5793

Ортогональные разложения Котельникова для непрерывных сигналов

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

Ортогональные разложения Котельникова для непрерывных сигналов. Сигналы с ограниченными и полосовыми спектрами. С целью упрощения задач анализа сигналов в инженерных расчетах учитывают только ту часть спектра, в которой сосредоточено до 80...95%...

Русский

2012-12-21

55 KB

19 чел.

Ортогональные разложения Котельникова для непрерывных сигналов.

1. Сигналы с ограниченными и полосовыми спектрами.

С целью упрощения задач анализа сигналов в инженерных расчетах учитывают только ту часть спектра, в которой сосредоточено до 80...95% энергии сигнала. Поэтому чаще всего большинство сигналов рассматривают как сигналы с ограниченными спектрами. Для их анализа наряду с разложением Фурье широко применяют разложение Котельникова.

Рассмотрим основные особенности этого разложения.

Ортогональное разложение Котельникова для непрерывных сигналов с ограниченными спектрами позволяет представлять их в виде импульсных последовательностей (см. рис.) Теоретической основой разложения служит теорема Котельникова (теорема отсчетов): любая непрерывная функция S(t), не содержащая частот выше F, полностью определяется последовательностью значений в моменты, отстоящие друг от друга на время t=1/2F.

Общее число отсчетов n для сигнала длительностью Т будет равно n=T/t=2FT=. Число называют базой сигнала.

Для сигнала S(t), спектр которого лежит в интервале [0,F], ортогональное разложение Котельникова имеет вид

                                          (44)

где S(kt)=Sk - отсчет сигнала в момент времени tk ;                  [sin2F(t-kt)]/[2F(t-kt)] - базисная система ортогональных функций с общей нормой 1/2F; t=1/2F-интервал дискретизации, равный норме базисных функций. Функция gk=[sin2F(t-kt)]/[2F(t-kt)]  называют функциями отсчетов, а значения S(kt) - отсчетами. График функции отсчетов имеет следующий вид (см. рис.).

Ортогональность функций отсчетов проверяют путем вычисления интеграла

                                              

                                                 

Интервал дискретизации не превышает половины периода наиболее высокой частоты спектра сигнала, что уменьшает число членов в данном разложении по сравнению с разложением Фурье при одинаковой точности аппроксимации. Точность аппроксимации так же как и в случае разложения Фурье определяется равенством (12). При этом мощность сигнала, через заданную последовательность временных выборок, выражается равенством Парсеваля ( формула (8)):

- энергия сигнала Е=                     (45)

- мощность сигнала за период колебания

                                  P=.                             (46)    

Из последнего выражения следует, что средняя за период Т мощность непрерывного сигнала равна среднему квадрату выборки. Усреднение производится по всем интервалам, число которых 2FT.

Достоинства ортогонального разложения Котельникова следующие : базисная система ортогональных функций выбрана так, что ряд (44) носит формальный характер, т.е. в любой момент отсчета tk он дает одно значение Sk, остальные составляющие ряда вырождаются в нуль; коэффициенты ряда (44) можно не вычислять; их определяют путем измерения значений сигнала или из его аналитической формы ; зная длительность сигнала Т и граничную частоту F, определяют требуемое число отсчетов n=2FT и энергию сигнала из (45); относительная простота реализации как разложения    ( т.е. дискретизации) непрерывного сигнала в импульсную последовательность, так и последующего его восстановления.

Остановимся более подробно на последней особенности. Для этого рассмотрим физический смысл разложения Котельникова. Каждый член суммы (44) представляет собой отклик идеального фильтра нижних частот gk (см. рис.) с частотой среза F на очень короткий импульс, приходящий в момент tk=kt и имеющий площадь S(kt). Поэтому при дискретной передаче сигнала S(t) с ограниченным спектром необходимо через равные интервалы времени t брать отсчеты мгновенных значений сигнала и передавать по каналу последовательность достаточно коротких импульсов длительностью , причем /t<<1. Амплитуду импульсов Ak в момент времени tk=kt выбирают так, чтобы Ak=S(kt)=Sk. В приемном устройстве выделенная последовательность видеоимпульсов пропускается через фильтр нижних частот, на выходе которого восстанавливается переданный непрерывный сигнал. Длительность импульсов  может быть сколь угодно малой, но выбирают ее исходя из полосы прозрачности канала связи. Частота дискретизации ( тактовая частота ) равна 2F.

2. Сигналы с полосовыми спектрами.

Если сигнал S(t) непрерывный, имеет полосовой спектр с шириной F1=f1-f2, то его можно представить в виде ортогонального разложения следующего вида :

  (46)

где 0=2(f1+f2)/2 - среднее значение угловой частоты спектра сигнала; t=1/2F1; S(k/F1); (k/F1) - отсчеты амплитуды и фазы сигнала в моменты tk=kt. Из формулы видно, что для сигналов с полосовыми спектрами необходимо через интервал дискретизации отсчитывать мгновенные значения не только амплитуд, но и фаз. Так, в частности, дискретизируют однополосные колебания - сигналы с полосовыми спектрами.                                      

Основные особенности ортогонального разложения Котельникова вида (46) следующие : базисная система включает совокупность ортогональных функций отсчетов, каждая из которых представляет собой модулированное по амплитуде колебание с несущей частотой 0 и огибающей, определяемой функцией gk(t); помимо отсчетов амплитуд берутся отсчеты фаз; если длительность сигнала Т, то число отсчетных точек n=T/t=2TF1.

В целом, все ортогональные разложения Котельникова - теоретическая основа большинства методов дискретной передачи непрерывных сигналов. Они позволяют с единых позиций рассматривать передачу как дискретных, так и непрерывных сигналов.

3. Теорема отсчетов в частотной области.

