5793

Ортогональные разложения Котельникова для непрерывных сигналов

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

Ортогональные разложения Котельникова для непрерывных сигналов. Сигналы с ограниченными и полосовыми спектрами. С целью упрощения задач анализа сигналов в инженерных расчетах учитывают только ту часть спектра, в которой сосредоточено до 80...95%...

Русский

2012-12-21

55 KB

19 чел.

Ортогональные разложения Котельникова для непрерывных сигналов.

1. Сигналы с ограниченными и полосовыми спектрами.

С целью упрощения задач анализа сигналов в инженерных расчетах учитывают только ту часть спектра, в которой сосредоточено до 80...95% энергии сигнала. Поэтому чаще всего большинство сигналов рассматривают как сигналы с ограниченными спектрами. Для их анализа наряду с разложением Фурье широко применяют разложение Котельникова.

Рассмотрим основные особенности этого разложения.

Ортогональное разложение Котельникова для непрерывных сигналов с ограниченными спектрами позволяет представлять их в виде импульсных последовательностей (см. рис.) Теоретической основой разложения служит теорема Котельникова (теорема отсчетов): любая непрерывная функция S(t), не содержащая частот выше F, полностью определяется последовательностью значений в моменты, отстоящие друг от друга на время t=1/2F.

Общее число отсчетов n для сигнала длительностью Т будет равно n=T/t=2FT=. Число называют базой сигнала.

Для сигнала S(t), спектр которого лежит в интервале [0,F], ортогональное разложение Котельникова имеет вид

                                          (44)

где S(kt)=Sk - отсчет сигнала в момент времени tk ;                  [sin2F(t-kt)]/[2F(t-kt)] - базисная система ортогональных функций с общей нормой 1/2F; t=1/2F-интервал дискретизации, равный норме базисных функций. Функция gk=[sin2F(t-kt)]/[2F(t-kt)]  называют функциями отсчетов, а значения S(kt) - отсчетами. График функции отсчетов имеет следующий вид (см. рис.).

Ортогональность функций отсчетов проверяют путем вычисления интеграла

                                              

                                                 

Интервал дискретизации не превышает половины периода наиболее высокой частоты спектра сигнала, что уменьшает число членов в данном разложении по сравнению с разложением Фурье при одинаковой точности аппроксимации. Точность аппроксимации так же как и в случае разложения Фурье определяется равенством (12). При этом мощность сигнала, через заданную последовательность временных выборок, выражается равенством Парсеваля ( формула (8)):

- энергия сигнала Е=                     (45)

- мощность сигнала за период колебания

                                  P=.                             (46)    

Из последнего выражения следует, что средняя за период Т мощность непрерывного сигнала равна среднему квадрату выборки. Усреднение производится по всем интервалам, число которых 2FT.

Достоинства ортогонального разложения Котельникова следующие : базисная система ортогональных функций выбрана так, что ряд (44) носит формальный характер, т.е. в любой момент отсчета tk он дает одно значение Sk, остальные составляющие ряда вырождаются в нуль; коэффициенты ряда (44) можно не вычислять; их определяют путем измерения значений сигнала или из его аналитической формы ; зная длительность сигнала Т и граничную частоту F, определяют требуемое число отсчетов n=2FT и энергию сигнала из (45); относительная простота реализации как разложения    ( т.е. дискретизации) непрерывного сигнала в импульсную последовательность, так и последующего его восстановления.

Остановимся более подробно на последней особенности. Для этого рассмотрим физический смысл разложения Котельникова. Каждый член суммы (44) представляет собой отклик идеального фильтра нижних частот gk (см. рис.) с частотой среза F на очень короткий импульс, приходящий в момент tk=kt и имеющий площадь S(kt). Поэтому при дискретной передаче сигнала S(t) с ограниченным спектром необходимо через равные интервалы времени t брать отсчеты мгновенных значений сигнала и передавать по каналу последовательность достаточно коротких импульсов длительностью , причем /t<<1. Амплитуду импульсов Ak в момент времени tk=kt выбирают так, чтобы Ak=S(kt)=Sk. В приемном устройстве выделенная последовательность видеоимпульсов пропускается через фильтр нижних частот, на выходе которого восстанавливается переданный непрерывный сигнал. Длительность импульсов  может быть сколь угодно малой, но выбирают ее исходя из полосы прозрачности канала связи. Частота дискретизации ( тактовая частота ) равна 2F.

2. Сигналы с полосовыми спектрами.

