58244

Клеточная теория. Клеточная мембрана

Конспект урока

Педагогика и дидактика

Клетки различных органов животных растений грибов внешне не очень похожи друг на друга. Все клетки сходны по строению химическому составу и жизненным функциям.

Русский

2014-04-23

113.5 KB

0 чел.

Урок 10. Клеточная теория. Клеточная мембрана    2.1 – 2.2

1. Создание клеточной теории.

Все живые существа на Земле, за исключением вирусов, построены из клеток и могут быть одноклеточными (бактерии, некоторые водоросли, простейшие) или многоклеточными.

Клетка — элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители. Клетки различных органов животных, растений, грибов внешне не очень похожи друг на друга. Ну что общего, казалось бы, между нейроном нашего мозга, стрекательной клеткой гидры, инфузорией туфелькой и клеткой листа березы? И тем не менее между этими, да и всеми другими клетками, гораздо больше сходства, чем различий.

И хотя многие ученые пользовались микроскопами для изучения живых существ, техника XVIIXVIII вв. была еще очень несовершенной. Лишь в начале XIX в. Р. Броун смог увидеть внутри клеток листа плотное образование, которое он назвал ядром. К середине XIX в. (в 1838 году) немецкие ученые Т. Шванн и М. Шлейден, обобщив сведения, полученные многими исследователями, сформулировали клеточную теорию, одну из основных в современной биологии. Каковы же ее главные положения?

  1.  Все живые существа, от одноклеточных до крупных растительных и животных организмов, состоят из клеток.
  2.  Все клетки сходны по строению, химическому составу и жизненным функциям.
  3.  Несмотря на то, что в многоклеточных организмах отдельные клетки специализируются на выполнении какой-то определенной «работы», они способны к самостоятельной жизнедеятельности, т. е. могут питаться, расти, размножаться.

М. Шлейден и Т. Шванн ошибочно полагали, что клетки могут самопроизвольно зарождаться в жидкостях или во множестве рождаться внутри старых клеток. Однако немецкий биолог и врач Р. Вирхов доказал, что клетки способны делиться, и предложил следующее дополнение к клеточной теории:

4. Все клетки образуются из клетки. Таким образом, клетка — элементарная единица живого, лежащая в основе строения, развития и размножения всех живых организмов.

2. Клеточная мембрана.

Клетки, несмотря на свои малые размеры, устроены очень сложно. Они содержат структуры для потребления питательных веществ и энергии, выделения ненужных продуктов обмена, размножения. Все эти стороны жизнедеятельности клетки должны быть тесно связаны друг с другом.

Исследования, проводившиеся в течение многих десятилетий и не прекращающиеся до сих пор, позволяют нарисовать достаточно полную картину строения клетки. Мы можем связать отдельные функции клетки с множеством различных мельчайших образований, обнаруженных в ней.

Внутреннее полужидкое содержимое клетки получило название цитоплазмы. В цитоплазме большинства клеток находится ядро, координирующее жизнедеятельность клетки, и многочисленные органоиды, выполняющие разнообразные функции.

Чтобы клетка представляла собой единую систему, необходимо, чтобы все ее части — цитоплазма, ядро, органоиды — удерживались вместе. Для этого в процессе эволюции развилась клеточная мембрана, которая, окружая каждую клетку, отделяет ее от внешней среды. Наружная мембрана защищает внутреннее содержимое клетки — цитоплазму и ядро — от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.

Строение мембраны у всех клеток одинаково. Ее толщина составляет приблизительно 8 нм (1 нм = 10-9м), и поэтому увидеть мембрану в световой микроскоп невозможно. Данные, полученные при помощи электронного микроскопа, позволили заключить, что основу мембраны составляет двойной слой молекул липидов (рис. 18), в котором расположены многочисленные молекулы белков.

Некоторые белки находятся на поверхности липидного слоя, другие — пронизывают оба слоя липидов насквозь. Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из нее могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы через мембранные каналы пройти не могут.

Молекулы пищевых веществ — белки, углеводы, липиды — попадают в клетку при помощи фагоцитоза или пиноцитоза. В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. Этот процесс называется фагоцитозом (рис. 19, А).

