5793

Ортогональные разложения Котельникова для непрерывных сигналов

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

Ортогональные разложения Котельникова для непрерывных сигналов. Сигналы с ограниченными и полосовыми спектрами. С целью упрощения задач анализа сигналов в инженерных расчетах учитывают только ту часть спектра, в которой сосредоточено до 80...95%...

Русский

2012-12-21

55 KB

19 чел.

Ортогональные разложения Котельникова для непрерывных сигналов.

1. Сигналы с ограниченными и полосовыми спектрами.

С целью упрощения задач анализа сигналов в инженерных расчетах учитывают только ту часть спектра, в которой сосредоточено до 80...95% энергии сигнала. Поэтому чаще всего большинство сигналов рассматривают как сигналы с ограниченными спектрами. Для их анализа наряду с разложением Фурье широко применяют разложение Котельникова.

Рассмотрим основные особенности этого разложения.

Ортогональное разложение Котельникова для непрерывных сигналов с ограниченными спектрами позволяет представлять их в виде импульсных последовательностей (см. рис.) Теоретической основой разложения служит теорема Котельникова (теорема отсчетов): любая непрерывная функция S(t), не содержащая частот выше F, полностью определяется последовательностью значений в моменты, отстоящие друг от друга на время t=1/2F.

Общее число отсчетов n для сигнала длительностью Т будет равно n=T/t=2FT=. Число называют базой сигнала.

Для сигнала S(t), спектр которого лежит в интервале [0,F], ортогональное разложение Котельникова имеет вид

                                          (44)

где S(kt)=Sk - отсчет сигнала в момент времени tk ;                  [sin2F(t-kt)]/[2F(t-kt)] - базисная система ортогональных функций с общей нормой 1/2F; t=1/2F-интервал дискретизации, равный норме базисных функций. Функция gk=[sin2F(t-kt)]/[2F(t-kt)]  называют функциями отсчетов, а значения S(kt) - отсчетами. График функции отсчетов имеет следующий вид (см. рис.).

Ортогональность функций отсчетов проверяют путем вычисления интеграла

                                              

                                                 

Интервал дискретизации не превышает половины периода наиболее высокой частоты спектра сигнала, что уменьшает число членов в данном разложении по сравнению с разложением Фурье при одинаковой точности аппроксимации. Точность аппроксимации так же как и в случае разложения Фурье определяется равенством (12). При этом мощность сигнала, через заданную последовательность временных выборок, выражается равенством Парсеваля ( формула (8)):

- энергия сигнала Е=                     (45)

- мощность сигнала за период колебания

                                  P=.                             (46)    

Из последнего выражения следует, что средняя за период Т мощность непрерывного сигнала равна среднему квадрату выборки. Усреднение производится по всем интервалам, число которых 2FT.

Достоинства ортогонального разложения Котельникова следующие : базисная система ортогональных функций выбрана так, что ряд (44) носит формальный характер, т.е. в любой момент отсчета tk он дает одно значение Sk, остальные составляющие ряда вырождаются в нуль; коэффициенты ряда (44) можно не вычислять; их определяют путем измерения значений сигнала или из его аналитической формы ; зная длительность сигнала Т и граничную частоту F, определяют требуемое число отсчетов n=2FT и энергию сигнала из (45); относительная простота реализации как разложения    ( т.е. дискретизации) непрерывного сигнала в импульсную последовательность, так и последующего его восстановления.

Остановимся более подробно на последней особенности. Для этого рассмотрим физический смысл разложения Котельникова. Каждый член суммы (44) представляет собой отклик идеального фильтра нижних частот gk (см. рис.) с частотой среза F на очень короткий импульс, приходящий в момент tk=kt и имеющий площадь S(kt). Поэтому при дискретной передаче сигнала S(t) с ограниченным спектром необходимо через равные интервалы времени t брать отсчеты мгновенных значений сигнала и передавать по каналу последовательность достаточно коротких импульсов длительностью , причем /t<<1. Амплитуду импульсов Ak в момент времени tk=kt выбирают так, чтобы Ak=S(kt)=Sk. В приемном устройстве выделенная последовательность видеоимпульсов пропускается через фильтр нижних частот, на выходе которого восстанавливается переданный непрерывный сигнал. Длительность импульсов  может быть сколь угодно малой, но выбирают ее исходя из полосы прозрачности канала связи. Частота дискретизации ( тактовая частота ) равна 2F.

