типов зданий и инженерных сооружений. Так, массовое строительство жилых зданий осуществляется из сборного железобетона, причем из него выполняют все элементы здания. В многоэтажных кирпичных зданиях фундаменты и перекрытия — железобетонные. Промышленные здания и инженерные сооружения в основном возводят из железобетона.

В зависимости от способа изготовления железобетонные конструкции могут быть монолитными или сборными.

2. Монолитный железобетон

Монолитным называют железобетон, изготовляемый непосредственно на строительной площадке. На месте возведения конструкции устанавливают опалубку. Назначение опалубки — придать бетонной смеси при ее укладке форму будущей конструкции. Опалубку выполняют из дерева, фанеры, стали или различных их комбинаций. Обычно применяют разборно-переставную опалубку из мелких или крупных щитов.

Для возведения высоких сооружений (резервуаров, труб, башен) применяют скользящую или подъемно-переставную опалубку. Когда бетон, уложенный в скользящую опалубку, достаточно затвердеет, опалубку вместе с рабочими подмостями двигают вверх и цикл повторяют. Такая опалубка была использована при строительстве Останкинской телевизионной башни.

В опалубку укладывают арматуру, а затем бетонную смесь. Бетонную смесь уплотняют глубинными или поверхностными вибраторами, навешиваемыми на опалубку.

Бетон после укладки первые 7... 10 дн необходимо защищать от высыхания, а зимой — от замерзания. В противном случае мы не получим требуемой прочности бетона. Бетон твердеет обычно естественным путем, зимой возможен его подогрев.

Опалубку снимают по достижении бетоном достаточной прочности, чаще всего через 7...10 дн.

В последние годы монолитный железобетон применяют все шире (в начальный период своего развития железобетон в строительстве использовали только в монолитном варианте). Из монолитного бетона возводят здания и сооружения, не поддающиеся разделению на однотипные элементы, при особенно больших или динамических нагрузках на конструкции зданий и сооружений (например, фундаменты и каркасы многоэтажных жилых и промышленных зданий, особенно в сейсмических районах), гидротехнические сооружения и т. п. С каждым годом расширяется строительство из монолитного бетона городских и сельских жилых зданий. Особенно эффективно такое строительство в случае применения специально изготовленной металлической опалубки многократного использования, что позволяет добиться большой точности изготовления строительных конструкций при низких трудозатратах.

Для монолитного строительства используют тяжелые и легкие бетоны на быстротвердеющих цементах. При правильной организации труда скорость строительства из монолитного бетона не уступает скорости монтажа из сборных элементов.

За последние годы в городах России построено много нестандартных сооружений из монолитного бетона, в том числе и такие уникальные, как храм Христа Спасителя, подземный торговый комплекс на Манежной площади в Москве и др.

3. Сборный железобетон

Сборные железобетонные изделия и конструкции (сборный железобетон) представляют собой крупноразмерные железобетонные элементы, изготовляемые на заводе или полигоне домостроительного комбината. Основное преимущество таких конструкций — высокомеханизированные и автоматизированные методы их изготовления; на строительной площадке эти элементы только монтируют, что резко сокращает сроки строительства, повышает производительность труда и позволяет широко применять новые эффективные материалы (легкие и ячеистые бетоны, отделочную керамику, пластмассы и т. п.).

Развитие сборного строительства нашло свое выражение в организации домостроительных комбинатов (ДСК). ДСК выпускают все необходимые для строительства здания железобетонные элементы, транспортируют их на стройку и осуществляют монтаж и окончательную отделку здания. Главнейшее звено ДСК — заводы, выпускающие железобетонные конструкции и детали.

Основные операции при производстве железобетонных изделий: приготовление бетонной смеси, изготовление арматуры, армирование и формование изделий и их ускоренное твердение.

Бетонную смесь приготовляют в бетоносмесительном цехе завода, арматуру — в арматурном цехе. Поступающую на завод арматурную сталь (в бухтах или прутках) на специальных станках очищают от ржавчины, правят и режут на стержни заданной длины. Необходимую форму стержням придают на гибочных станках. Отдельные стержни и проволоку соединяют в сетки и каркасы контактной сваркой на станках-автоматах. Готовые сетки и каркасы передают в формовочный цех.