Внутрь образовавшегося пузырька проникают пищеварительные ферменты, и возникает пищеварительная вакуоль. Путем фагоцитоза питаются простейшие.

У многоклеточных организмов некоторые лейкоциты крови — довольно крупные амебовидные клетки, передвигаясь в крови и лимфе, также способны активно захватывать и переваривать чужеродные бактерии. Их называют фагоцитами. Так как клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки, они не могут захватывать вещества при помощи фагоцитоза.

Клетки растений, грибов и бактерий поверх клеточной мембраны имеют прочную клеточную стенку, обеспечивающую механическую прочность клеточной оболочке. У растений клеточная стенка состоит в основном из полисахарида целлюлозы, у грибов – из хитина, у бактерий – из муреина. У клеток с развитой клеточной стенкой фагоцитоз невозможен.

Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твердые частицы, а капельки жидкости с растворенными в ней веществами (рис. 19, Б). Это один из основных механизмов проникновения веществ в клетку.

Карточка у доски:

  1.  Элементарная единица жизни на Земле?
  2.  Кто впервые предложил термин «Ядро»?
  3.  Кто сформулировал основные положения клеточной теории?
  4.  Какое положение клеточной теории было ошибочным?
  5.  Кто дополнил клеточную теорию положением о том, что новые клетки могут образовываться путем деления?
  6.  Какова толщина клеточной мембраны?
  7.  Что является основой клеточной мембраны?
  8.  Чем образована клеточная стенка растений, грибов, бактерий?
  9.  Что такое фагоцитоз?
  10.  Что такое пиноцитоз?

Карточки для письменной работы:

  1.  Определение или сущность термина: 1. Р.Броун. 2. М.Шлейден и Т.Шванн. 3. Р.Вирхов. 4. Клеточная теория. 5. Клеточная мембрана. 6. Фагоцитоз. 7. Пиноцитоз. 8. Клеточная стенка.
  2.  Основные положения клеточной теории.
  3.  Создание клеточной теории.
  4.  Строение клеточной мембраны .

Компьютерное тестирование

Тест 1. Элементарная единица жизни на Земле:

  1.  Атом.
  2.  Молекула.
  3.  Клетка.
  4.  Организм.

Тест 2. Термин ядро впервые использовал:

  1.  Р.Броун.
    1.  М.Шлейден.
    2.  Т.Шванн.
    3.  Р.Вирхов.

Тест 3. Основные положения клеточной теории в 1838 г были сформулированы:

  1.  Р.Броуном.
  2.  Р.Вирховым.
  3.  М.Шлейденом и Т.Шванном.
  4.  Ч.Дарвином.

Тест 4. Ошибочное положение клеточной теории:

  1.  Дочерние клетки образуются в результате деления материнских клеток.
  2.  Все живые существа состоят из клеток.
  3.  Клетки могут самопроизвольно зарождаться или во множестве образовываться внутри старых клеток.
  4.  Все клетки сходны по строению, химическому составу и жизненным функциям.

Тест 5. Доказал, что клетки могут образовываться только путем деления:

  1.  Р.Вирхов.
  2.  Р.Броун.
  3.  М.Шлейден.
  4.  Т.Шванн.

Тест 6. Толщина клеточной мембраны:

  1.  8 нм.
  2.  8 мкм.
  3.  8 мм.
  4.  0,8 мм.

Тест 7. Основа клеточной мембраны:

  1.  Белки на поверхности мембраны и пронизывающие мембрану насквозь.
  2.  Жиры.
  3.  Двойной слой липидов.
  4.  Углеводный бислой (двойной слой).

**Тест 8. Основу клеточных стенок растений, грибов и бактерий образует:

  1.  Целлюлоза (клетчатка).
  2.  Хитин.
  3.  Муреин.
  4.  Цитоплазматическая мембрана.

Тест 9. Фагоцитоз:

  1.  Захват плазматической мембраной твердых пищевых частиц.
  2.  Захват плазматической мембраной растворов.
  3.  Транспорт веществ через каналы белков, встроенных в мембрану.
  4.  Диффузия малых молекул через плазматическую мембрану.

