58041

Підсумковий урок по темі «Чотирикутники»

Конспект урока

Педагогика и дидактика

Мета уроку: Повторити і систематизувати означення окремих видів чотирикутників і їх властивостей. Встановити зв’язок між обсягами понять. Вдосконалити в учнів уміння та навички розв’язувати задачі, використовуючи властивості чотирикутників...

Украинкский

2014-04-18

220 KB

26 чел.

Навчальний предмет. Геометрія. 8 клас

Розділ. Чотирикутники.

Ільніцька Людмила Василівна, вчитель математики, ЗШ №11 м. Білої Церкви.

Тема уроку:  Підсумковий урок по темі «Чотирикутники»

Мета уроку:  Повторити і систематизувати означення окремих видів чотирикутників і їх властивостей. Встановити зв’язок між обсягами понять. Вдосконалити в учнів уміння та навички розв’язувати задачі, використовуючи властивості чотирикутників: паралелограма, прямокутника, ромба, квадрата, трапеції, (задачі на обчислення, побудову і доведення). Розвивати логічне мислення і самостійність.

Тип уроку:   Урок узагальнення і систематизації знань

Структура уроку:  

  1.  Перевірка домашнього завдання.
  2.  Мотивація навчальної діяльності учнів.
  3.  Повідомлення теми, мети і завдання уроку.
  4.  Повторення і систематизація основних теоретичних положень.
  5.  Повторення і удосконалення понять і засвоєння відповідної їм системи знань.

Обладнання:  мультимедійний проектор, презентація «Чотирикутники»

Хід уроку

  1.  Перевірка домашнього завдання. Що було задано додому?
    Учень: № 69, № 64.

Задача № 64
         Дано: ABCD – трапеція, AB=BC=CD,
                    
ACCD.

     Знайти:     A,       B,      C,       D.

     

Розв’язування:

  BAC =    BCA, як кути при основі рівнобедреного трикутника ABC.

  BCA =    CAD, як внутрішні різносторонні при паралельних BC і AD та січній AC. Отже,    BAC = CAD= x°,    A= D=2x°.

CAD + D = 90°. Отже,  +2 x°=90°,  x°=30°.

  А=2*30°=60°.       D=60°,       B=180° - 60°=120°.

А і В – внутрішні односторонні кути.

С= 9+ 30°=120°.

Задача № 69

Дано: ABCD – трапеція, MN – середня лінія, MN = 7см, ADBC = 4 см.

Знайти: основи  трапеції.

Розв’язування:

BC = х см, тоді AD = (х + 4) см. За теоремою про середню лінію трапеції: (см).  BC = 5 см,
AD = 9 см.

На картці завдання:

Сторони паралелограма дорівнюють 12,7 см та 5,3 см. Бісектриси двох кутів паралелограма, прилеглих до більшої сторони, ділять протилежну сторону на 3 частини. Обчислити кожну з них.


BAK = DAK, бо AK – бісектриса.

DAK = ВКА, як внутрішні різносторонні при паралельних прямих AD  і BC та січній AK.

AB = BK =5,3 см.

CDP = ADP, ADP = CPD, CD = PC = 5,3 см.

КР = 12,7 – 5,3 – 5,3 = 2,1 (см).

  1.  Мотивація навчальної діяльності учнів.

Сьогодні на уроці ми повторимо і систематизуємо означення і властивості чотирикутників: паралелограма, прямокутника, ромба, квадрата, трапеції. Встановимо логічний зв’язок між обсягами цих понять. Значення теми Чотирикутники дуже велике. Адже властивості і означення чотирикутників широко використовується на практиці. Тому геометрію, як науку, що виникає з практичного життя, повинен знати кожен робітник, інженер, архітектор, художник, в тому числі і ми.

  1.  І так, що таке чотирикутник? (означення).
  2.  Назвати види чотирикутників, які ми вивчили.
  3.  Дати означення паралелограма і сформулювати його властивості:

а) Діагоналі паралелограма перетинаються і в точці перетину діляться пополам.

б)  Протилежні кути і сторони паралелограма рівні між собою.

в)  Діагональ паралелограма ділить його на два рівних трикутника.

г)  Сума кутів, що прилягають до однієї сторони паралелограма, дорівнює 180°.     

