58035

Применение интеграла

Конспект урока

Педагогика и дидактика

Цель: Обобщить и систематизировать знания по теме Применение интеграла. Актуализация опорных знаний Определение первообразной; Определение неопределенного интеграла; Определение интеграла...

Русский

2014-04-18

107 KB

18 чел.

Тема урока. Применение интеграла

Цель: Обобщить и систематизировать знания по теме «Применение интеграла». Способствовать закреплению геометрического и физического смысла. Уметь применять математические знания при решении различных задач. Продолжить формирование информационной и коммуникативной компетентности у учащихся. Развивать творческие способности, содействовать развитию интереса к математике. Продемонстрировать прикладную направленность математики.

Оборудование: интерактивная доска, учебная презентация (Приложение 1).

Тип урока:  обобщение и систематизация знаний.

Девиз урока:

Сила и всеобщность метода дифференциального и интегрального исчисления такие, что не ознакомившись с ними, нельзя как следует понять все значения математики для естествознания и техники и даже полностью оценить всю красоту и привлекательность самой математической науки.

                                                      А.Н. Колмогоров

Ход урока

1.Актуализация опорных знаний 

  •  Определение первообразной;
  •  Определение неопределенного интеграла;
  •  Определение интеграла;
  •  Формула Ньютона – Лейбница;
  •  Основные свойства определенного интеграла;
  •  Геометрический смысл определенного интеграла.

2.Логический диктант 

1. Операция интегрирования есть обратной операции дифференцирования;

2. Любые две первообразные функции для одной и той же функции отличаются одна от другой постоянным слагаемым;

3. Формула Ньютона – Лейбница имеет вид;

4. Одно из свойств определения интеграла имеет вид;

5. Если f(х) непрерывная и неотрицательная на отрезке [a; b], то равна площади криволинейной трапеции, ограниченная    графиком данной функции;

6.  Если функция v = f(t) определяет мгновенную скорость движения тала в каждый момент времени  t на [a; b], то определенный интеграл   равен пути, пройденному за отрезок t = b – a.

Ответы

1. Да

2. Да

3. Нет

4. Да

5. Да

6. Да

3.Историческая справка 

Интегральное исчисление и само понятие интеграла возникли из необходимости вычисления площадей плоских фигур и объемов произвольных тел. Идеи интегрального исчисления берут свое начало в работах древних математиков. Об этом свидетельствует «метод вычерпывания» Евдокса, который также использовал Архимед в   ІІІ в. до н. э. Суть этого метода состояла в том, что для вычисления площади плоской фигуры (объема тела) вокруг них описывали и в них вписывали ступенчатые фигуры и, увеличивая количество сторон многоугольника (граней многогранников), находили предел, к которому стремились площади (объемы) ступенчатых фигур. Тем не менее для каждой фигуры вычисление предела зависело от выбора специального приема. А проблема общего  метода вычисления площадей и объемов фигур оставалось нерешенной. Архимед еще явным образом не применял общее понятие предела и интеграла, хотя в неявном виде эти понятия использовались.

В ХVІІ в. Йоганн Кеплер (1571 – 1630), который открыл законы движения планет, успешно осуществил первую попытку развить идеи Архимеда. Кеплер вычислял площади плоских фигур и объемы тел, опираясь на идею разложения фигуры и тела на бесконечное количество бесконечно малых частей. Из этих частей в результате добавления складывалась фигура, площадь (объем) которой известна и что давало возможность вычислить площадь (объем) искомой. В отличие от Кеплера итальянский математик Бонавентуро Кавальере (1598 – 1647), пересекая фигуру (тело) параллельными прямыми (плоскостями), считал их лишенными любой толщины, но прибавлял эти линии. В историю математики вошел так называемый принцип Кавальери, с помощью которого вычисляли площади и объемы. Этот принцип получил теоретическое обоснование позднее с помощью интегрального исчисления. Для площадей плоских фигур принцип Кавальери формулировали так: если прямые некоторого пучка параллельных прямых пересекают фигуры Ф1 и Ф2 по отрезкам одинаковой длины, то площади фигур Ф1 и Ф2 равна.

Идеи Кеплера, Кавальери и других ученых стали той основой, на которой Ньютон и Лейбниц открыли интегральное исчисление. Развитие интегрального исчисления продолжили Л. Ейлер и П. Л. Чебышев (1821 – 1894), который разработал способы интегрирования некоторых классов иррациональных функций.

Современное определение интеграла как предела интегральных сумм принадлежит О.Коши. Символ   был введен Лейбницем. Знак напоминает растянутую букву S (первую букву латинского слова summa – «сумма»). Термин «интеграл» происходит от латинского integer – «целый» и был предложен в 1960 г. Й. Бернулли.

В области интегрального исчисления плодотворно работал украинский математик М. В. Остроградский (1801 – 1861).