2. Сигналы с полосовыми спектрами.

Если сигнал S(t) непрерывный, имеет полосовой спектр с шириной F1=f1-f2, то его можно представить в виде ортогонального разложения следующего вида :

  (46)

где 0=2(f1+f2)/2 - среднее значение угловой частоты спектра сигнала; t=1/2F1; S(k/F1); (k/F1) - отсчеты амплитуды и фазы сигнала в моменты tk=kt. Из формулы видно, что для сигналов с полосовыми спектрами необходимо через интервал дискретизации отсчитывать мгновенные значения не только амплитуд, но и фаз. Так, в частности, дискретизируют однополосные колебания - сигналы с полосовыми спектрами.                                      

Основные особенности ортогонального разложения Котельникова вида (46) следующие : базисная система включает совокупность ортогональных функций отсчетов, каждая из которых представляет собой модулированное по амплитуде колебание с несущей частотой 0 и огибающей, определяемой функцией gk(t); помимо отсчетов амплитуд берутся отсчеты фаз; если длительность сигнала Т, то число отсчетных точек n=T/t=2TF1.

В целом, все ортогональные разложения Котельникова - теоретическая основа большинства методов дискретной передачи непрерывных сигналов. Они позволяют с единых позиций рассматривать передачу как дискретных, так и непрерывных сигналов.

3. Теорема отсчетов в частотной области.

При анализе сигналов с непрерывными спектрами часто бывает необходимо представить сигнал с помощью частотных выборок спектральной функции , а не временных выборок функции S(t).

Для функции  можно составить ряд, аналогичный выражению (44), на основании взаимной заменяемости переменных t и в паре преобразований Фурье (36), (37). Применительно к выражению (44) это означает, что t следует заменить на , 2=2F на Т, t=1/2F на =2/T.

Таким образом получаем

  (47)

Расстановка частотных выборок иллюстрируется следующим рисунком.

Если ранее временной интервал между двумя соседними выборками не должен был превышать 2/2, то теперь частотный интервал не должен превышать 2/T. При ширине спектра 2, охватывающей область частот   -<<, число выборок равно 2/=2FT, т.е. как и при представлении сигнала рядом (44).

В общем случае выборки  являются комплексными числами и в каждой отсчетной точке на оси частот должны быть заданы два параметра - действительная и мнимая части , или модуль и аргумент. Таким образом общее число параметров получается вдвое большим, чем при временном представлении сигнала, когда выборки S(k/2F) - действительные числа. Избыточность представления сигнала в частотной области легко устраняется, если учесть, что  и  являются комплексно-сопряженными функциями, так что задание одной из них однозначно определяет другую. Таким образом, спектр сигнала полностью характеризуется совокупностью комплексных выборок, взятых только в области положительных частот, и число независимых параметров =2FT, как и при представлении сигнала во временной области.


 

