58043

Узагальнена теорема Фалеса

Конспект урока

Педагогика и дидактика

Мета уроку: Закріпити знання учнів про зміст узагальненої теореми Фалеса а також про означення та властивості подібних трикутників; доповнити знання учнів історичними фактами з життя Фалеса та таких понять як пропорціональність відрізків та подібність фігур; удосконалювати вміння застосовувати вивчені твердження під час розв’язування задач практичного змісту. Ми з вами вивчаємо одну з найцікавіших тем геометрії Узагальнена теорема Фалеса. Чому найцікавіших Тому що знання узагальненої теореми Фалеса та означення подібності трикутників і їх...

Украинкский

2014-05-21

228.5 KB

30 чел.

8 клас геометрія

Тема уроку: Узагальнена теорема Фалеса.

Означення подібності трикутників.

Мета уроку: Закріпити знання учнів про зміст узагальненої теореми Фалеса, а також про означення та властивості подібних трикутників; доповнити знання учнів історичними фактами з життя Фалеса та таких понять як пропорціональність відрізків та подібність фігур; удосконалювати вміння застосовувати вивчені твердження під час розв’язування задач практичного змісту. Розвивати логічне мислення, пізнавальний інтерес; виховувати зацікавленість до предмета геометрії, вміння використовувати власний досвід;товариськість, наполегливість, культуру спілкування.

Тип уроку:   Застосування знань, умінь та навичок.

Хід уроку.

I.  Організація класу.

Доброго дня! Я вас вітаю на уроці геометрії – уроці, що підтвердить слова Миколи Яругіна: «І математика безмежно різноманітна і міститься в усьому».

Ми з вами вивчаємо одну з найцікавіших тем геометрії «Узагальнена теорема Фалеса. Означення подібних трикутників.» Чому найцікавіших? Тому що знання узагальненої теореми Фалеса та означення подібності трикутників і їх властивостей допомагає в найнесподіваніші моменти. А деколи й рятує життя.

II. Перевірка д/з.

Давайте перевіримо, як ви орієнтуєтесь у вивченій темі.

  1.  Консультанти звітують про виконання домашнього завдання.

2.    Взаємоопитування правил (учні одного ряду опитують правила учнів з іншого ряду, і навпаки). Учні можуть добавити свої питання по вивчених попередньо темах.

- Що називається відношенням відрізків завдовжки a і b?

- Сформулюйте теорему про пропорційні відрізки.

- Дайте означення подібних трикутників.

- Сформулюйте теорему Фалеса.

- Що означає, що трикутники  подібні?

III. Актуалізація опорних знань.

    Усні вправи. (метод мікрофон)

  1.  Якщо ABCD=MHPK, то  

 

  1.  ∆ МНР ∞ ∆ КВА. Що звідси випливає?
  2.  Чи можна стверджувати, що довільні два рівносторонні трикутники подібні?
  3.  ∆РКМ∞∆ДАС, k=2. Що можна знайти?

  1.  Паралельні прямі m і n перетинають сторони кута АВС. Знайдіть довжину відрізка MN, якщо ВЕ=4, ЕF=12, ВМ=5.

  1.  Паралельні прямі а,в і с перетинають сторони кута МNP. Знайдіть довжини відрізків СД і МВ, якщо АN=2, NC=3, DP=9, AB=4.

ІV. Мотивація навчання.

Історія розповідає про те, як мандруючи Єгиптом, Фалес був вражений величчю піраміди Хеопса.

Скажіть, будь ласка, а яку висоту вона має?- запитав він жерців.

О, це дано знати хіба що Богу Сонця Ра, а не людині, відповіли жерці.

- Зачекайте хвилиночку, зараз я точно підрахую висоту піраміди! – запевнив їх Фалес.

Він вийшов від проміння Сонця і виміряв довжину своєї тіні. Скажімо, тінь була вдвічі довшою за зріст Фалеса. З цього Фалес зробив висновок, що в цю мить предмети мають тінь удвічі більшу за них самих. Тож залишається обчислити довжину тіні піраміди Хеопса.

