58202

Функции белков

Конспект урока

Педагогика и дидактика

Белки выполняют чрезвычайно важные и многообразные функции. Белки входят в состав всех клеточных мембран и органоидов клетки. Двигательную функцию выполняют особые сократительные белки.

Русский

2014-04-22

74.5 KB

8 чел.

Урок 6. Функции белков         1.5, 1.8

  1.  Функции белков.

Белки выполняют чрезвычайно важные и многообразные функции. Это возможно в значительной мере благодаря разнообразию форм и состава самих белков.

Одна из важнейших функций белковых молекул — строительная (пластическая). Белки входят в состав всех клеточных мембран и органоидов клетки. Преимущественно из белка состоят стенки кровеносных сосудов, хрящи, сухожилия, волосы и ногти.

Двигательную функцию выполняют особые сократительные белки. Благодаря им двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов.

Важное значение имеет транспортная функция белков. Так, гемоглобин переносит кислород из легких к клеткам других тканей и органов. В мышцах эту функцию выполняет белок миоглобин. Белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ. Транспортные белки в наружной мембране клеток переносят различные вещества из окружающей среды в цитоплазму.

Специфические белки выполняют защитную функцию. Они предохраняют организм от вторжения чужеродных белков и микроорганизмов и от повреждения. Так, антитела, вырабатываемые лимфоцитами, блокируют чужеродные белки; фибрин и тромбин предохраняют организм от кровопотери.

Регуляторная функция присуща белкам — гормонам. Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах. Например, инсулин регулирует содержание сахара в крови.

Белкам присуща также сигнальная функция. В мембрану клетки встроены белки, способные изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача информации в клетку.

Белки могут выполнять энергетическую функцию, являясь одним из источников энергии в клетке. При полном расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии. Однако в качестве источника энергии белки используются крайне редко. Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

Громадное значение имеет каталитическая, или ферментативная, функция белков. Специальные белки — ферменты способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Известно около тысячи ферментов. Каждая реакция катализируется своим особым ферментом.

  1.  Строение и работа ферментов

Катализом называется явление ускорения реакции без изменения ее общего результата. Вы знаете, что для протекания многих химических реакций необходимы высокие температура и давление. В то же время при добавлении к реагирующей смеси определенных веществ та же реакция может протекать даже при нормальных условиях и с большей скоростью. Например, металлический родий почти в 10 000 раз ускоряет разложение муравьиной кислоты на водород и диоксид углерода. Вещества, изменяющие скорость химической реакции, но не входящие в состав продуктов реакции, называются катализаторами.

В живой клетке умеренная температура, нормальное давление. В таких условиях большинство реакций или вообще не протекали бы или протекали бы очень медленно, если бы не подвергались воздействию катализаторов. Каталитической способностью обладают некоторые молекулы РНК.

Очевидно, это свойство РНК имело очень важное значение на начальном этапе зарождения жизни на нашей планете. В настоящее время роль молекул РНК как катализаторов крайне мала, а основными биокатализаторами в клетке являются ферменты.

Все процессы в живом организме прямо или косвенно осуществляются с участием ферментов. Сейчас уже известны тысячи ферментов. Молекулы одних ферментов состоят только из белков, другие включают белок и небелковое соединение, или кофермент. В качестве коферментов выступают различные органические вещества, как правило витамины, и неорганические — ионы различных металлов.

Ферменты участвуют в процессах как синтеза, так и распада. При этом ферменты действуют в строго определенной последовательности, они специфичны для каждого вещества и ускоряют только определенные реакции. Встречаются ферменты, которые катализируют несколько реакций. Избирательность действия ферментов на разные химические вещества связана с их строением. Молекулы ферментов имеют активный центр — небольшой участок, на котором идет данная реакция. Форма и химическое строение активного центра таковы, что с ним могут связываться только определенные молекулы в силу их комплементарности друг другу.

У некоторых ферментов в присутствии молекул определенных веществ конфигурация активного центра может изменяться, т. е. фермент таким образом может обеспечить наибольшую ферментативную активность.

На заключительном этапе химической реакции комплекс «фермент — субстрат» распадается с образованием конечных продуктов и свободного фермента. Освободившийся при этом активный центр фермента может принимать новые молекулы субстрата (рис. 14).