4.Теория вычисление площадей с помощью интеграла 

1. Пусть функция f (x) непрерывна и неотрицательна на отрезке [a; b]. Тогда, как известно, площадь соответствующей криволинейной трапеции находиться по формуле

В том случае, когда непрерывная функция f (x)  0 на отрезке [a; b], для вычисления площади соответствующей криволинейной трапеции следует использовать формулу

Пусть функция f (x)непрерывна на отрезке [a; b] и принимает на этом отрезке как положительные, так и отрицательные значения

Тогда нужно разбить отрезок [a; b] на такие части, в каждой из которых функция не изменяет свой знак, затем вычислить по приведенным выше формулам соответствующие этим частям площади и эти площади сложить.

Например, площадь фигуры, изображенной на рисунке равна:

Площадь фигуры, ограниченной графиками двух непрерывных функций f1 (х) и f2 (х) и двумя прямыми х = а и х = b, где f1 (х)  f2 (х), на отрезке [a; b] находиться по формуле

5. Практическое задание.

Вычисление площадей с помощью интеграла.

Найти абсциссы точек пересечения графиков заданных линий:

               у = 1 – х,

               у = 3 – 2х – х2,

откуда 1 – х = 3 – 2х – х2, т.е. х = - 2, х = 1. Искомая площадь равна разности площадей криволинейной трапеции ВАВ1С и треугольника ВАС.

По формуле находим:

SBAB1C =  

Так как SBAB1C =

                         ,

то искомая площадь    S = SBAB1C - SBAC = 4,5.

Теория механического и физического приложения определенного интеграла

  •  Если v (t) – скорость прямолинейно движущейся точки в момент времени t, то перемещение точки, т. е. приращение ее координаты, за промежуток времени [a; b]  равно                        . Если v (t)  0 на промежутке [a; b], то интеграл  равен пути, пройденному точкой.
  •  . Если материальная точка движется вдоль оси Ох под действием переменной силы, проекция F (x) которой на ось Ох есть функция от координаты х, то работа силы по перемещению точки из положения х = а в положение х = b равна:

  •  Если в жидкость плотность p вертикально погружена пластинка ABCD, то сила давления жидкости на нее равна:

  где y = f (x) – функция, выражающая зависимость длины поперечного сечения пластины от уровня погружения x, g – ускорение свободного падения.

Механического и физического приложения определенного интеграла

Путь, пройденный телом

Скорость движения тела задана уравнением

   v = (3t2 + 2t -1) (в м /с). Найти путь, пройденный телом за 10 с от начала движения.

 Решение. В условии задачи дано: t1 = 0, t2 =10, f (t) = 3t2 + 2t – 1

По формуле получим:                                                                              м.  

Работа силы

Пружина растягивается на 0,02 м под действием силы в 60 Н. Какую работу она производит, растягивая ее на 0,12 м?

 Решение. При F = 60 Н х = 0,02 м. По формуле F = kx (закон Гука для пружины) найдем k: 60 =     , откуда                                    Н/м. Подставив найденное значение k в формуле  F = kx, получим F = 3000х, т. е. f (x) = 3000х.

По формуле, взяв пределы интегрирования от 0 до 0.12, вычислим работу:

Дж

Сила давления жидкости

Вычислить силу давления воды на вертикально погруженную треугольную пластину АВС с основанием АС = 9 м и высотой BD = 2 м, если вершина В лежит на свободной поверхности жидкости, а АС – параллельно ей.

Решение. Пусть MG – поперечное сечение пластины на уровне ВЕ = х. найдем зависимость длины MG от х. Из подобия треугольников MBG и АВС имеем MG: AC = BE: BD, или MG: 9 = = x: 2, откуда MG = f (x) = 4.5x. На основании формулы получим:

                                                                                               

 H,

    

так как плотность воды 1000 кг/м3 и  м/с2.

6. Применение умений и навыков в работе с тестами. (Приложение 2)

Ответы к тестам:

1

2

3

4

5

6

В

В

В

Д

Д (5)

Д

7. Итог урока.

Беритесь за решение трудных математических задач. И тех, которые только что поставлены, и тех которые столетия не поддаются решению. Вы испытаете муки творчества, горькие разочарования в случае неудач, но вы сторицей будете вознаграждены, если задача будет решена. Математика – ум в порядок приводит. Математика – это орудие, с помощью которого человек познает и покоряет окружающий мир. Но это – особое орудие, которое подчиняет, воспитывает, увлекает и самого человека, помогает развивать физику и другие науки. В этом вы сегодня убедились, обобщив знания по интегралу и его применению в разных областях науки.

8.Домашнее задание: стр. 155 № 64 Б (7;8).