Якщо ви вважаєте, що жерці були в захваті від розуму та винахідливості Фалеса, то ви помиляєтесь. Навпаки, вони дуже обурилися. Те що, на їхню думку, людині не дано пізнати якийсь там грек з Мілета обчислив майже миттєво!.. Ні, таке не пробачають! І жерці вирішили вбити Фалеса. На щастя, один з них виявився порядною людиною і підказав Фалесу скоріше сідати на корабель, який ось-ось відпливає до Єгипту…

Отже, сьогодні на уроці ви доповните свої знання біографічними даними із життя Фалеса Мілетського, дізнаєтесь, коли виникло поняття відношення і пропорції, а також закріпите свої знання про зміст узагальненої теореми Фалеса, означення та властивості подібних трикутників, удосконалюватимете вміння застосовувати вивчені твердження під час розв’язування практичних задач.

V.  Доповнення знань.

1.  Біографія Фалеса (Презентація учня ).

Фалес (Thales) Мілетський народився  близько 625 – 548 р до н.е. Фалес Мілетський – старогрецький філософ, родоначальник античної і взагалі європейської філософії і науки, засновник мілетської школи. Роботи Фалеса не збереглися, проте Арістотель називає його першим іонійським філософом.

За переказами, багато подорожував по країнах Сходу, вчився у єгипетських жерців і вавилонських халдеїв. Використовуючи отримані в Єгипті знання, Фалес передбачив сонячне затемнення 28 травня 585 р. до н. е., яке допомогло лідійському пану Аліатту змусити мідян до миру на вигідних умовах.

 Досягнення Фалеса

.  Найважливішою заслугою Фалеса в області математики вважається перенесення ним з Єгипту до Греції перших початків теоретичної елементарної геометрії:    • Вертикальні кути рівні.   • Кути при основі рівнобедреного трикутника рівні.   • Трикутник визначається стороною і прилеглими до неї двома кутами.   • Діаметр ділить круг на дві рівні частини.

Цікаві факти з життя Фалеса

По легенді теорема була сформульована в не збереженій “Морській астрономії ” Фалеса або Фоки Самоського. Ні один з античних доказів, які стосуються Фалеса, з цією теоремою ніяк не пов’язані.  Можливо, що теорема приписана Фалесу опосередковано, так як відомо, що він умів вимірювати висоту обеліска і відстань до корабля в морі; при цих вимірах можна використовувати подібність трикутників, а ствердження про пропорціональність сторін подібних трикутників доводиться на основі “теореми Фалеса ”

Теорема Фалеса до цих пір використовується в морській навігації в якості правила про те, що зіткнення суден, які рухаються з постійною швидкістю не уникнути, якщо зберігається напрям руху суден один на одного.

Поза російськомовною літературою теоремою Фалеса інколи називають другу теорему планіметрії, а саме, твердження про те, що вписаний кут, який опирається на діаметр кола, являється прямим. Відкриття цієї теореми дійсно приписується Фалесу, про що є свідчення Прокла.

Основи геометрії Фалес досягав в Єгипті.

  1.  Історична доповідь про виникнення поняття відношення і пропорції та учення про подібність фігур.

Презентація учня

Пропорційність відрізків. Подібність фігур.

Поняття відношення і пропорції виникло ще в далекій давнині. Про це насамперед свідчать будівлі стародавнього світу, які вражають пропорціональністю своїх форм. Зокрема, з принципом подібності були обізнані стародавні вавилоняни. У цьому переконує планування будівель, які збереглись до наших часів. Для позначення відношення існував навіть спеціальний знак.

У VI ст. до н.е. на о. Самосі (в Егейському морі) було збудовано тунель завдовжки 1 км у товщі гори Кастро і канал для підведення води в столицю острова – м. Самос. Збудований тунель – одна з найдивовижніших стародавніх споруд. При проектуванні і будуванні тунелю було розв’язано задачу точного прокладання підземної траси, яка й тепер вважається досить складною.

Є припущення, що в процесі будівництва було застосовано теорію подібності трикутників.

Подібність предметів

Рівні фігури можна уявити як фігури, що мають однакову форму й однакові розміри. Але в повсякденному житті часто зустрічаються речі, які мають однакову форму, але різні розміри. У геометрії такі фігури називають подібними.

Пропорційність

Слово пропорціональний, що походить від латинського proportionals, означає “такий, що має правильне співвідношення між частинами і цілим ”, “такий, що перебуває в певному відношенні до деякої величини ”.  Фігури, які мають однакову форму, але різну величину, зустрічаються у вавилонських і єгипетських пам’ятках.

Ще вавилонські вчені знали, що паралельні лінії, перетинаючи будь-які прямі, поділяють їх на пропорційні відрізки. Дехто приписує це відкриття старогрецькому вченому Фалесу Мілетському.