Если сигнал S(t) непрерывный, имеет полосовой спектр с шириной F1=f1-f2, то его можно представить в виде ортогонального разложения следующего вида :

  (46)

где 0=2(f1+f2)/2 - среднее значение угловой частоты спектра сигнала; t=1/2F1; S(k/F1); (k/F1) - отсчеты амплитуды и фазы сигнала в моменты tk=kt. Из формулы видно, что для сигналов с полосовыми спектрами необходимо через интервал дискретизации отсчитывать мгновенные значения не только амплитуд, но и фаз. Так, в частности, дискретизируют однополосные колебания - сигналы с полосовыми спектрами.                                      

Основные особенности ортогонального разложения Котельникова вида (46) следующие : базисная система включает совокупность ортогональных функций отсчетов, каждая из которых представляет собой модулированное по амплитуде колебание с несущей частотой 0 и огибающей, определяемой функцией gk(t); помимо отсчетов амплитуд берутся отсчеты фаз; если длительность сигнала Т, то число отсчетных точек n=T/t=2TF1.

В целом, все ортогональные разложения Котельникова - теоретическая основа большинства методов дискретной передачи непрерывных сигналов. Они позволяют с единых позиций рассматривать передачу как дискретных, так и непрерывных сигналов.

3. Теорема отсчетов в частотной области.

При анализе сигналов с непрерывными спектрами часто бывает необходимо представить сигнал с помощью частотных выборок спектральной функции , а не временных выборок функции S(t).

Для функции  можно составить ряд, аналогичный выражению (44), на основании взаимной заменяемости переменных t и в паре преобразований Фурье (36), (37). Применительно к выражению (44) это означает, что t следует заменить на , 2=2F на Т, t=1/2F на =2/T.

Таким образом получаем

  (47)

Расстановка частотных выборок иллюстрируется следующим рисунком.

Если ранее временной интервал между двумя соседними выборками не должен был превышать 2/2, то теперь частотный интервал не должен превышать 2/T. При ширине спектра 2, охватывающей область частот   -<<, число выборок равно 2/=2FT, т.е. как и при представлении сигнала рядом (44).

В общем случае выборки  являются комплексными числами и в каждой отсчетной точке на оси частот должны быть заданы два параметра - действительная и мнимая части , или модуль и аргумент. Таким образом общее число параметров получается вдвое большим, чем при временном представлении сигнала, когда выборки S(k/2F) - действительные числа. Избыточность представления сигнала в частотной области легко устраняется, если учесть, что  и  являются комплексно-сопряженными функциями, так что задание одной из них однозначно определяет другую. Таким образом, спектр сигнала полностью характеризуется совокупностью комплексных выборок, взятых только в области положительных частот, и число независимых параметров =2FT, как и при представлении сигнала во временной области.


 

А также другие работы, которые могут Вас заинтересовать

54015. Популярність. Популярні зірки 154 KB
  The topic of the today’s lesson is “The Famous Pop Stars”. Well, at the today’s lesson we’re speaking about people who want to be famous. You’ll read the text. You’re going to revise grammar (Past Simple and Present Perfect). By the end of the lesson you’ll be able to ask and answer the questions about pop idols.
54016. Англійська мова у 6 класі «Our English» 193.5 KB
  How do you do, my dears? Are you in a good mood? Are you ready for the lesson? We have got an interesting and unusual lesson today. It will be a competition to see who is the wisest, the most attentive and the most active. The winner will be given a tasty present. Do you want to take part in this competition? So, go ahead!
54018. Индивид, индивидуальность, личность и общество как производители и носители культуры 37 KB
  Индивидом обычно называют единичного конкретного человека, рассматриваемого в качестве биосоциального существа. Понятие «человек», как правило, употребляют, желая показать принадлежность какого-либо лица к человеческому роду (Homo sapiens), а также тот факт, что данное лицо обладает всеобщими, свойственными всем людям чертами и качествами. От этих двух понятий необходимо отличать понятие «личность».
54019. Структура культуры и ее элементы 42.5 KB
  Структура культуры — строение культуры, состоящей из субстанциональных элементов (опредмечиваются в ее ценностях и нормах) и функциональных элементов (характеризуют процесс культурной деятельности, различные ее стороны и аспекты)...
54020. Лексические игры на уроках английского языка 28 KB
  Лексические игры используются в самых различных целях: при введении нового лексического материала для закрепления его в памяти учащихся и для развития их устной речи. Лексические игры преследуют следующие цели: познакомить учащихся с новыми словами и их сочетаниями; тренировать учащихся в употреблении лексике в ситуациях приближенных к естественной обстановке; активизировать речемыслительную деятельность учащихся; развивать речевую реакцию. Лексические игры сосредоточивают внимание учащихся исключительно на лексическом материале...
54023. I need a book. At the library 101.5 KB
  Teacher: Right you are. A book is a main source of knowledge. It is impossible to imagine our life without books. They play an important role in educating, upbringing and help us to get useful information. Where can we get books?