Ферменты увеличивают скорость химических реакций в тысячи и миллионы раз. Но скорость ферментативных реакций зависит от многих факторов — природы и концентрации фермента и вещества, температуры, давления, реакции среды и т. д. Для функционирования каждого фермента имеются оптимальные условия. Например, одни ферменты активны в нейтральной среде, другие — в кислой, третьи – в щелочной. При температуре свыше 60°С большинство ферментов не функционирует.

Карточка у доски:

  1.  В чем проявляется строительная функция белков?
  2.  Какие белки  выполняют двигательную функцию?
  3.  Приведите примеры транспортных белков.
  4.  Приведите примеры защитных белков.
  5.  Приведите пример регуляторного белка, белка – гормона.
  6.  В чем проявляется сигнальная функция белков?
  7.  Сколько энергии образуется при полном расщеплении 1 г белка?
  8.  Как называются белки, ускоряющие химические реакции в миллионы раз?
  9.  Как называется участок фермента, взаимодействующий с молекулой субстрата?
  10.  Какие органические молекулы, кроме белков, обладают каталитической активностью?

Карточки для письменной работы:

  1.  Определение или сущность термина: 1. Ферменты. 2. Активный центр. 3. Кофермент. 4. Миоглобин. 5. Фибрин и тромбин. 6. Антитела. 7. Гормоны.
  2.  Транспортная, защитная и регуляторная функции белков.
  3.  Сигнальная, двигательная и энергетическая функции белков.
  4.  Ферментативная функция белков.

Компьютерное тестирование

**Тест 1. Белки, входящие в состав кровеносных сосудов, волос и ногтей выполняют функцию:

  1.  Строительную.    5. Ферментативную.
  2.  Двигательную.    6. Регуляторную.
  3.  Энергетическую.   7. Транспортную.
  4.  Сигнальную.    8. Защитную.

Тест 2. Гемоглобин и миоглобин выполняют функцию:

  1.  Строительную.    5. Ферментативную.
    1.  Двигательную.    6. Регуляторную.
    2.  Энергетическую.   7. Транспортную.
    3.  Сигнальную.    8. Защитную.

**Тест 3. Сократительные белки жгутиков и ресничек выполняют функцию:

  1.  Строительную.    5. Ферментативную.
  2.  Двигательную.    6. Регуляторную.
  3.  Энергетическую.   7. Транспортную.
  4.  Сигнальную.    8. Защитную.

Тест 4. Антитела, фибрин и тромбин выполняют функцию:

  1.  Строительную.    5. Ферментативную.
  2.  Двигательную.    6. Регуляторную.
  3.  Энергетическую.   7. Транспортную.
  4.  Сигнальную.    8. Защитную.

Тест 5. Инсулин и другие белковые гормоны выполняют функцию:

  1.  Строительную.    5. Ферментативную.
  2.  Двигательную.    6. Регуляторную.
  3.  Энергетическую.   7. Транспортную.
  4.  Сигнальную.    8. Защитную.

Тест 6. Белки, встроенные в мембраны клеток, принимающие передающие сигналы в клетку, выполняют функцию:

  1.  Строительную.    5. Ферментативную.
  2.  Двигательную.    6. Регуляторную.
  3.  Энергетическую.   7. Транспортную.
  4.  Сигнальную.    8. Защитную.

Тест 7. При полном расщеплении 1 г белка до конечных продуктов выделяется энергии:

  1.  17,6 кДж.
  2.  38,9 кДж.
  3.  13,6 кДж.
  4.  40 кДж.

**Тест 8. Каталитической активностью обладают:

  1.  Некоторые белки.
  2.  Некоторые жиры.
  3.  Некоторые углеводы.
  4.  Некоторые РНК.

Тест 9. Небелковые соединения, входящие в состав некоторых ферментов:

  1.  Апофермент.
  2.  Холофермент.
  3.  Кофермент.
  4.  Активный центр.

Тест 10. Участок фермента, который взаимодействует с молекулой субстрата:

  1.  Апофермент.
  2.  Холофермент.
  3.  Кофермент.
  4.  Активный центр.