Учення про подібність фігур виникло в стародавній Греції в V-IV ст. до н.е. Його викладено в VI книзі «Начала» Евкліда. Теорія подібності ґрунтується на аксіомі паралельності.

Поняття подібності лежить в основі складання географічних карт, планів, креслення рисунків. На цьому понятті ґрунтується і мензульне знімання місцевості.

Принципом подібності користувались ще художники і скульптори стародавнього Єгипту, коли їм треба було перевести рисунок на інше місце або збільшити його. У гробниці батька єгипетського фараона Рамзеса ІІ (ХІІІ ст. до н.е.) є стіна, вкрита сіткою квадратиків. За допомогою цієї сітки на стінку було перенесено в збільшеному вигляді рисунки менших розмірів.

VI. Застосування знань, формування вмінь.

Володіючи поняттям подібності трикутників, та знаючи узагальнену теорему Фалеса, можна визначати висоти предметів за їх тінню, знаходити висоту башти за її фотографією. Таким чином астрономи визначали висоти місцевих гір.

А чи зможемо й ми скористатися знаннями з геометрії за необхідності? Давайте спробуємо. Для цього об’єднаємося в 3 групи: архітекторів, географів, лікарів.

Завдання групі архітекторів.

Як фотографічна картка Ейфелевої вежі (див.рис.) допоможе визначити її висоту? 

Розв’яжіть задачу, якщо основа вежі 125м.

Відповідь.

Треба виміряти довжину сторони основи і висоту самої вежі на фотографії, а потім довжину сторони основи самої вежі. Враховуючи, що фотографія дає зображення, подібне до натури, висота вежі буде в стільки разів більша від її висоти на фотографії, у скільки разів сторона основи вежі більша від її зображення на фотографії.

Виконавши всі обчислення маємо, що висота вежі дорівнює 300м, не враховуючи висоту антени, а з нею 322м.

Завдання групі географів.

Обчислити довжину конуса тіні, яку відкидає земна куля при освітленні Землі сонячними променями, якщо відношення радіусів Сонця і Землі становить 109, а середня відстань між цими небесними тілами дорівнює 150 млн. км.

Розв’язання.

Беручи за довжину конуса тіні відрізок SO1 =х, з подібності

∆АОS і ∆А1 О1S матимемо:

                                                                         х

Відповідь.

Завдання групі лікарів

Які завбільшки повинні бути букви на класній дошці, щоб учні, сидячи за партами, бачили їх так само виразно, як букви в своїх книжках (на відстані 25см від ока)? Відстань від парт до дошки взяти 5м. ширина букви в книжці дорівнює 1мм.

Розв’язання.

Беручи за величину букви на класній дошці А1В1=х, з подібності трикутників ОВА і ОВ1А1, матимемо:

Х=2,1(см)

Відповідь: 2,1см

Кожна група звітує про підсумки роботи. Для відповіді біля дошки викликається консультант даної групи. Учні пояснюють розв’язання задач, записують розв’язки в зошити, обмінюються задачами.

VII. Підсумки уроку.

  1.  Підбиття підсумків роботи в групах (самооцінка)

Вибране підкреслити.

А) Чи кожен учень з групи зміг висунути свою пропозицію?

Так.   Не зовсім.    Ні.

Б) Чи все обговорили?

Так.    Не зовсім.   Ні.

В)   Чи виконали задачу до кінця?

Так.    Не зовсім.   Ні.

2.   Підбиття підсумків роботи   учителем.

- Що на уроці було головним? Цікавим?

-  Чого ви навчилися?

- Чим поповнили свої знання?

-  Яка група швидко і правильно виконала завдання?

-   Як працював клас? Окремі учні?

-  Оцінки тим, хто захищав задачу, хто брав активну участь в обговоренні.

VI. Домашнє завдання.

1.Як по довжині тіні, що падає від дерева в сонячний день визначити висоту цього дерева?

2. Гора Казбек має висоту 5047м. Якого діаметра треба було б зробити рельєфний глобус, щоб на ньому гора Казбек мала висоту 3 мм? (Середній діаметр земної кулі становить 12740 км).


M

K

D

С

А

B

E

4

12

F

A

E

N

?