  1.  Дати означення прямокутника і сформулювати його властивості:
    1.  Всі властивості паралелограма.
    2.  Якщо у паралелограма діагоналі рівні, то він є прямокутником.
  2.  Дати означення ромба і сформулювати його властивості:
    1.  Діагоналі ромба перетинаються під прямим кутом.
    2.  Діагоналі ромба є бісектрисами кутів.
  3.  Означення і властивості квадрата: 

Квадрат має властивості прямокутника і ромба:

а) у квадрата всі кути прямі.

б) діагоналі квадрата рівні.

в) діагоналі квадрата перетинаються під прямим кутом і є бісектрисами його кутів

7) Який чотирикутник називається трапецією?

  1.  Сформулювати теорему про середню лінію трапеції
  2.  Сформулювати теорему Фалеса.

Повторимо опорні задачі про чотирикутники

  1.  Якщо в чотирикутнику дві сторони рівні і паралельні, то він є паралелограмом.
    1.  Якщо протилежні сторони чотирикутника попарно рівні, то цей чотирикутник паралелограм.
    2.  Чотирикутник, в якого всі сторони рівні, є ромбом.
    3.  Якщо в паралелограма діагоналі рівні, то він є прямокутником.

Цією властивістю широко користуються в столярних і слюсарних майстернях для перевірки, наскільки точно зроблені деталі, які мають прямокутну форму, наприклад, кришку стола або бокову стінку ящика. Якщо протилежні сторони чотирикутника попарно рівні і рівні його діагоналі, то він повинен бути прямокутником.

  1.  Якщо в паралелограмі діагоналі взаємно-перпендикулярні, то він є ромбом.
  2.  Якщо в паралелограмі всі кути прямі, то це буде прямокутник.
  3.  Середини сторін чотирикутника є вершинами паралелограма.
  4.  У рівнобедреній трапеції кути при основі рівні і діагоналі рівні.
  5.  У чотирикутника, вписаного в коло, сума протилежних кутів дорівнює 180°.

10) У чотирикутника, описаного навколо кола, суми довжин протилежних сторін однакові.
Чи правильні твердження:

  1.  Якщо в паралелограмі діагоналі не рівні, то він не може бути прямокутником. (Так)
  2.  Кожний квадрат є прямокутником. (Так)
  3.  Існує ромб, який є прямокутником. (Квадрат)
  4.  Ніякий прямокутник не є ромбом.  (Квадрат)
  5.  Існує квадрат, який не є ромбом. (Ні)

Дати відповідь на такі запитання:

  1.  Назвати спільні властивості трапеції і ромба.
  2.  Чому теорему про середню лінію трапеції можна перенести на довільний паралелограм?
  3.  Чи існує трапеція, у якої два протилежні кути гострі? У якої два протилежні кути прямі?              
  4.  Чи можна побудувати трапецію з трьома прямими кутами?     

Ми підготували табличку, за допомогою якої зараз систематизуємо властивості паралелограма і його окремих видів.

Властивості

                                Види фігур

паралелограм

прямокутник

ромб

квадрат

  1.  

Чотирикутник

  1.  

Протилежні сторони попарно паралельні

  1.  

Усі кути прямі

  1.  

Усі сторони рівні

  1.  

Діагональ ділить на два рівні трикутники

  1.  

Протилежні сторони рівні між собою, протилежні кути рівні

  1.  

Діагональ в точці їх перетину діляться пополам

  1.  

Сума кутів,прилеглих до однієї сторони, дорівнює 180°

  1.  

Діагоналі рівні

  1.  

Діагоналі взаємно перпендикулярні

  1.  

Діагоналі є бісектрисами кутів

Розв’яжемо по цій табличці такі задачі:

  1.  Якщо в означенні поняття «квадрат» не брати до уваги ознаку 4, то яке ми одержимо поняття? (Прямокутник).
  2.  Які ознаки включити в паралелограм, щоб отримати поняття «квадрат».
    (4-усі сторони рівні і 3-всі кути прямі).

На кожній парті лежить листочок з таблицею.

Вдома ви її заповните і складете 2 задачі такого типу (які ознаки додати або відкинути, щоб отримати те чи інше поняття).

Усні задачі.  Розв’яжемо ще декілька задач, в яких використовуються означення та властивості всіх чотирикутників, що ми вивчили, а також опорні задачі.

  1.          Дано: АВСD – паралелограм, AMбі-

сектриса А,  BN – бісектриса В.

      Довести: BN AM.