Напрягаемую арматуру натягивают на анкеры форм с помощью специальных механизмов или реже методом термического натяжения.

Перед укладкой арматуры и бетона формы очищают и покрывают смазочным материалом, препятствующим сцеплению бетона с металлом форм. Бетонная смесь из бетоносмесигельного цеха поступает в приемный бункер бетоноукладчика, который подает ее в форму и разравнивает.

Уплотняют бетонную смесь на заводах центрифугированием, вибропрессованием, прокатом, но чаще на виброплощадках большой грузоподъемности (до 5...10 т) с электромеханическим или электромагнитным приводом. Пустоты в изделиях формуют с помощью вибровкладышей.

Для ускорения твердения бетона его подвергают тепловлажностной обработке: нагреву до температуры 80... 180° С таким образом, чтобы в бетоне сохранялась вода в жидком состоянии, необходимая для твердения цемента.

Применяют следующие виды тепловлажностной обработки: пропаривание при нормальном давлении и температуре 80...95°С; контактный нагрев и электроподогрев до 100° С; запаривание в автоклавах при давлении 0,9... 1,6 МПа (оно необходимо, чтобы вода в бетоне оставалась жидкой) и температуре 175...200° С.

Наиболее распространено пропаривание при нормальном давлении в камерах непрерывного или периодического действия. Изделия нагревают насыщенным паром.

Камеры непрерывного действия представляют собой туннель, в котором изделия в формах, установленных на вагонетках, проходят последовательно зоны подогрева, изотермичесокй выдержки и охлаждения.

В камеры периодического действия изделия загружают краном и устанавливают в несколько рядов по высоте. Затем камеру закрывают крышкой и подают насыщенный пар. Продолжительность пропаривания 10... 16 ч. За это время бетон набирает не менее 70 % марочной прочности.

После извлечения из форм изделия проходят технический контроль на соответствие требованиям ГОСТ или ТУ.

Изделия, удовлетворяющие требованиям стандарта, маркируют несмываемой краской. В маркировке указывают паспортный номер изделия, его индекс, марку завода-изготовителя и пр. На каждую партию изделий составляют паспорт в двух экземплярах: для потребителя и завода-изготовителя.

Железобетонные изделия изготовляют способами: стендовым, кассетным, поточно-агрегатным, конвейерным и вибропрокатным.

При стендовом способе изделия получают в неподвижных формах (на стенде). Механизмы (бетоноукладчики, вибраторы и др.) поочередно подходят к стенду для выполнения необходимых операций. Этим способом изготовляют, как правило, крупногабаритные изделия (фермы, колонны, балки) на полигонах.

Касетный способ — вариант стендового способа, основой которого является формование изделий в стационарно установленных кассетах, состоящих из нескольких вертикальных металлических форм-отсеков. В форму закладывают арматурный каркас и заполняют ее бетонной смесью. Тепловую обработку производят контактным обогревом через стенки форм. После тепловой обработки стенки форм раздвигают и изделия вынимают мостовым краном. Кассетным способом изготовляют плоские изделия (панели перекрытий, стеновые панели и т. п.).

При поточно-агрегатном способе формы с изделиями перемешаются от одного технологического агрегата к другому краном, а при конвейерном они стоят на вагонетках, движущихся по рельсовому пути. При конвейерном способе тепловлажностную обработку осуществляют непрерывном методом. Конвейерный способ - высокопроизводительный, но на каждой нитке конвейера можно выпускать изделие только одного типоразмера.

При вибропрокатном способе процессы получения железобетонного изделия происходят на одной установке непрерывного действия — вибропрокатном стане. Вибропрокатный стан — это конвейер из стальной обрезиненной формующей ленты, движущейся вдоль постов укладки арматуры и бетона, виброуплотнения бетона и контактной тепловой обработки. Вибропрокатным способом получают плиты перекрытий, легкобетонные панели наружных стен, перегородочные панели. Этот способ самый производительный, но переход с выпуска одного вида изделий на другой затруднен, так как связан с полной переоснасткой стана.