 

А также другие работы, которые могут Вас заинтересовать

29783. Назначение и принцип работы источников вызова П-194М по принципиальной схеме 82 KB
  Назначение и принцип работы источников вызова П194М по принципиальной схеме. Источники вызова их назначение и принцип работы. Вызывные приборы рабочего места телефониста предназначены для посылки вызова абоненту. Вызывной трансформатор служит для понижения напряжения сети переменного тока 127 220 В до напряжения 80В используемого для посылки вызова абоненту.
29784. Назначение и ТТХ линейного телеграфного коммутатора П-190(192) 63.5 KB
  Назначение и ТТХ линейного телеграфного коммутатора П190192. Назначение состав и основные тактикотехнические характеристики коммутатора П190. НАЗНАЧЕНИЕ Комплект линейнотелеграфного коммутатора П190 предназначен для оборудования линейнотелеграфных кроссов и аппаратных а также для каблирования вводов узлов связи. Комплект коммутатора предназначен для работы в диапазоне температур окружающего воздуха от 0 до f50C также при относительной влажности воздуха не выше 95 о и температуре 25С.
29785. Классификация полевых кабелей связи. Конструкция и маркировка кабелей 63.5 KB
  Полевые кабели связи. Современные кабели связи классифицируются по ряду признаков в зависимости от назначения и области применения условий прокладки и эксплуатации спектра передаваемых частот конструкции материала и формы изоляции системы скрутки рода защитных покровов. В первую очередь кабели связи подразделяются на две основные группы: полевые и стационарные. Стационарные кабели предназначены для продолжительной службы; они обладают высокими и стабильными электрическими характеристиками и большой дальностью связи.
29786. Назначение, конструкция и ТТХ легкого полевого кабеля П-274М (внутриузлового кабеля ПТРК-5х2, кабеля дальней связи П-296М) 647 KB
  Назначение конструкция и ТТХ легкого полевого кабеля П274М внутриузлового кабеля ПТРК5х2 кабеля дальней связи П296М. Стальные проволоки выполняют роль грузонесущего элемента и обеспечивают необходимую прочность кабеля на разрыве. № п п Характеристика Кабель П274М П2 П268 П4 1 Емкость кабеля число пар 1 1 1 2 2 Наружный диаметр изолированной ТПЖ не более мм 23 17 34 22 3 Наружный диаметр оболочки кабеля мм 40 1 73 4 Прочность на разрыв кг 80 80 130 150 5 Строительная длина м на ТК2 П280М1 барабане типа Б...
29787. Принцип формирования линейного спектра сигналов аппаратуры П-327-2 по структурной схеме 72 KB
  Эксплуатационные измерения основных параметров кабелей. Измерение параметров полевых линий связи по постоянному и переменному току Эксплуатационные измерения линий связи проводятся с целью установления соответствия их параметров нормам а так же определения характера и места повреждения в случае аварии на линии. Эксплуатационные измерения производятся при:...
29788. Назначение и ТТХ основных средств механизации прокладки полевых кабелей связи 250.5 KB
  К ним относятся катушки кабельные барабаны станки комплект П280 для намотки кабеля шесты для подвески кабеля шанцевый инструмент.8 предназначены для прокладки кабелей дальней связи П296 и П270 а также кабеля П272 по поверхности земли и в грунт с барабанов; заглубления в грунт кабеля предварительно проложенного по поверхности земли; извлечения кабеля из грунта или снятия кабеля проложенного по поверхности земли. Глубина прокладки кабеля до 50 см от поверхности земли.; скорость прокладки кабеля 4 6 км ч; скорость снятия...
29789. Назначение и ТТХ измерительного прибора П-321М 103.5 KB
  Сигнал с передающего телеграфного аппарата ПЕР. В передатчике имеются генератор средняя несущая частота которого выбрана равной 3150 Гц и модулятор изменяющий частоту этого генератора на 55 гц или минус 55 Гц в зависимости от полярности сигнала на входе передатчика. Модулированный по частоте сигнал с уровнем 0 Нп подается на разделительные гнезда ТГФ блока фильтров. сигнал подается на полосовой фильтр передачи ПФ ПЕР.
29790. Классификация систем передачи информации (СПИ) по среде распространения сигналов. Структурная схема многоканальной системы передачи информации 61.5 KB
  Классификация систем передачи информации СПИ по среде распространения сигналов. Структурная схема многоканальной системы передачи информации. Классификация систем передачи информации по среде распространения сигналов. Многоканальная система передачи представляет собой сложный комплекс включающий линейные и станционные устройства предназначенные для получения определенного числа каналов на заданную дальность.
29791. Линейные методы разделения каналов. Принцип формирования линейного спектра в аппаратуре с частотным разделением каналов (ЧРК). Структурная схема 8.31 MB
  Отличительными признаками канальных сигналов в этой системе передачи являются разные неперекрывающиеся полосы частот которые занимают эти сигналы. Такое различие позволяет разделить канальные сигналы в приемной части аппаратуры с помощью электрических фильтров. Первичные информационные сигналы Cit могут быть различного вида. Другие сигналы характеризуются более широким спектром.