А также другие работы, которые могут Вас заинтересовать

38018. ИЗУЧЕНИЕ И ПРИМЕНЕНИЕ ФИЗИЧЕСКОГО И МАТЕМАТИЧЕСКОГО МАЯТНИКОВ 98.63 KB
  Ознакомление с физическим и математическим маятниками изучение периодического движения маятников как примера колебаний в системах с одной степенью свободы. Измерение ускорения силы тяжести с помощью математического маятника. Измерение периода колебаний физического маятника и сравнение его с расчётным значением. Измерение момента инерции тела сложной формы с помощью физического маятника.
38019. Основы электрохимии 48.5 KB
  В пробирку налить 2 мл раствора йодида калия KJ добавить 2 3 капли раствора уксусной кислоты CH3COOH затем прилить 1 мл раствора перекиси водорода H2O2. В пробирку налить 2 мл раствора перманганата калия KMnO4 добавить 2 3 капли раствора серной кислоты H2SO4 затем прилить 1 мл раствора перекиси водорода H2O2. Собрать гальванический элемент из двух металлических электродов и растворов электролитов: зачистить наждачной бумагой две металлические пластинки промыть их дистиллированной водой просушить фильтровальной...
38020. ПРЕДСТАВЛЕНИЕ И РЕАЛИЗАЦИЯ АТД «СПИСОК» 355.5 KB
  Краткая теория Реализация списка посредством массивов. При реализации списка посредством массивов используют два способа.n] of record pole1: integer; pole2: Boolen; end; vr :Spisok; Обращение к элементам такого списка будет выглядеть так. Тип для второй реализации списка посредством массивов рис 1.
38021. ПРЕДСТАВЛЕНИЕ И РЕАЛИЗАЦИЯ АТД «СТЕК», «ОЧЕРЕДЬ», «ДВУСВЯЗНЫЙ СПИСОК» 606.5 KB
  Реализация «стека» посредством указателей. Обычно ячейка стека состоит из двух полей. Первое поле информационное, т.е. хранит сам элемент списка, отсюда название – element, а второе содержит указатель на следующую ячейку, поэтому имеет название next. Для формирования структуры АТД «стек» используется составной тип и описывается в разделе описания типов type.
38022. Лабораторная работа № 3 ПРЕДСТАВЛЕНИЕ И РЕАЛИЗАЦИЯ АТД ДЕРЕВО Цель работы: исследовать и изучить АТД. 1.59 MB
  n] of integer; vr :tree; Реализация деревьев с использованием списков сыновей. Списки сыновей составляются для каждого узла.1 можно составить соответствующие списки сыновей рис.5 Тип для реализации АТД дерево через списки сыновей рис.
38023. ПРЕДСТАВЛЕНИЕ И РЕАЛИЗАЦИЯ «БИНАРНОГО ДЕРЕВА» 197.5 KB
  нет копий одного и того же элемента. Дерево бинарного поиска это так же бинарное дерево узлы которого помечены элементами множеств. Свойство данного дерева заключено в том что все элементы левого поддерева любого узла x меньше элемента узла x а элементы правого поддерева больше чем x. Первое поле element это поле в котором храниться значение самого элемента множества.
38024. ИЗУЧЕНИЕ АТД «СЛОВАРЬ», «ФАЙЛ» И «НАГРУЖЕННОЕ ДЕРЕВО» 341 KB
  Временами так же возникает необходимость проверки присутствия элемента в этом множестве. Словарь можно реализовать тремя способами: 1посредством сортированных или не сортированных связанных списков; 2при помощи двоичных векторов если элементы данного множества целые числа; 3используя массив фиксированной длины с указателем на последнюю заполненную ячейку этого массива если размер множества не превышает заданную длину массива в противном случае используются связанные списки. Начальное значение сегмента всегда меньше значений элементов его...
38025. Карты изображений 1.45 MB
  подробное описание областей нанесенных на контурную карту: mp nme= Mp re shpe= rect coords= 226074 href= ссылка на Google.ru re shpe= rect coords= 61411276 href= ссылка на мой сайт mp Примечание: жирным выделено то что должно присутствовать обязательно обычным текстом переменные параметры. mp nme= Mp2 re shpe= circle coords= 842826 href= http: google.ru re shpe= poly coords= 65351417858109481107177546345 href= http: srez.
38026. Элементарные таблицы 60 KB
  Если значение ноль то рамка не требуется; cellpdding= cellspcing= добавляют свободное пространство между данными ячейки и ее границами и между ячейками таблицы соответственно. th т th контейнер ячейки Заголовок : заголовок столбца или строки. Значения: left заголовок прижать к левому краю ячейки center заголовок расположить по центру ячейки right заголовок прижать к правому краю ячейки; vlign= задает положение данных в ячейке Заголовок по вертикали. Значения: bottom заголовок прижать к нижнему краю ячейки middle заголовок...