9.5. Искусственные каменные материалы на основе вяжущих веществ

1. Общие сведения

Эта часть лекций посвящена мелко штучным искусственным каменным материалам.

В зависимости от вида вяжущего различают изделия на основе цемента, извести, гипса и др. Вид вяжущего и принятый способ производства определяют условия твердения таких материалов: естественное твердение, пропаривание, автоклавная обработка.

В качестве заполнителей для получения искусственных каменных изделий используют разнообразные материалы, обычный песок, керамзит и другие пористые заполнители, опилки и стружки и специфический армирующий заполнитель — асбест.

К основным искусственным каменным материалам и изделиям относятся: силикатный кирпич и силикатобетонные изделия; гипсобетонные изделия, стеновые камни из легкого и ячеистого бетона, арболит, цементно-стружечные плиты и асбестоцементные изделия.

В отличие от керамики материалы на минеральных вяжущих получаются за счет естественного твердения или термообработки при температурах до 200° С (керамический кирпич обжигают при 900... 1100° С). Таким образом, энергозатраты на производство изделий на минеральных вяжущих, даже с учетом энергозатрат на получение самого вяжущего, меньше, чем для получения керамики. Однако керамические материалы, как правило, более долговечны и стойки к действию воды, агрессивных растворов и высоких температур.

2. Силикатный кирпич и силикатобетонные изделия

Известно, что известь относится к воздушным вяжущим веществам, а известково-песчаные растворы являются малопрочными и неводостойкими материалами. Естественно предположить, что известково-песчаный раствор при определенных условиях должен твердеть с образованием гидросиликатов, так как в нем есть все необходимые для этого компоненты: известь Са(ОН)2, песок SiO2 и вода Н2О.

Первым, кто получил достаточно водостойкий и прочный материал на основе извести и песка, был немецкий ученый В. Михаэлис, который в 1880 г. предложил обрабатывать известково-песчаную смесь в атмосфере насыщенного пара при температуре 150...200° С.

Известно, что для получения насыщенного пара температурой выше 100°С необходимо давление выше атмосферного, причем оно должно быть тем выше, чем выше температура насыщенного пара. При температуре 150...200°С и соответствующем ей давлении 0,9... 1,3 МПа известь, песок и вода образуют гидросиликаты кальция:

Открытие Михаэлиса было использовано для производства так называемого силикатного (известково-песчаного) кирпича. К началу XX в. в России было уже пять заводов, выпускавших силикатный кирпич, а в настоящее время силикатный кирпич занял такое же место в ряду строительных материалов, как и керамический.

Современное производство силикатного кирпича заключается в следующем. Сырьевую смесь, в состав которой входит 90...95 % песка, 5... 10 % молотой негашеной извести и некоторое количество воды, тщательно перемешивают и вьщерживают до полного гашения извести. Затем из этой смеси под большим давлением (15...20 МПа) прессуют кирпич, который укладывают на вагонетки и направляют для твердения в автоклавы - толстостенные стальные цилиндры диаметром до 2м и длиной до 20м с герметически закрывающимися крышками. В автоклаве в атмосфере насыщенного пара при давлении 0,9 МПа и температуре 175°С кирпич твердеет 8... 14 ч. Из автоклава выгружают почти готовый кирпич, который выдерживают 10... 15 дн для карбонизации не-прореагировавшей извести углекислым газом воздуха, в результате чего повышаются водостойкость и прочность кирпича. Плотность обыкновенного силикатного   кирпича   несколько выше, чем полнотелого керамического. Снижение плотности кирпича и камней достигается формованием в них пустот или введением в сырьевую массу пористых заполнителей.

Силикатный кирпич, так же, как и керамический, в зависимости от размеров может быть:

одинарный (полнотелый или с пористыми заполнителями) 250х120х65 мм;

утолщенный (пустотелый или с пористыми заполнителями) 250х120х88 мм (масса утолщенного кирпича не должна быть более 4,3 кг);

силикатный камень (пустотелый) 250х120х138 мм.

Цвет кирпича - от молочно-белого до светло-серого. Выпускают также лицевой кирпич с повышенными физико-механическими свойствами; он может быть цветным - окрашенным в массе или по лицевым граням щелочестойкими пигментами в голубой, зеленоватый, желтый и другие светлые тона.