      Розв’язування:

 A + B = 180º, як сума внутрішній односторонніх кутів при паралельних прямих ВС і АD та січній АВ. Оскільки  AM і  BN – бісектриси, то OВА + ВAO = 90º. Тоді AOB = 90º.

  1.                                                        Дано: АВСD – прямокутник.

Довести: АЕ = СК.
Розв’язування:

AEO=∆CKO, бо EO =OK, як відрізки між паралельними сторонами і проходять через точку перетину діагоналей. AO = OC, як діагоналі прямокутника і в точці перетину діляться по полам.

EOA, як вертикальні, отже, AE = CK.

  1.                                                                         Дано: АВСD – паралелограм,   AМ  = CК.

Довести: DКBM – паралелограм.
Розв’язування:

∆СKB=∆АMD за двома сторонами і кутом між ними. Аналогічно ∆AМB=∆CКD.

Якщо сторони чотирикутника попарно рівні, то це паралелограм.

  1.  

Дано: АВСD – трапеція,    АО = ОD.

Довести: АВ=DС.

Розв’язування:

ODA = OAD, бо DО = ОА

DAC = BCA, як внутрішні різносторонні при  DА // CB і січній СА. BDA = DBC, як внутрішні різносторонні при DA // CB та січній DB. CO = OB, бо в трикутнику кути при основі рівні.

Отже, в трикутниках  DOC та AOB: DO = OA; CO = OB;  DOC = AOB, як вертикальні. Отже, AB = DC.

  1.  
    Дано: ABCD – рівнобічна трапеція.
    Довести:
    A = D.
    Розв’язування:
    AB = CD за умовою. CK = AB за побудовою, бо ABCK паралелограм. Отже, CK = CD та D =CKD. Але A та CKD відповідні  кути при AB//CK та січній AK.
    Отже,  
    A = D.
  2.  

Дано: ABCD – трапеція, CK = KD.
Довести:
BC = DM.
Розв’язування:

CKB = DKM, як вертикальні. СК=КD – за умовою. ВСК = КDМ, як внутрішні різносторонні при  паралельних ВС і АМ та січній С D. ∆ВСК = ∆MDК за стороною і двома прилеглими кутами. Таким чином BC = DM.

А тепер перейдемо до письмових задач:

  1.  Довести, що середини сторін рівнобедреного трикутника разом з його вершиною, що лежить проти основи, є вершинами ромба.
    Розв’язування:

NP = AB, бо NP – середня лінія трикутника. МN = BС, отже,
М
N = NP = МВ = ВР. А чотирикутник, у якого всі сторони рівні – є ромб.


  1.  У паралелограмі  ABCD протилежні сторони BC і AD розділені точками L та  M відповідно пополам і ці точки з’єднали відрізками з кінцями сторін AD і BC. Довести, що утворений при перетині проведених відрізків чотирикутник – паралелограм.

Розв’язування:

LC//AM та LC = AM – за умовою. За відповідністю чотирикутник, у якого дві сторони рівні й паралельні – паралелограм. LCMA – паралелограм. Отже, LK//MP. Аналогічно, LP//КM. Чотирикутник, у якого сторони лежать на  паралельних прямих, паралелограм.

  1.  Навколо кола описана  рівнобічна трапеція, основи якої відносяться, як 2:3, а середня лінія 10 см. Знайти всі сторони трапеції.
    Ми говорили, що в трапецію можна  вписати коло, сума бічних сторін дорівнює сумі її основ.
    Розв’язування:

АВ + СD =ВС + АD. Нехай ВС = 2х см, АД =3х см. За теоремою про середню лінію трапеції
10 см, 5х = 20, х
 = 4.
ВС = 2*4= 8 см,
          АD= 3*4= 12 см,

                                                     АВ + СD = 20 см,         АВ = СD = 10 см.

  1.  Побудувати трапецію за основами і бічними сторонами.     

 

  1.  Будуємо  за трьома сторонами.
    1.  Проведемо пряму  та .
    2.  Доведення:  та  (як протилежні сторони паралелограма).
    3.   – побудовано.

Самостійна робота на 2 варіанти.

1 варіант

У прямокутнику кут між діагоналями становить 120°. Обчисліть кут між діагоналлю прямокутника і меншою стороною прямокутника.

Розв’язування:
OAD = ODA, бо діагоналі прямокутника рівні і в точці перетину діляться пополам.
OAD = (180°–120°):2 = 30°.
OAD = BCA, як внутрішні різносторонні. OCD = 90°–30°= 60°.


