58035

Применение интеграла

Конспект урока

Педагогика и дидактика

Цель: Обобщить и систематизировать знания по теме Применение интеграла. Актуализация опорных знаний Определение первообразной; Определение неопределенного интеграла; Определение интеграла...

Русский

2014-04-18

107 KB

16 чел.

Тема урока. Применение интеграла

Цель: Обобщить и систематизировать знания по теме «Применение интеграла». Способствовать закреплению геометрического и физического смысла. Уметь применять математические знания при решении различных задач. Продолжить формирование информационной и коммуникативной компетентности у учащихся. Развивать творческие способности, содействовать развитию интереса к математике. Продемонстрировать прикладную направленность математики.

Оборудование: интерактивная доска, учебная презентация (Приложение 1).

Тип урока:  обобщение и систематизация знаний.

Девиз урока:

Сила и всеобщность метода дифференциального и интегрального исчисления такие, что не ознакомившись с ними, нельзя как следует понять все значения математики для естествознания и техники и даже полностью оценить всю красоту и привлекательность самой математической науки.

                                                      А.Н. Колмогоров

Ход урока

1.Актуализация опорных знаний 

  •  Определение первообразной;
  •  Определение неопределенного интеграла;
  •  Определение интеграла;
  •  Формула Ньютона – Лейбница;
  •  Основные свойства определенного интеграла;
  •  Геометрический смысл определенного интеграла.

2.Логический диктант 

1. Операция интегрирования есть обратной операции дифференцирования;

2. Любые две первообразные функции для одной и той же функции отличаются одна от другой постоянным слагаемым;

3. Формула Ньютона – Лейбница имеет вид;

4. Одно из свойств определения интеграла имеет вид;

5. Если f(х) непрерывная и неотрицательная на отрезке [a; b], то равна площади криволинейной трапеции, ограниченная    графиком данной функции;

6.  Если функция v = f(t) определяет мгновенную скорость движения тала в каждый момент времени  t на [a; b], то определенный интеграл   равен пути, пройденному за отрезок t = b – a.

Ответы

1. Да

2. Да

3. Нет

4. Да

5. Да

6. Да

3.Историческая справка 

Интегральное исчисление и само понятие интеграла возникли из необходимости вычисления площадей плоских фигур и объемов произвольных тел. Идеи интегрального исчисления берут свое начало в работах древних математиков. Об этом свидетельствует «метод вычерпывания» Евдокса, который также использовал Архимед в   ІІІ в. до н. э. Суть этого метода состояла в том, что для вычисления площади плоской фигуры (объема тела) вокруг них описывали и в них вписывали ступенчатые фигуры и, увеличивая количество сторон многоугольника (граней многогранников), находили предел, к которому стремились площади (объемы) ступенчатых фигур. Тем не менее для каждой фигуры вычисление предела зависело от выбора специального приема. А проблема общего  метода вычисления площадей и объемов фигур оставалось нерешенной. Архимед еще явным образом не применял общее понятие предела и интеграла, хотя в неявном виде эти понятия использовались.

В ХVІІ в. Йоганн Кеплер (1571 – 1630), который открыл законы движения планет, успешно осуществил первую попытку развить идеи Архимеда. Кеплер вычислял площади плоских фигур и объемы тел, опираясь на идею разложения фигуры и тела на бесконечное количество бесконечно малых частей. Из этих частей в результате добавления складывалась фигура, площадь (объем) которой известна и что давало возможность вычислить площадь (объем) искомой. В отличие от Кеплера итальянский математик Бонавентуро Кавальере (1598 – 1647), пересекая фигуру (тело) параллельными прямыми (плоскостями), считал их лишенными любой толщины, но прибавлял эти линии. В историю математики вошел так называемый принцип Кавальери, с помощью которого вычисляли площади и объемы. Этот принцип получил теоретическое обоснование позднее с помощью интегрального исчисления. Для площадей плоских фигур принцип Кавальери формулировали так: если прямые некоторого пучка параллельных прямых пересекают фигуры Ф1 и Ф2 по отрезкам одинаковой длины, то площади фигур Ф1 и Ф2 равна.

Идеи Кеплера, Кавальери и других ученых стали той основой, на которой Ньютон и Лейбниц открыли интегральное исчисление. Развитие интегрального исчисления продолжили Л. Ейлер и П. Л. Чебышев (1821 – 1894), который разработал способы интегрирования некоторых классов иррациональных функций.

Современное определение интеграла как предела интегральных сумм принадлежит О.Коши. Символ   был введен Лейбницем. Знак напоминает растянутую букву S (первую букву латинского слова summa – «сумма»). Термин «интеграл» происходит от латинского integer – «целый» и был предложен в 1960 г. Й. Бернулли.