Тест 10. Пиноцитоз:

  1.  Захват плазматической мембраной твердых пищевых частиц.
  2.  Захват плазматической мембраной растворов.
  3.  Транспорт веществ через каналы белков, встроенных в мембрану.
  4.  Диффузия малых молекул через плазматическую мембрану.


 

А также другие работы, которые могут Вас заинтересовать

19270. Каноническое проектирование. Типовое проектирование ИС. Параметрически-ориентированное проектирование. Модельно-ориентированное проектирование 280.39 KB
  Лекция 3. Каноническое проектирование. Типовое проектирование ИС. Параметрическиориентированное проектирование. Модельноориентированное проектирование. 3.1. Каноническое проектирование Организация канонического проектирования ИС ориентирована на использов...
19271. Работа с матрицами. Формирование матриц третьего порядка 17.02 KB
  В ходе лабораторной работы были сформированы две матрицы третьего порядка, с ними были выполнены указанные в задании операции. Результаты выполнения команд представлены в коде
19272. Системный подход к проектированию ИС. Структурные методы анализа и проектирования ИС. Объектно-ориентированная методика проектирования ИС 228.76 KB
  Лекция 4. Системный подход к проектированию ИС. Структурные методы анализа и проектирования ИС. Объектноориентированная методика проектирования ИС. Cравнение объектноориентированного и структурного подхода. Модели деятельности предприятия. Проведение обследования.
19273. Средства структурного анализа. Метод функционального моделирования IDEF0. Метод моделирования процессов IDEF3 255.24 KB
  Лекция 5. Средства структурного анализа. Метод функционального моделирования IDEF0. Метод моделирования процессов IDEF3. Моделирование потоков данных Модели сущностьсвязь ERмодели. Графические нотации ERмодели 5.1. Метод функционального моделирования IDEF0 Метод IDEF0 с...
19274. Методология ARIS. Диаграммы переходов состояний (State Transition Diagram, STD). Структурные карты Константайна 196.42 KB
  Лекция 6. Методология ARIS. Диаграммы переходов состояний State Transition Diagram STD. Структурные карты Константайна. Структурные карты Джексона. Метод EricssonPenker. Метод моделирования используемый в технологии Rational Unified Process 6.1. Методология ARIS Методология ARIS реализует принцип...
19275. История UML Описание UML. Сущности UML. Отношения UML. Диаграммы UML. Расширения языка UML. Диаграммы классов 290.15 KB
  Лекция 7. История UML Описание UML. Сущности UML. Отношения UML. Диаграммы UML. Расширения языка UML. Диаграммы классов. Диаграммы использования usecase диаграммы прецедентов. Диаграмма последовательности. Диаграмма кооперации. Диаграмма состояний. Диаграмма деятельности. ...
19276. Назначение CASE-средств. Архитектура CASE-средств. Классификация CASE-средств. Обзор CASE-средств. Системы автоматизированного проектирования 378.84 KB
  Лекция 8. Назначение CASEсредств. Архитектура CASEсредств. Классификация CASEсредств. Обзор CASEсредств. Системы автоматизированного проектирования. Обзор САПР. Компанииразработчики САПР. 8.1. Назначение CASEсредств Термин CASE расшифровывается как ComputerAssisted Software Engineerin...
19277. Проектирование фактографических ИС и хранилищ данных. Подходы к проектированию БД 298.35 KB
  Лекция 9. Проектирование фактографических ИС и хранилищ данных. Подходы к проектированию БД. Этапы нисходящего подхода к проектированию баз данных. Проектирование хранилищ данных. 9.1. Подходы к проектированию баз данных Можно выделить два основных подхода к про
19278. Назначение документальных ИС. Особенности представления и использо-вания документальной информации 244.3 KB
  Лекция 10. Назначение документальных ИС. Особенности представления и использования документальной информации. Типология документальных БД. Типология поисковых задач и режимы обслуживания. Основные процессы обработки и хранения документальной информации. 10.1. Наз...