В зависимости от предела прочности при сжатии и изгибе силикатный кирпич и камни подразделяют ка семь марок: 300; 250; 200; 150; 125; 100 и 75, имеющих средние значения прочности при сжатии соответственно не менее 30...7,5 МПа. Водопоглощение силикатного кирпича не менее 6%. Марки по морозостойкости у кирпича и камней — F50; 35; 25 и 15; для лицевых изделий морозостойкость должна быть не ниже 25.

Существенным недостатком силикатного кирпича по сравнению с керамическим является пониженная водостойкость и жаростойкость.

Силикатный кирпич применяют для кладки наружных и внутренних стен надземных частей зданий и сооружений. Использовать его в конструкциях, подвергающихся воздействию воды (фундаменты, канализационные колодцы и т. п.) и высоких температур (печи, дымовые трубы и т. п.), запрещается.

Кроме известково-песчаного силикатного кирпича выпускают известково-шлаковый и известково-зольный, в которых вместо песка частично или полностью используют промышленные отходы: золы теплоэлектростанций и шлаки. Свойства этих видов кирпича аналогичны свойствам известково-песчаного.

Силикатобетонные изделия бывают тяжелые (аналогичные обычному бетону) и легкие (на основе пористых заполнителей) или ячеистые (пено- и газосиликаты).

3. Гипсовые и гипсобетонные изделия

Изделия на основе гипса получают как из гипсового теста (т. е. из смеси гипса и воды), так и из смеси гипса, воды и заполнителей. В первом случае изделия называют гипсовыми, а во втором — гипсобетонными. Иногда вместо гипса применяют более водостойкое гипсоцементно-пуццолановое вяжущее.

В качестве заполнителей при изготовлении гипсобетонных изделий используют пористые заполнители (керамзит, шлаковую пемзу), опилки, стружки, стебли камыша, льняную костру, макулатуру и т. п. Для уменьшения плотности к гипсовым смесям добавляют вспенивающие вещества.

Гипс — воздушное вяжущее, поэтому гипсовые и гипсобетонные изделия (панели и плиты перегородочные, плиты для оснований пола, листы обшивочные, вентиляционные короба, камни для кладки стен, архитектурные детали) применяют в основном для внутренних частей зданий, не несущих больших нагрузок. Изделия из гипса могут быть сплошными и пустотелыми, армированными и неармированными.

У гипсовых изделий невысокая плотность (1100... 1400 кг/м3); они несгораемы, хорошо изолируют от шума, поддаются механической обработке и легко пробиваются гвоздями. Изготовлять гипсовые изделия несложно, так как гипс твердеет быстро.

Наряду с перечисленными положительными свойствами у гипсовых изделий есть и существенные недостатки: низкая водостойкость, гигроскопичность, хрупкость и малая прочность при изгибе. Изделия из гипса нельзя применять в помещениях с влажностью воздуха более 65 %. Для повышения водостойкости гипсовые изделия покрывают водонепроницаемыми красками. Чтобы увеличить прочность при изгибе, гипсовые изделия армируют, применяя для этой цели деревянные рейки, стебли камыша, органические волокна.

Гипсобетонные панели для перегородок применяют во всех типах жилых, общественных и промышленных зданий. Панели размером на комнату (высотой до 4 м, длиной до 6,6 м) могут быть как сплошные, так и с проемами для дверей и фрамуг. Толщина панелей 60, 80 и 100 мм. Класс гипсобетона по прочности для панелей — не менее В3,5.

Гипсобетонные панели для помещений с повышенной влажностью, например, санитарно-технических кабин, изготовляют на гипсоцементo-пуццолановом вяжущем или гидрофобизированном гипсе. Класс бетона не менее В3,5. К. гипсобетонным панелям предъявляются в основном требования по прочности и звукоизоляции. Этим требованиям отвечает гипсобетон состава 1:1: 1 (гипс : песок: опилки) плотностью 1100... 1400 кг/м3. Получают панели в основном методом непрерывного проката или вертикального формования в кассетах. Панели армируют каркасом из деревянных реек, а по контуру панели выполняют обвязку из деревянных брусков. Весь цикл производства составляет 30...60 мин.

