5845

Распорные системы

Реферат

Архитектура, проектирование и строительство

Распорные системы 1 Основные системы о трехшарнирных системах. Из прошлого к нам в строительство пришли ряд конструкций, целесообразность которых была проверена Веками Нашей Цивилизации. Одна из них Распорная система. С учетом работы распорной систе...

Русский

2012-12-23

127 KB

22 чел.

Распорные системы

1 Основные системы о трехшарнирных системах.

Из прошлого к нам в строительство пришли ряд конструкций, целесообразность которых была проверена Веками Нашей Цивилизации. Одна из них Распорная система. С учетом работы распорной системы строились Замки, Крепости и Храмы. Так строились и простые дома, в которых проемы и окна – тоже были распорными.

Введем некоторые  общие понятия.

Трехшарнирная система – система жестких дисков, образованная из трех дисков (один из которых – основание), связанных между собой шарнирами (рис. 1).

Различают следующие основные типы трехшарнирных (распорных) систем:

1. Если в трехшарнирной системе два диска являются

прямолинейными или ломанными стержнями, то такая конструкция называется трехшарнирной рамой (рис. 2).

2. Если в трехшарнирной системе два диска являются сквозными решетчатыми конструкциями, то такая система называется трехшарнирной арочной фермой (рис. 3).

3. Арки – сооружения, у которых два диска представляют собой криволинейные стержни, оси которых описаны аналитически или заданы таблично (рис. 4).

Расстояние между опорами  называют пролетом арки, а расстояние от шарнира С до прямой, соединяющей опоры – f – стрелой подъема арки. Иногда шарнир С называют ключом (замком) арки, а опорные шарниры – пятовыми или пятами арки.

В общем случае трехшарнирные системы могут быть как симметричные, так и несимметричные.

Разновидностями трехшарнирных систем могут быть системы с затяжками (рис. 5).

Различные типы трехшарнирных систем нашли широкое применение в мостостроении, сельском строительстве, при перекрытии больших пролетов промышленных цехов, зрелищных сооружений, где они являются экономичными и надежными.

2. Определение опорных реакций в трехшарнирной арке

На арку действуют, как правило, вертикальные нагрузки и в большинстве случаев отсутствуют сосредоточенные моменты.

Рассмотрим простейший случай загружения арки, когда действуют только сосредоточенные силы Fi (рис. 6).

При действии на арку нагрузки, в каждой из ее опор возникают по две опорные реакции, т.е. всего требуется найти четыре неизвестных. Для определения вертикальных опорных реакций запишем условия равновесия в виде равенства нулю моментов всех сил относительно опорных шарниров:

,

.

Не представляет сложности установить полную аналогию определения вертикальных опорных реакций в арке с процедурой вычисления опорных реакций в балке того же пролета, на которую спроектированы внешние усилия, действующие на арку (рис. 6).

Для определения горизонтальных реакций HA  и HB запишем следующее уравнение равновесия (замечу, что нагрузка у нас только вертикальная):

Опорную реакцию H принято называть распором арки.

Для определения распора H запишем уравнение равновесия в виде равенства нулю моментов всех сил относительно шарнира С, расположенных слева (справа) от него:

,

Обратим внимание, что

.

– изгибающий момент в середине пролета (под проекцией шарнира С в общем случае) балки на двух опорах, загруженной эквивалентной нагрузкой.

Получили универсальную формулу для определения распора:

Следует только помнить, что все вышеприведенное справедливо для случая действия вертикальной нагрузки и когда опоры арки лежат на одной горизонтальной прямой.

3. Определение внутренних усилий в трехшарнирной арке

Рассмотрим арку загруженную вертикальной нагрузкой (рис. 6). Найдем внутренние усилия в некотором сечении, положение которого определено координатами x и y (рис. 6). Рассмотрим равновесие левой отсеченной части (рис. 7).

Определим внутренние усилия в сечении с известными координатами x и y из следующих условий равновесия рассматриваемой отсеченной левой части арки:

Найдем изгибающий момент Mx:

,

откуда

.

Обратим внимание на то, что выражение

отвечает изгибающему моменту в сечении x в эквивалентной балке (рис. 7).

Окончательно

.

Из полученной формулы следует, что изгибающий момент в арке меньше, чем в эквивалентной балке.

Найдем поперечную силу :

,

откуда, с учетом, что  – поперечная силав сечении x в эквивалентной балке, получим:

.

Отметим, что поперечная сила в арке меньше, чем в аналогичной балке.

Нормальную силу в сечении x определим из условия равновесия в виде равенства нулю проекций всех сил слева от сечения на ось :

.

Как видно из полученного выражения, в арке нормальная сила сжимающая и хотя ее величина возрастает по сравнению с поперечной силой в аналогичной балке, но большинство строительных материалов хорошо работают на сжатие, чего не скажешь о растяжении.

Расчет арки обычно ведется следующим образом:

– арка мысленно разбивается на ряд участков, чтобы в сечения обязательно попали сосредоточенные силы и дополнительные, так как эпюры внутренних сил в при любой нагрузке криволинейны. Следует предусмотреть достаточное количество сечений для достижения точности расчета;

– расчет ведется в табличной форме, форма таблицы будет показана на практических занятиях.

