58035

Применение интеграла

Конспект урока

Педагогика и дидактика

Цель: Обобщить и систематизировать знания по теме Применение интеграла. Актуализация опорных знаний Определение первообразной; Определение неопределенного интеграла; Определение интеграла...

Русский

2014-04-18

107 KB

19 чел.

Тема урока. Применение интеграла

Цель: Обобщить и систематизировать знания по теме «Применение интеграла». Способствовать закреплению геометрического и физического смысла. Уметь применять математические знания при решении различных задач. Продолжить формирование информационной и коммуникативной компетентности у учащихся. Развивать творческие способности, содействовать развитию интереса к математике. Продемонстрировать прикладную направленность математики.

Оборудование: интерактивная доска, учебная презентация (Приложение 1).

Тип урока:  обобщение и систематизация знаний.

Девиз урока:

Сила и всеобщность метода дифференциального и интегрального исчисления такие, что не ознакомившись с ними, нельзя как следует понять все значения математики для естествознания и техники и даже полностью оценить всю красоту и привлекательность самой математической науки.

                                                      А.Н. Колмогоров

Ход урока

1.Актуализация опорных знаний 

  •  Определение первообразной;
  •  Определение неопределенного интеграла;
  •  Определение интеграла;
  •  Формула Ньютона – Лейбница;
  •  Основные свойства определенного интеграла;
  •  Геометрический смысл определенного интеграла.

2.Логический диктант 

1. Операция интегрирования есть обратной операции дифференцирования;

2. Любые две первообразные функции для одной и той же функции отличаются одна от другой постоянным слагаемым;

3. Формула Ньютона – Лейбница имеет вид;

4. Одно из свойств определения интеграла имеет вид;

5. Если f(х) непрерывная и неотрицательная на отрезке [a; b], то равна площади криволинейной трапеции, ограниченная    графиком данной функции;

6.  Если функция v = f(t) определяет мгновенную скорость движения тала в каждый момент времени  t на [a; b], то определенный интеграл   равен пути, пройденному за отрезок t = b – a.

Ответы

1. Да

2. Да

3. Нет

4. Да

5. Да

6. Да

3.Историческая справка 

Интегральное исчисление и само понятие интеграла возникли из необходимости вычисления площадей плоских фигур и объемов произвольных тел. Идеи интегрального исчисления берут свое начало в работах древних математиков. Об этом свидетельствует «метод вычерпывания» Евдокса, который также использовал Архимед в   ІІІ в. до н. э. Суть этого метода состояла в том, что для вычисления площади плоской фигуры (объема тела) вокруг них описывали и в них вписывали ступенчатые фигуры и, увеличивая количество сторон многоугольника (граней многогранников), находили предел, к которому стремились площади (объемы) ступенчатых фигур. Тем не менее для каждой фигуры вычисление предела зависело от выбора специального приема. А проблема общего  метода вычисления площадей и объемов фигур оставалось нерешенной. Архимед еще явным образом не применял общее понятие предела и интеграла, хотя в неявном виде эти понятия использовались.

В ХVІІ в. Йоганн Кеплер (1571 – 1630), который открыл законы движения планет, успешно осуществил первую попытку развить идеи Архимеда. Кеплер вычислял площади плоских фигур и объемы тел, опираясь на идею разложения фигуры и тела на бесконечное количество бесконечно малых частей. Из этих частей в результате добавления складывалась фигура, площадь (объем) которой известна и что давало возможность вычислить площадь (объем) искомой. В отличие от Кеплера итальянский математик Бонавентуро Кавальере (1598 – 1647), пересекая фигуру (тело) параллельными прямыми (плоскостями), считал их лишенными любой толщины, но прибавлял эти линии. В историю математики вошел так называемый принцип Кавальери, с помощью которого вычисляли площади и объемы. Этот принцип получил теоретическое обоснование позднее с помощью интегрального исчисления. Для площадей плоских фигур принцип Кавальери формулировали так: если прямые некоторого пучка параллельных прямых пересекают фигуры Ф1 и Ф2 по отрезкам одинаковой длины, то площади фигур Ф1 и Ф2 равна.

Идеи Кеплера, Кавальери и других ученых стали той основой, на которой Ньютон и Лейбниц открыли интегральное исчисление. Развитие интегрального исчисления продолжили Л. Ейлер и П. Л. Чебышев (1821 – 1894), который разработал способы интегрирования некоторых классов иррациональных функций.

Современное определение интеграла как предела интегральных сумм принадлежит О.Коши. Символ   был введен Лейбницем. Знак напоминает растянутую букву S (первую букву латинского слова summa – «сумма»). Термин «интеграл» происходит от латинского integer – «целый» и был предложен в 1960 г. Й. Бернулли.