Гипсовые плиты для перегородок изготовляют из гипса марок Г4 и Г5 по литьевой технологии. Плиты выпускают размерами: длина 670...800 мм, ширина 400...500 мм и толщина 80... 100 мм. Большей частью плиты имеют паз и гребень, что облегчает монтаж перегородок. Плотность гипсового камня около 1000 кг/м3. Масса 1 м2 перегородки 80... 100 кг. Прочность при сжатии не менее 5 МПа.

Выпускают два вида плит: обыкновенные и влагостойкие. Последние изготовляют, вводя в гипс гидрофобные добавки. Водопоглощение по массе обычных плит < 35 %, влагостойких — < 5 %.

Возможно изготовление плит большего размера, армируемых деревянными рейками, камышом или растительными волокнами.

Размер перегородок из гипсовых плит: высота не более 3,6 м, длина не более 6 м. При больших размерах требуется установка разделительных укрепляющих элементов из металла или бетона, надежно соединенных с несущими конструкциями.

Гипсовые вентиляционные блоки делают высотой «на этаж»; толщина блока 180...200 мм при диаметре вентиляционных каналов 140 мм, ширина зависит от числа вентиляционных каналов. Класс гипсобетона для вентиляционных блоков не менее В5.

Гипсокартонные листы — листовой отделочный материал, представляющий собой тонкий слой (6...20 мм) затвердевшего гипсового вяжущего, облицованного со всех сторон (кроме торцовых) картоном. В гипсовое тесто в процессе производства вводят пенообразующие добавки для снижения плотности и органические волокна с целью армирования гипсового камня и другие добавки. Изготовляют гипсокартонные листы методом непрерывного проката, причем твердеющий гипс прочно приклеивает к себе листы картона. Назначение картона — повысить прочность материала на изгиб и придать ему гладкую поверхность.

Гипсокартонные листы выпускают дайной 2,5...4,8 м, шириной 0,6... 1,2 м, толщиной 8...25 мм5 плотностью 850...950 кг/м3.

Кроме гипсокартонных листов выпускают гипсоволокнистые листы, в которых в качестве армирующего компонента используют целлюлозные волокна, получаемые из картонной и бумажной макулатуры, и др. Такие листы используют для устройства сборных стяжек при настилке полов.

Гипсовые листовые материалы относятся к трудносгораемым материалам. Их применяют для отделки стен и потолков и устройства перегородок в помещениях с нормальным влажностным режимом. Существенное достоинство листовых материалов — большие размеры, что ускоряет процесс отделки и устройства перегородок. Крепят листы клеящими мастиками или с помощью металлических профилей; крепить гвоздями не рекомендуется из-за возможности коррозии металла в гипсе.

  1.  Бетонные камни и мелкие блоки

На основе вяжущих изготовляют бетонные камни и мелкие блоки. Применение их для кладки стен вместо кирпича дает существенный экономический эффект, так как благодаря большому размеру камней и блоков достигается высокая производительность труда каменщика, а стоимость 1 м3 камней и блоков ниже стоимости такого же количества кирпича.

Бетонные стеновые камни для несущих и ограждающих конструкций всех типов зданий изготовляют размерами от 288х138х138 до 390 х 190 х 188 мм, массой не более 32 кг, из тяжелых и легких бетонов на цементном, силикатном и гипсовом вяжущих. Применяют их для кладки наружных стен (рядовые и лицевые) и фундаментов. Стеновые камни при плотности бетона более 1600 кг/м3 должны быть пустотелыми. Для фундаментов камни изготовляют только из тяжелого бетона без пустот. Лицевые камни могут быть окрашены рельефным рисунком или покрыты декоративным заполнителем. Камни подразделяют на семь марок: от 25 до 200. Камни марок 25 и 35 получают из легких бетонов на пористых заполнителях. Марки камней по морозостойкости: F15, 25, 35 и 50.