В области интегрального исчисления плодотворно работал украинский математик М. В. Остроградский (1801 – 1861).

4.Теория вычисление площадей с помощью интеграла 

1. Пусть функция f (x) непрерывна и неотрицательна на отрезке [a; b]. Тогда, как известно, площадь соответствующей криволинейной трапеции находиться по формуле

В том случае, когда непрерывная функция f (x)  0 на отрезке [a; b], для вычисления площади соответствующей криволинейной трапеции следует использовать формулу

Пусть функция f (x)непрерывна на отрезке [a; b] и принимает на этом отрезке как положительные, так и отрицательные значения

Тогда нужно разбить отрезок [a; b] на такие части, в каждой из которых функция не изменяет свой знак, затем вычислить по приведенным выше формулам соответствующие этим частям площади и эти площади сложить.

Например, площадь фигуры, изображенной на рисунке равна:

Площадь фигуры, ограниченной графиками двух непрерывных функций f1 (х) и f2 (х) и двумя прямыми х = а и х = b, где f1 (х)  f2 (х), на отрезке [a; b] находиться по формуле

5. Практическое задание.

Вычисление площадей с помощью интеграла.

Найти абсциссы точек пересечения графиков заданных линий:

               у = 1 – х,

               у = 3 – 2х – х2,

откуда 1 – х = 3 – 2х – х2, т.е. х = - 2, х = 1. Искомая площадь равна разности площадей криволинейной трапеции ВАВ1С и треугольника ВАС.

По формуле находим:

SBAB1C =  

Так как SBAB1C =

                         ,

то искомая площадь    S = SBAB1C - SBAC = 4,5.

Теория механического и физического приложения определенного интеграла

  •  Если v (t) – скорость прямолинейно движущейся точки в момент времени t, то перемещение точки, т. е. приращение ее координаты, за промежуток времени [a; b]  равно                        . Если v (t)  0 на промежутке [a; b], то интеграл  равен пути, пройденному точкой.
  •  . Если материальная точка движется вдоль оси Ох под действием переменной силы, проекция F (x) которой на ось Ох есть функция от координаты х, то работа силы по перемещению точки из положения х = а в положение х = b равна:

  •  Если в жидкость плотность p вертикально погружена пластинка ABCD, то сила давления жидкости на нее равна:

  где y = f (x) – функция, выражающая зависимость длины поперечного сечения пластины от уровня погружения x, g – ускорение свободного падения.

Механического и физического приложения определенного интеграла

Путь, пройденный телом

Скорость движения тела задана уравнением

   v = (3t2 + 2t -1) (в м /с). Найти путь, пройденный телом за 10 с от начала движения.

 Решение. В условии задачи дано: t1 = 0, t2 =10, f (t) = 3t2 + 2t – 1

По формуле получим:                                                                              м.  

Работа силы

Пружина растягивается на 0,02 м под действием силы в 60 Н. Какую работу она производит, растягивая ее на 0,12 м?

 Решение. При F = 60 Н х = 0,02 м. По формуле F = kx (закон Гука для пружины) найдем k: 60 =     , откуда                                    Н/м. Подставив найденное значение k в формуле  F = kx, получим F = 3000х, т. е. f (x) = 3000х.

По формуле, взяв пределы интегрирования от 0 до 0.12, вычислим работу:

Дж

Сила давления жидкости

Вычислить силу давления воды на вертикально погруженную треугольную пластину АВС с основанием АС = 9 м и высотой BD = 2 м, если вершина В лежит на свободной поверхности жидкости, а АС – параллельно ей.

Решение. Пусть MG – поперечное сечение пластины на уровне ВЕ = х. найдем зависимость длины MG от х. Из подобия треугольников MBG и АВС имеем MG: AC = BE: BD, или MG: 9 = = x: 2, откуда MG = f (x) = 4.5x. На основании формулы получим:

                                                                                               

 H,

    

так как плотность воды 1000 кг/м3 и  м/с2.

6. Применение умений и навыков в работе с тестами. (Приложение 2)

Ответы к тестам:

1

2

3

4

5

6

В

В

В

Д

Д (5)

Д

7. Итог урока.

Беритесь за решение трудных математических задач. И тех, которые только что поставлены, и тех которые столетия не поддаются решению. Вы испытаете муки творчества, горькие разочарования в случае неудач, но вы сторицей будете вознаграждены, если задача будет решена. Математика – ум в порядок приводит. Математика – это орудие, с помощью которого человек познает и покоряет окружающий мир. Но это – особое орудие, которое подчиняет, воспитывает, увлекает и самого человека, помогает развивать физику и другие науки. В этом вы сегодня убедились, обобщив знания по интегралу и его применению в разных областях науки.