M

5

N

2

3

C

A

a

b

c

P

9

D

4

B

M

O1

A1

A

O

S

O

25 см

B

A

1 мм

5 м

x

B1

A1


 

А также другие работы, которые могут Вас заинтересовать

36388. Электрические принципиальные схемы систем и средств автоматизации. Назначение и правила выполнения 24.29 KB
  Электрические принципиальные схемы систем и средств автоматизации. Принципиальные электрические схемы определяют полный состав приборов аппаратов и устройств а также связей между ними действие которых обеспечивает решение задач управления регулирования защит измерения и сигнализации. Эти схемы служат для изучения принципа действия системы они необходимы при производстве наладочных работ и в эксплуатации. Схемы выполняются применительно к определенным самостоятельным элементам установкам или участкам автоматизированной системы...
36389. тема или АИС это совокупность различных программноаппаратных средств которые предназначены для автомат. 28.78 KB
  Учет снабжения Финансовый учет Информация опоставке информация об оплате Бухгалтерский учет Требования на отпускинформация о поступлении груза цены на ресурсы данные о качестве Учет производства и контроль качества Учет вспомогательно прва Управление и анализ Отчетность по снабжению указания и планы Подсистема Учет снабжения предназначена для ввода и обработки информации по обеспечению оборудованием и материалами предоставляемой отделами и службами предприятия. Данная подсистема осуществляет интенсивный обмен информацией с подсистемой...
36390. Перестроение импульсной характеристики в кривую разгона 887.85 KB
  На участке 1 переходная характеристика совпадает с импульсной. На последующем участке переходная характеристика получается путем суммирования ординат импульсной характеристики на этом участке с соответствующими значениями ординат на предыдущем участке.
36391. Приведите и поясните постановки задач синтеза линейных САУ 42.84 KB
  При синтезе задается множество М систем на котором производится выбор сист по заданному критерию оптимальности. Задача не тривиальна когда множество М содержит более 1го элемента т. 1 Параметрический синтез Элты мнва М различаются параметрами при этом мнва М2 второго ранга неопределенности представляет собой множество полностью определенных сист М3 и с допустимым диапазоном изменения параметров Q M2={ M3 Q} Пр: М2: Wpp=K1K21 p M3: K1 K2 G т. 2 Структурный синтез Элементы исходного множества отличаются...
36392. Сравнительный анализ АСУТП и АСУП 45.5 KB
  Сравнительный анализ АСУТП и АСУП У произвом и ТП имеет ряд отличий: 1 Произвом упрют люди в процессе У они воздействуют на людей. Технол процессом также упрют люди но они воздют на вещи – срва произва и предметы труда. Сром труда в современном произве явлся машина человек получает данные о работе машины – ее состоянии о наличии и качве сырья материалов и готовой продукции сравет их с планми и норматми данными принимает решение и передает его машине изменяя режим ее работы. 2 Продукт труда в У ТП продукт произва или...
36393. Средства измерения давления газа, жидкости и пара 61.52 KB
  Средства измерения давления газа жидкости и пара. Для прямого измерения давления жидкой или газообразной среды с отображением его значения непосредственно на первичном измерительном приборе на его отсчетном устройстве – шкале табло или индикаторе применяются манометры. Если отображение значения давления на самом первичном приборе отсутствует т. прибор является бесшкальным но он позволяет получать и дистанционно передавать измерительный сигнал параметра такой прибор называют измерительным преобразователем давления ИПД или датчиком...
36394. Позиционные и следящие САУ электропривода. Регуляторы положения 24.81 KB
  Класс систем подчиненного регулирования 4 контура управления: контур напряжения контур тока контур скорости 4 регулятора контур положения Регуляторы положения: линейные нелинейные лучше минимум времени Следящие – частный случай позиционной на входе задание меняется произвольным способом.
36395. Приведите классификацию и примеры методов синтеза закона управления линейных САУ 43.77 KB
  Методы аналитического синтеза. Эти методы позволяют решить задачу синтеза и провести полное исследование полученного решения. Корневые методы синтеза модальное управление 2.
36396. Средства определения химических составов чугуна, стали 46.71 KB
  Для экспрессанализа содержания углерода в металле применяются устройства основанные на зависимости термоэлектродвижущей силы возникающей в цепи из двух разнородных металлов или сплавов от их природы и свойства. С целью повышения точности определения содержания углерода пробу стали отбираемую по ходу плавки подвергают закалке при этом основной структурной составляющей пробы является мартенсит т. твердый раствор углерода в альфажелезе. В таких бинарных растворах между содержанием углерода и ТЭДС существует линейная зависимость.