При анализе сигналов с непрерывными спектрами часто бывает необходимо представить сигнал с помощью частотных выборок спектральной функции , а не временных выборок функции S(t).

Для функции  можно составить ряд, аналогичный выражению (44), на основании взаимной заменяемости переменных t и в паре преобразований Фурье (36), (37). Применительно к выражению (44) это означает, что t следует заменить на , 2=2F на Т, t=1/2F на =2/T.

Таким образом получаем

  (47)

Расстановка частотных выборок иллюстрируется следующим рисунком.

Если ранее временной интервал между двумя соседними выборками не должен был превышать 2/2, то теперь частотный интервал не должен превышать 2/T. При ширине спектра 2, охватывающей область частот   -<<, число выборок равно 2/=2FT, т.е. как и при представлении сигнала рядом (44).

В общем случае выборки  являются комплексными числами и в каждой отсчетной точке на оси частот должны быть заданы два параметра - действительная и мнимая части , или модуль и аргумент. Таким образом общее число параметров получается вдвое большим, чем при временном представлении сигнала, когда выборки S(k/2F) - действительные числа. Избыточность представления сигнала в частотной области легко устраняется, если учесть, что  и  являются комплексно-сопряженными функциями, так что задание одной из них однозначно определяет другую. Таким образом, спектр сигнала полностью характеризуется совокупностью комплексных выборок, взятых только в области положительных частот, и число независимых параметров =2FT, как и при представлении сигнала во временной области.


 

А также другие работы, которые могут Вас заинтересовать

38435. Разработка системы конкурентно-оптимального прогноза управления предприятием на основе динамической модели олигополии 3.31 MB
  Cтабильноэффективный компромисс в ММС СТЭК ММС это объединение стабильности и эффективности в рамках множества решений от полного совпадения данных свойств в одной точке пространства J или U до обеспечения возможной степени сближения в условиях информационнотактических расширений соглашений. СТЭК ММС дополняют СТЭК в иерархических системах СТЭК ИС где реализуется право первого хода на основе субъективной информации что составляет тему отдельного исследования. Компромиссы на основе комбинации ПаретоНэшУКУШеплиподходовП ...
38436. Разработка и исследование метода аналитического программирования для структурно-параметрического синтеза системы управления динамическим объектом 14.23 MB
  Сложность задачи состоит в том, что в общей постановке для нелинейного объекта с произвольными критериями качества практически невозможно получить аналитическое решение. Поэтому известные методы для решения, как правило, неэффективны, поскольку используют специальные свойства объектов и функционалов.
38437. Многокритериальный синтез позиционного управления на основе многопрограммной стабилизации 2.76 MB
  Комбинированный метод многокритериального синтеза позиционного управления формирует аналитический вид управления, как набор параметров и известных функций состояния из состава «сетевого оператора» конечной сети этих функций и операций над ними
38438. Разработка моделирование процесса поддержки заданных климатических условий в помещении в системе InTouch 2.09 MB
  Трехдиапазонный регулятор температуры 60 3. Ведь отапливать рабочие помещения в выходные и праздничные дни не следует так интенсивно как по будням или скажем интенсивность отопления должна зависеть от температуры за окном а не от календарного времени года: вспомним хотя бы минувшую зиму когда в январе была плюсовая температура а отопление по интенсивности было âзимнимâ приходилось открывать окна в зданиях а можно было всего лишь снизить мощность обогрева тем самым сэкономить значительные средства. Возможные колебания...
38439. Синтез системы управления спуском космического аппарата на поверхность Марса методом интеллектуальной эволюции 1.52 MB
  Преодолеть указанные ограничения в данной работе предлагается путем ухода от построения оптимального управления как функции времени, так как оно не учитывает поведения системы уже в процессе функционирования и влияния этого поведения на дальнейшее состояние всей системы.
38440. Информационной безопасности облачных сервисов на базе мобильных облачных вычислений с использованием метода PP-CP-ABE 2.51 MB
  Целью данной работы является анализ существующих методов информационной безопасности и выбор соответствующего метода который должен подходить под соответствующие требования: Обеспечение надёжного шифрования данных при передаче их от пользователя к провайдеру услуг по хранению данных Минимизация нагрузки на облачные сервисы Возможность применения метода для лёгких мобильных устройств. Эффективные и безопасные операции по хранению данных для мобильного облачного вычисления. Параметры для хранения данных....
38441. Многокритериальный синтез позиционного управления с моделью 6-го порядка на основе метода формирования притягивающих многообразий 4.39 MB
  Можно выделить три типовых подхода в которых сгруппирован ряд известных методов. Это, так называемые, прямые интерактивные методы, например, на основе конусов доминирования и генетического программирования; методы скаляризации, такие как, свертка показателей, пороговая и лексикографическая оптимизация
38442. Исследование экономических показателей предприятия при помощи систем СТЭК 2.3 MB
  Исходные данные для среднестатистического предприятия олигополии В работе имеют место следующие исходные данные: годовая характеристика спроса на товар определяемая бюджетными ограничениями потребителей их предпочтениями и эластичностью вычислить по предложенной методике на базе Const=40 млн. год; доля капитала уплачиваемая за аренду оборудования = 150 год; показатели технологического процесса фирм ; ; планируемые производственные затраты фирм млн. допустимые значения ресурсов труда и капитала: чел; млн. 1 2 3 СТЭК 1 7 1...
38443. Разработка и исследование метода грамматической эволюции для структурно-параметрического синтеза системы управления динамическим объектом 1.63 MB
  Цель синтеза управления заключается в том, чтобы найти такое управление, при котором поведение объекта управления удовлетворяло бы заданным критериям. Данная задача до сих пор не решена аналитически в общем виде.