2 варіант

У рівнобедреній трапецій більша основа дорівнює 3,7 дм, бічна сторона дорівнює 1,5 дм, а кут між ними 60°. Обчисліть середню лінію трапеції.

Розв’язування:
AK – катет, що лежить проти кута 30°.
AK = AB = 0,75 см.

AK = PD = 0,75 см, бо ∆АВК = ∆СРD за гіпотенузою і гострим кутом.
ВС = 3,7- 1,5 = 2,2 (дм).

MN =  (дм).

Додаткове завдання: задача №65 (підручник).

На одній стороні дошки записати умови, а на іншій – розв’язки.

Підсумок уроку:

Сьогодні на уроці ми повторили означення всіх видів чотирикутників, а також їх властивості. Розв’язали ряд письмових та усних задач, де використовувались означення і властивості чотирикутників. За допомогою таблиці та задач встановили зв’язок між обсягами цих понять.

Завдання додому: повторити пункти 50-60.

  1.  Скласти 2 задачі за таблицею.
  2.  Точка перетину діагоналей чотирикутника рівновіддалена від його сторін. Довести, що цей чотирикутник ромб.
  3.  №72 (на побудову трапеції за основами і діагоналями).


Література

  1.  Геометрія, 8 клас: Підруч. для загальноосвіт. навч. закл./А. П. Єршова, В.В. Голобородько, О.Ф. Крижановський, С.В. Єршов. – Х.: АН ГРО ПЛЮС, 2008. – 256с.; іл.
    1.  Кушнір І.А. Повернення втраченої геометрії. – К.: Факт, 2000. – 280с.
    2.  Математична хрестоматія для старших класів. Геометрія. Т. 2/упоряд. Л.В. Кованцова. – К.: Рад. Шк.., 1969. – 383с.
    3.  Інтернет-бібліотека МЦНМО. http://ilib.mirror0.mccme.ru/


A

B

C

D

A

М

В

С

N

D

А

С

D

M

N

О

О

А

В

С

D

E

K

M

K

D

В

А

D

С

В

A

K

P

DS

A

B

C

О

D

K

A

C

B B

K

D

A

C

B B

М

А

В

М

Р

С

N

А

В

L

C

D

M

K

P

О

N

М

D

a-b

А

B

C

d

c

c

K

D

А

В

C

a-b

d

c

c

K1

D1

А1

В1

C1

А

В

С

D

O

В

С

А

М

К

Р

N

D

  1.  

 

А также другие работы, которые могут Вас заинтересовать

49685. Сборка отсека фюзеляжа Ф-4 среднемагистралного пассажирского самолета 309.5 KB
  В настоящее время одним из главных элементов производственного процесса изготовления авиационной техники следует считать сборочное производство. Сборочное производство характеризуется постоянно возрастающей сложностью сборочных работ, сравнительно невысоким уровнем механизации и автоматизации технологических процессов и, как следствия, большими затратами на производство, невысоким уровнем производительности и большой трудоемкостью изготовления продукции.
49686. Проектирование линейного центробежного нагнетателя природного газа мощностью 25 МВт и отношением давлений П=1,44 2.01 MB
  Определение физических констант газа. при добыче нефти и газа на магистральных газопроводах для наддува двигателей внутреннего сгорания в газотурбинных установках для получения сжатого воздуха имеющего силовое назначение пневматический инструмент молоты прессы и т. Российская Федерация является обладателем крупнейших в мире запасов полезных ископаемых нефти природного газа следствием чего стало доминирующее влияние добычи природных ресурсов на экономику и развитие нашего государства.
49688. Визуализация численных методов 1.19 MB
  В курсовой работе требуется написать программу на языке Visual Basic, для решения и визуализации данного дифференциального уравнения первого порядка при помощи графика. В программе я сравню эти два метода и затем попытаюсь оценить погрешность и правильность решения.
49690. РАБОЧАЯ ПЛОЩАДКА ПРОМЫШЛЕННОГО ЗДАНИЯ 3.26 MB
  Подбор сечения Геометрические характеристики сечения Проверка принятого сечения Геометрические характеристики сечения
49691. Конституция Российской Федерации как основной закон государства 235.75 KB
  Проект Конституции представляет собой совокупность принятых решений между депутатами, представителями федеральных органов государственной власти и органов государственной власти субъектов Федерации, на протяжении длительного времени искавших компромисс по многим вопросам, а в итоге сформулировавшим все это в данном акте.