В области интегрального исчисления плодотворно работал украинский математик М. В. Остроградский (1801 – 1861).

4.Теория вычисление площадей с помощью интеграла 

1. Пусть функция f (x) непрерывна и неотрицательна на отрезке [a; b]. Тогда, как известно, площадь соответствующей криволинейной трапеции находиться по формуле

В том случае, когда непрерывная функция f (x)  0 на отрезке [a; b], для вычисления площади соответствующей криволинейной трапеции следует использовать формулу

Пусть функция f (x)непрерывна на отрезке [a; b] и принимает на этом отрезке как положительные, так и отрицательные значения

Тогда нужно разбить отрезок [a; b] на такие части, в каждой из которых функция не изменяет свой знак, затем вычислить по приведенным выше формулам соответствующие этим частям площади и эти площади сложить.

Например, площадь фигуры, изображенной на рисунке равна:

Площадь фигуры, ограниченной графиками двух непрерывных функций f1 (х) и f2 (х) и двумя прямыми х = а и х = b, где f1 (х)  f2 (х), на отрезке [a; b] находиться по формуле

5. Практическое задание.

Вычисление площадей с помощью интеграла.

Найти абсциссы точек пересечения графиков заданных линий:

               у = 1 – х,

               у = 3 – 2х – х2,

откуда 1 – х = 3 – 2х – х2, т.е. х = - 2, х = 1. Искомая площадь равна разности площадей криволинейной трапеции ВАВ1С и треугольника ВАС.

По формуле находим:

SBAB1C =  

Так как SBAB1C =

                         ,

то искомая площадь    S = SBAB1C - SBAC = 4,5.

Теория механического и физического приложения определенного интеграла

  •  Если v (t) – скорость прямолинейно движущейся точки в момент времени t, то перемещение точки, т. е. приращение ее координаты, за промежуток времени [a; b]  равно                        . Если v (t)  0 на промежутке [a; b], то интеграл  равен пути, пройденному точкой.
  •  . Если материальная точка движется вдоль оси Ох под действием переменной силы, проекция F (x) которой на ось Ох есть функция от координаты х, то работа силы по перемещению точки из положения х = а в положение х = b равна:

  •  Если в жидкость плотность p вертикально погружена пластинка ABCD, то сила давления жидкости на нее равна:

  где y = f (x) – функция, выражающая зависимость длины поперечного сечения пластины от уровня погружения x, g – ускорение свободного падения.

Механического и физического приложения определенного интеграла

Путь, пройденный телом

Скорость движения тела задана уравнением

   v = (3t2 + 2t -1) (в м /с). Найти путь, пройденный телом за 10 с от начала движения.

 Решение. В условии задачи дано: t1 = 0, t2 =10, f (t) = 3t2 + 2t – 1

По формуле получим:                                                                              м.  

Работа силы

Пружина растягивается на 0,02 м под действием силы в 60 Н. Какую работу она производит, растягивая ее на 0,12 м?

 Решение. При F = 60 Н х = 0,02 м. По формуле F = kx (закон Гука для пружины) найдем k: 60 =     , откуда                                    Н/м. Подставив найденное значение k в формуле  F = kx, получим F = 3000х, т. е. f (x) = 3000х.

По формуле, взяв пределы интегрирования от 0 до 0.12, вычислим работу:

Дж

Сила давления жидкости

Вычислить силу давления воды на вертикально погруженную треугольную пластину АВС с основанием АС = 9 м и высотой BD = 2 м, если вершина В лежит на свободной поверхности жидкости, а АС – параллельно ей.

Решение. Пусть MG – поперечное сечение пластины на уровне ВЕ = х. найдем зависимость длины MG от х. Из подобия треугольников MBG и АВС имеем MG: AC = BE: BD, или MG: 9 = = x: 2, откуда MG = f (x) = 4.5x. На основании формулы получим:

                                                                                               

 H,

    

так как плотность воды 1000 кг/м3 и  м/с2.

6. Применение умений и навыков в работе с тестами. (Приложение 2)

Ответы к тестам:

1

2

3

4

5

6

В

В

В

Д

Д (5)

Д

7. Итог урока.

Беритесь за решение трудных математических задач. И тех, которые только что поставлены, и тех которые столетия не поддаются решению. Вы испытаете муки творчества, горькие разочарования в случае неудач, но вы сторицей будете вознаграждены, если задача будет решена. Математика – ум в порядок приводит. Математика – это орудие, с помощью которого человек познает и покоряет окружающий мир. Но это – особое орудие, которое подчиняет, воспитывает, увлекает и самого человека, помогает развивать физику и другие науки. В этом вы сегодня убедились, обобщив знания по интегралу и его применению в разных областях науки.