8.Домашнее задание: стр. 155 № 64 Б (7;8).


 

А также другие работы, которые могут Вас заинтересовать

74328. Линейная арматура ВЛ 69 KB
  Поддерживающие зажимы применяют для подвески и закрепления проводов ВЛ на промежуточных опорах с ограниченной жесткостью заделки рис. На анкерных опорах для жесткого крепления проводов используют натяжные гирлянды и зажимы натяжные и клиновые рис. Поддерживающая гирлянда рис.
74329. Кабельные линии (КЛ) эл.передачи. типы кабелей, виды кабельной канализации 34 KB
  Кабельная линия КЛ линия для передачи электроэнергии состоящая из одного или нескольких параллельных кабелей выполненная каким-либо способом прокладки. При этом концы жил кабелей освобождают от изоляции и заделывают в соединительные зажимы. На концах кабелей применяют концевые муфты или концевые заделки.
74330. Токопроводы, шинопроводы и внутренние проводки 32 KB
  Токопроводы шинопроводы и внутренние проводки Токопроводом называют линию электропередачи токоведущие части которой выполнены из одного или нескольких жестко закрепленных алюминиевых или медных проводов или шин и относящихся к ним поддерживающих и опорных конструкций и изоляторов защитных оболочек коробов.
74331. Характеристика передачи ЭЭ переменным током 47.5 KB
  Поэтому повышение напряжения при токах в несколько тысяч ампер возможно только с помощью явления электромагнитной индукции и трансформаторов что создает возможность для последующей эффективной передачи электроэнергии переменным током. Потребление электроэнергии производится на относительно низком напряжения сотни тысячи вольт. Доставка ЭЭ от электростанции к электроприемникам в общем случае осуществляется сетями различного класса номинального напряжения т. представлена принципиальная упрощенная схема передачи и распределения ЭЭ...
74332. Характерные значения удельных (погонных) параметров схем замещения и электрических режимов воздушных и кабельных линий электропередачи и соотношения между ними 496 KB
  Волновые параметры реальной линии волновое сопротивление ZB и коэффициент распространения волны γо определяются через ее удельные погонные отнесенные к 1 км параметры: где β0 коэффициент затухания α0 коэффициент изменения фазы фазовый угол. Удобно определять параметры Побразной схемы замещения линии через удельные погонные сопротивления Zo=RojX0 Ом км и проводимости Yo=g0jb0 См км. При этом равномерную распределенность параметров линии по длине учитывают приближенно с помощью поправочных коэффициентов по формулам Z...
74333. Двухобмоточные силовые тр-ры. Виды, условные обозначения, принципиальные сх., сх. замещения. Моделирование трансформаторов и определение параметров сх. замещения 224 KB
  замещения. замещения. Установим связь схемы замещения трансформатора с его реальными схемнорежимными параметрами. Эта схема в которой магнитная связь между обмотками заменена электрической называется схемой замещения трансформатора.
74334. Понятие пропускной способности электропередачи, факторы её определяющие 32 KB
  Второе ограничение связано с риском нарушения синхронной работы генератора при повышении нагрузки на которых возникает условие для выхода из синхронизма. Это ограничение чаще практикуется по статической устойчивости. При некоторой меньшей длине активным ограничение будет являться ограничение по нагреванию. Заметим что ограничение по нагреванию не зависит от длины ЛЭП.
74335. Компактные, компенсированные электропередачи переменного тока 66 KB
  Компактные компенсированные электропередачи переменного тока. В основу конструкций перспективных компактных воздушных линий электропередач разработанных в нашей стране положена простая идея. Образцы таких распорок уже созданы и составлены проекты будущих компактных воздушных линий электропередач рис. В скобках показаны для сравнения расстояния между фазами для обычных воздушных линий электропередач Расчеты показали что при меньших по сравнению с обычными воздушными линиями электропередач размерами компактные воздушные линии электропередач...
74336. Моделирование (представление) эл нагрузок при расчете рабочих режимов эл.передач и эл.сетей 114.5 KB
  Активные элементы схем замещения электрических сетей и систем нагрузки и генераторы представляются в виде линейных или нелинейных источников. Способы задания нагрузок при расчетах режимов: а постоянный по модулю и фазе ток; б постоянная по модулю мощность; вгпостоянные проводимость или сопротивление; дстатические характеристики нагрузки по напряжению; еслучайный ток Нагрузка задается постоянным по модулю и фазе током рис.Такая форма представления нагрузки принимается при всех расчетах распределительных сетей низкого напряжения...