Мелкие стеновые блоки из ячеистого бетона применяют для кладки наружных и внутренних стен малоэтажных зданий и заполнения каркаса многоэтажных зданий. Блоки рекомендуются для применения в помещениях с относительной влажностью не более 75 %. Для стен подвалов, цоколей и других частей зданий, где возможно сильное увлажнение бетона, такие блоки применять запрещается. Изготовляют их из ячеистых бетонов.

В зависимости от средней плотности ячеистого бетона (кг/м3) блоки выпускают восьми марок от D500 до D1200. Класс бетона по прочности при сжатии (МПа) соответственно от В1,5 до В12,5. Морозостойкость блоков для наружных стен должна быть не ниже F25, а блоков для внутренних стен — F15.

Стандартом предусмотрено 10 типоразмеров блоков от 300 х 250 х 300 мм до 300 х 200 х 600 мм (размеры номинальные). Блоки выпускают для кладки на растворе или на клею (второй вариант более эффективен с точки зрения обеспечения теплоизоляционных показателей стены). Различие этих двух типов блоков заключается в размерах (при кладке на клею значительно меньше толщина шва) и в точности соблюдения размеров и геометрии блоков. Так, допустимые искривления граней и ребер у блоков для кладки на растворе — 5 мм, а у блоков для кладки на клею — 1 мм.

Большое преимущество блоков из ячеистого бетона — низкая плотность (обычно 500…600 кг/м ), благодаря чему из них можно возводить стены толщиной 30…40 см, отвечающие нормативам СНиП по термическому сопротивлению, без специальной теплоизоляции.

5. Асбестоцемент и асбестоцементные материалы

Бетонные и железобетонные изделия — массивные элементы толщиной, как минимум, в несколько сантиметров. Получить легкие тонкостенные изделия из бетона на цементе с обычной прутковой или проволочной арматурой невозможно. Эту проблему можно решить, равномерно распределяя в мелкозернистой смеси на основе портландцемента (или другого вяжущего) тонкие армирующие волокна (отрезки стальной проволоки, асбестовое волокно, стекловолокно и др.). Из таких композиционных материалов, называемых фибробетоном, изготовляют большеразмерные листы, трубы и фасонные изделия толщиной всего несколько миллиметров. Самый распространенный и эффективный материал такого рода - асбестоцемент, получаемый на основе распушенного асбеста.

Асбест (от греч. asbestos — неразрушаемый) — собирательное название группы тонковолокнистых минералов, образующихся в земной коре при воздействии геотермальных вод на ультраосновные магматические породы. Особенностью асбеста является способность его минеральных  агрегатов  разделяться   (распушаться)   на   тончайшие (диаметром в доли микрона) мягкие волоконца. Благодаря этому свойству асбест получил название «горный лен».

Асбест обладает высокой адсорбционной способностью; особенно активно он адсорбирует ионы Са+, поэтому его волокна хорошо сцепляются с цементным вяжущим.

Асбест, помимо высокой прочности, обладает уникальным сочетанием ценных свойств:

• низкой теплопроводностью [0,35...0,41 Вт/(м • К) в нераспушен-
ном виде];

• устойчивостью к повышенным температурам (нагрев до 400...500оС
не вызывает в асбесте необратимых изменений);

• высоким коэффициентом трения (например, по стали — 0,8).

Из асбестового волокна изготовляют ткани, картон, бумагу, шнуры, которые благодаря огнестойкости асбеста используют для высокотемпературной тепловой изоляции. Из смеси асбеста с синтетическими смолами получают асбестотехнические изделия для автотракторной (тормозные колодки и т. п.) и электротехнической (электроизоляционные материалы) промышленности.

Медики считают, что хризотил-асбест при соблюдении правил работы с ним не представляет опасности для здоровья человека. В асбестоцементных материалах асбест заключен в цементной матрице, что исключает контакт человека с ним и делает его безвредными во всех случаях применения.

Асбестоцемент — искусственный каменный материал, получаемый при затвердевании смеси портландцемента, асбеста (15...20 % от массы цемента) и воды. Асбест хорошо сцепляется с твердеющим цементом, и благодаря высокой прочности при растяжении асбестовое волокно армирует материал по всему объему.