8.Домашнее задание: стр. 155 № 64 Б (7;8).


 

А также другие работы, которые могут Вас заинтересовать

37253. Антивирусные программы 61 KB
  компьютерных вирусов. Однако большинство специалистов сходятся на мысли что компьютерные вирусы как таковые впервые появились в 1986 году хотя исторически возникновение вирусов тесно связано с идеей создания самовоспроизводящихся программ. Одним из пионеров среди компьютерных вирусов считается вирус Brin созданный пакистанским программистом по фамилии Алви.
37254. Данные. Кодирование данных 542.5 KB
  Кодирование данных. Кодирование данных: числовых текстовых графических и звуковых. Основные структуры данных. Обработка данных включает в себя множество различных операций.
37255. Классификация служебного ПО 32 KB
  Кратко опишем некоторые разновидности утилит: программы контроля тестирования и диагностики которые используются для проверки правильности функционирования устройств компьютера и для обнаружения неисправностей в процессе эксплуатации; указывают причину и место неисправности; программыдрайверы которые расширяют возможности операционной системы по управлению устройствами вводавывода оперативной памятью и т.; с помощью драйверов возможно подключение к компьютеру новых устройств или нестандартное использование имеющихся;...
37256. Корпус ПК 849 KB
  В этом стандарте определяются требования к расположению слотов разъемов портов отверстий для крепления материнской платы к шасси корпуса к спецификации разъема блока питания и т. В свою очередь формфактор платы налагает определенные ограничения на дизайн корпуса системного блока и самого блока питания. К ним относятся: Объем корпуса и его импеданс; Толщина стенок корпуса; Количество установочных мест для жестких дисков; Способы крепления для жестких дисков; Способы фиксации интерфейсных карт и кожуха корпуса; Количество...
37257. Прикладные программы для MS Windows. Текстовый редактор MS Word 534.5 KB
  Форматирование как правило включает: установку левой границы абзаца текста; установку правой границы абзаца текста; сдвиг начала первой строки абзаца относительно его левой границы; разбиение текста на страницы и др. Текст документа можно разбивать на страницы. Эти параметры могут содержать: установку межстрочного промежутка в интервалах; установку длины страницы в интервалах; установку номера первой страницы документа. В ряде текстовых процессоров вверху каждой страницы кроме ее номера может размещаться строка с постоянной информацией...
37258. MS EXCEL. Первое знакомство. Примеры вычислений. Редактирование отдельных данных, листов, книг. Установление связей. Диаграммы. Защита 1.08 MB
  Чтобы вывести или убрать панель с экрана следует выбрать в меню Вид пункт Панели инструментов а затем щелкнуть на имя нужной панели. В диалоговом окне необходимо выбрать вкладыш Команды. Чтобы вывести или убрать эти строки следует в меню Вид выбрать соответствующие пункты: Строка формул рис. Отмена операций Для отмены последней операции над данными необходимо в меню Правка выбрать команду Отменить или щелкнуть кнопку .
37259. Многозадачная операционная система MS Windows 1.09 MB
  Особенности операционной системы Windows : Многозадачность одновременное выполнение нескольких программ; Многооконный графический интерфейс все работы выполняються на рабочем столе где расположены различные обьекты для работы и инструменты работы: кнопки меню; Оптимизирована для работы на 32разрядном процессоре; Обмен данными между различными программами Windows; Эффективная работа с памятью; Использование длинных имен файлов; Автоматическая настройка различных внешних устройств; Является ОС для одноранговой локальной...
37260. Базы данных БД (СУБД Microsoft Access 9Х) 4.37 MB
  БАЗА ДАННЫХ это единое централизованное хранилище данных определенной предметной области под предметной областью здесь понимается например школа предприятие районо и др. Каждая программа имеет доступ к конкретным данным базы данных с помощью специальных программ которые получили название системы управления базами данных СУБД. Примерами баз данных являются: библиотечные каталоги записная книжка классные журналы журналы учета имущества галантерейной базы и др.
37261. Программа TOTAL COMMANDER 1.14 MB
  Файловый менеджер Totl Commnder предоставляет еще один способ работы с файлами и папками в среде Windows. Программа в простой и наглядной форме обеспечивает выполнение таких операций с файловой системой как переход из одного каталога в другой создание переименование копирование перенос поиск просмотр и удаление файлов и каталогов а также многое другое. не устанавливается на компьютер вместе с установкой самой Windows как например программа для работы с файловой системой Проводник или стандартные программы Блокнот Калькулятор и т.