4. Понятие о рациональной оси арки

Рациональной осью арки называется такое ее очертание, когда изгибающий момент во всех сечениях равен нулю.

В силу определения рациональной оси арки положим, что

.

Проведем элементарные преобразования:

.

Полученное выражение утверждает, что для того, чтобы ось арки была рациональной, закон ее изменения должен отвечать закону изменения балочного изгибающего момента.

Примером рациональной оси арки является параболическая кривая, если на арку действует равномерно распределенная нагрузка:

.

По такой формуле следует принять закон изменения оси арки при расчете ее в контрольной работе.

PAGE  3


Основани
е

A

B

C

Рис. 5.1

Рис. 5.2

A

C

f

EMBED Equation.3  

Рис. 5.4

Рис. 5.3

Рис. 5.5

Рис. 5.6

A

B

C

f

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

HA=H

HB=H

VB

VA

Fi

F1

bk

a1

ai

Fk

F1

Fi

Fk

C

VA

VB

x

y

A

H

VA

Fi

F1

a1

ai

F1

Fi

VA

A

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

y

x

EMBED Equation.3  

EMBED Equation.3  

x

EMBED Equation.3  

EMBED Equation.3  

Рис. 5.7

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

42505. Определение отношения теплоёмкости при постоянном давлении к теплоёмкости при постоянном объёме для воздуха методом стоячей волны 152.5 KB
  Определение отношения теплоёмкости при постоянном давлении к теплоёмкости при постоянном объёме ДЛЯ воздуха методом стоячей волны Цель работы определить  = Cp CV методом стоячей звуковой волны. Будем описывать распространение волны с помощью фазовой скорости скорости распространения в пространстве поверхностей образованных частицами совершающими колебания в одинаковой фазе. 5 Если изменения плотности и давления малы  0 и...
42506. Налаштування початкової конфігурації комутатора Cisco Catalyst 2960 409 KB
  Налаштування початкової конфігурації комутатора Мета: Налаштування початкової конфігурації комутатора Cisco Ctlyst 2960. Загальні відомості підготовка В даній лабораторній роботі Pcket Trcer описується налаштування клієнтського комутатора Cisco Ctlyst 2960. Буде розглянуте налаштування наступних параметрів комутатора...
42507. Исследование эффекта Зеебека 85 KB
  В двух разнородных металлах при различных температурах спаев возникает термоЭДС которая объясняется зависимостью энергии Ферми от температуры и возникновением градиента концентрации электронов в проводнике при наличии градиента температуры. ТермоЭДС обусловленная зависимостью уровней Ферми от температуры называется контактной: 11. ТермоЭДС обусловленная возникновением градиента концентрации при наличии градиента температуры в проводнике называют диффузионной диф. Суммарная термоЭДС...
42508. Тип запись. Массивы записей 187 KB
  Тип запись. При выполнении работы необходимо знать: Что такое тип запись Как правильно объявить тип запись и переменные типа запись Как обращаться к полям записи Как организовать работу с массивом записей Теоретический минимум: Тип запись представляет собой сложный структурированный тип данных и включает в себя ряд компонент называемых полями которые могут быть различных типов. Пример объявления типа запись: type Dt=record {название типа запись Dt дата } Yer: integer; {поле год...
42509. Изучение зависимости сопротивления электролитов от температуры 128.5 KB
  При отсутствии внешнего электрического поля ионы в электролите совершают тепловое движение. При наличии поля положительные ионы приобретают добавочную скорость в направлении электрического поля, а отрицательные ионы − добавочную скорость в противоположном направлении. На тепловое движение накладывается переносное движение ионов, и в растворе возникает электрический ток.
42510. Определение коэффициента вязкости жидкости 101 KB
  При движении плоских слоев сила трения между ними согласно закону Ньютона где  коэффициент пропорциональности называемый коэффициентом вязкости или динамической вязкостью; S площадь соприкосновения слоев. Соседние слои движутся с меньшими скоростями и следовательно между слоями жидкости возникает сила внутреннего трения. Стокс показал что эта сила при малых значениях скорости пропорциональна скорости движения шарика  и его радиусу r: 1 где...
42511. Изучение зависимости сопротивления металлов от температуры 135.5 KB
  К проводникам первого рода относятся металлы. Металлы обладают электронной проводимостью. Это означает, что носителями электричества в них являются свободные электроны. Если к участку проводника 1 рода приложена разность потенциалов, то на хаотическое движение электронов накладывается их упорядоченное движение.
42512. Изучение работы электронного осциллографа 126.5 KB
  Осциллограф состоит из электронно-лучевой трубки, генератора развёртки, блока синхронизации, двух усилителей, блока питания. В некоторых осциллографах имеется генератор меток времени. Принципиальная схема осциллографа показана на рис. 14.1. Осциллографы применяются во многих отраслях науки и техники, в частности, в электро- и радиотехнике, механике, акустике, медицине, биологии и др. Осциллограф даёт возможность наблюдать процессы длительностью 10−8 … 10−7 с.
42513. Физические основы работы ионных приборов 101.5 KB
  Положительные ионы под действием поля устремляются к катоду, бомбардируют его поверхность и вырывают из катода вторичные электроны (поверхностная ионизация). Такое явление называется вторичной эмиссией. Возникающие электроны вторичной эмиссии, ускоряемые полем, также включатся в процесс объёмной ионизации газа.