Асбестоцементные изделия в основном производят путем отливки жидко-вязкой массы на частую металлическую сетку с последующим обезвоживанием и формованием. Таким образом получают плоские и волнистые листы и трубы.

Используется и другой способ формования асбестоцементных изделий — экструзия — выдавливание пластичной массы, как при производстве кирпича (см. § 5.3). Таким образом получают погонажные изделия: подоконные плиты, швеллеры, пустотелые плиты и панели.

Асбестоцемент при сравнительно небольшой плотности (1600...2000 кг/м3) обладает высокими прочностными показателями (предел прочности при изгибе до 30 МПа, а при сжатии до 90 МПа). Он долговечен, морозостоек (через 50 циклов замораживания-оттаивания теряет не более 10 % прочности) и практически водонепроницаем.

Недостатки асбестоцемента: хрупкость (асбестоцемент не выдерживает сильных ударных нагрузок), набухание и усадка при изменении влажности асбестоцемента, сопровождающиеся короблением.

Волнистые кровельные листы («шифер») — основной вид листовых асбестоцементных изделий. Шифер широко используют в качестве кровельного материала (его доля в общем объеме производства кровельных материалов — около 50 %). Кровельные листы выпускают 6 типоразмеров: длиной 1,2...2,5 м; шириной 0,69...1,15 м; толщиной 5.5...7,5 мм.

Кроме обычных выпускают листы, окрашенные атмосферостойкими красками как в массе, так и с поверхности. В последнее время начался выпуск плоских с фигурной кромкой листов, имитирующих мелкоштучную черепицу. Долговечность асбестоцементных изделий – более 50 лет.

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

26960. Понятие и формы реализации права 6.75 KB
  Понятие и формы реализации права. РЕАЛИЗАЦИЯ НОРМ ПРАВА воплощение их предписаний в правомерном поведении субъектов правав их практической деятельности. ОСОБЕННОСТИ: 1 Реализация права всегда связана ТОЛЬКО с ПРАВОМЕРНЫМ ПОВЕДЕНИЕМ людейтаким поведениемкоторое соответствует правовым предписаниям.Это АКТИВНЫЕ положительные действияиспользование права или исполнение обязанности;в другомБЕЗДЕЙСТВИЕ субъектоввоздержание от совершения противоправных действий.
26961. Применение норм права 11.11 KB
  Применение норм права. РЕАЛИЗАЦИЯ НОРМ ПРАВА воплощение предписаний норм права в правомерном поведении субъектов правав их практической деятельности. ОСОБЕННОСТИ: 1 Реализация права всегда связана ТОЛЬКО с ПРАВОМЕРНЫМ ПОВЕДЕНИЕМ людейтаким поведениемкоторое соответствует правовым предписаниям.Это АКТИВНЫЕ положительные действияиспользование права или исполнение обязанности;в другомБЕЗДЕЙСТВИЕ субъектоввоздержание от совершения противоправных действий.
26962. Акт применения права, их виды 5.74 KB
  РЕАЛИЗАЦИЯ НОРМ ПРАВА—воплощение предписаний норм права в правомерном поведении субъектов права,в их практической деятельности.Осуществление прав,исполнение и соблюдение обязанностей,применение права-ВЛАСТНАЯ деятельность СПЕЦИАЛЬНО УПОЛНОМОЧЕННЫХ СУБЪЕКТОВ по реализации правовых норм относительно конкретных жизенных случаев,определенной правовой ситуации и индивидуально-определенных лиц.
26964. КОЛЛИЗИИ В ПРАВЕ И ПРИНЦИПЫ ИХ РЕШЕНИЯ 5.42 KB
  КОЛЛИЗИИ В ПРАВЕ И ПРИНЦИПЫ ИХ РЕШЕНИЯ КОЛЛИЗИИпротиворечия между положениями двух или нескольких норм праварегулирующими одни и те же или смежные общественные отношения. ВИДЫесть общее решение: 1между Конституцией и всеми иными актамиразрешается в пользу Конституции; 2между законами и подзаконными актамиразрешается в пользу законов как актов большей юридической силы; 3между общефедеральными актами и актами субъектов федерации:если последний принят в пределах ведения субъектадействует именно он;если последний принят вне пределов...