 

А также другие работы, которые могут Вас заинтересовать

20105. Фундаментальные принципы построения САУ. Принцип разомкнутого управления, принцип компенсации. Принцип управления с обратной связью 122.5 KB
  Принцип разомкнутого управления принцип компенсации. Принцип управления с обратной связью. Принцип разомкнутого управления – принцип жесткого управления. Функциональная схема включает три элемента: ЗУ задающее устройство; УУ – устройство управления; ОУ – объект управления.
20106. Типовая функциональная схема САР. Классификация САР. Стабилизирующие САР. Программные САР. Следящие САР 106.5 KB
  СУ2 – дополнительное сравнивающее устройство – предназначено для образования местной обратной связи в любом месте системы. КУ – корректирующее устройство – предназначено для улучшения качества показателей системы; они могут быть в виде местных обратных связей КУ1 параллельных подключений КУ2 последовательных включений КУ3. Классификация САР Все системы в автоматике делятся на адаптивные и неадаптивные. по принципу регулирования: на системы работающие по возмущению; на системы работающие по отклонению; системы использующие...
20107. Статические и астатические САУ 31 KB
  Статические системы состоят из статических звеньев которые имеют зависимость Xвых = f Хвх Рассмотрим простейшую астатическую САР Степень открытия заслонки зависит от Q но поплавок при заданном значении уровня занимает одно и то же положение равного заданному. Особенности равновесие системы со астатическим регулированием имеет место при единственном значении РВ равной заданному. Различают системы статические и астатические по отношению к управляющему и возмущающему воздействиям.
20108. Математические модели САУ. Основные формы записи линеаризированных уравнений в автоматики 56.5 KB
  Для систем с распределёнными параметрами уравнение имеет вид уравнения в частных производных. Уравнение статики описывает поведение системы в установившемся режиме. Урие связи между вх и вых велми искомое урие то есть дифуравнение. В общем случае на динамическое звено кроме входной велны на выходную велну могут оказывать влияние возмущающие воздействия Пусть динамическое звено имеет статическую характеристику вида1 и описывается дифференциальным уравнением первого порядка.
20109. Временные характеристики линейных звеньев 49 KB
  Переходная функция и функция веса. Динамические свва звеньев можно определить по их переходным функциям и функциям веса. Переходная функция ht – такой переходной процесс который возникает на выходе динамического звена при подаче на вход звена единичного ступенчатого скачка. Весовая функция Rt представляет собой реакцию звена на единичную импульсную функцию поданную на вход.
20110. Передаточные функции динамических звеньев. Частотные передаточные функции и частотные характеристики 33 KB
  Их получают при рассмотрении вынужденного движения системы или звена когда на вход подаётся гармоническое воздействие вида : x1 = Aвхsin wt 1 Рассмотрим динамическое звено : При подаче на его вход сигнала 1 если звено линейное на выходе получается сигнал вида : y = Авыхsinwt j 2 j cдвиг фазы Для удобства принимают символическую форму записи sin or cos через ряд : sin wt = ejwt поэтому: sinwt j = еjwt ...
20111. Позиционные, интегрирующие и дифференцирующие типовые динамические звенья их частотные характеристики 45.5 KB
  Типовое динамическое звено описываемое уравнением не выше второго порядка так как реальные звенья составляются на основании законов выражаемых уравнениями не выше второго порядка.1 Безинерционное идеальное звено звено которое в установившемся режиме и в переходном режиме описывается уравнением y = kx На практике идеальным звеном принимают то звено у которого постоянная времени значительно меньше постоянной времени последующих звеньев 1.2 Апериодическое звено первого порядка звено которое...
20112. Структурные схемы систем автоматического управления 903 KB
  Структурной схемой называется схема отражающая взаимодействие динамических звеньев в процессе работы системы. Может содержать: 1 элемент с 1 входом и 1 выходом 1 элемент 2 входа и 1 выход узел сумматор сравнивающее устройство Последовательное соединение динамических звеньев Общая передаточная функция равна произведению составляющих функций динамических звеньев Параллельное соединение Встречнопараллельное соединение – общая передаточная функция если обратная связь отрицательна если обратная связь положительна Если в...
20113. Качество переходных процессов. Частотные показатели качества САР 44 KB
  При этом используют АЧХ замкнутой системы Фjw АЧХ разомкнутой системы Wjw ВЧХвещественночастотная характеристика замкнутой системы Uw.22π Wm 2Использование ВЧХ замкнутой системы для оценки качества. Для устойчивых автоматических систем ВЧХ связана с переходной функцией ht следующей зависимостью: Используя это соотношение можно косвенно оценить границы переходного процесса по амплитуде и длительности. Для того чтобы косвенно судить о качестве рассмотрим свойства ВЧХ и свойства и свойства соответствующих им переходных...