58532

Формула коренів квадратного рівняння

Конспект урока

Педагогика и дидактика

Мета. Освітня: домогтися засвоєння формули коренів квадратного рівняння; сформувати вміння розв’язувати квадратні рівняння за допомогою цієї формули. Розвиваюча: розвивати розумову діяльність

Украинкский

2014-04-27

42 KB

3 чел.

Тема. Формула коренів квадратного рівняння.

Мета. Освітня: домогтися засвоєння формули коренів квадратного рівняння; сформувати вміння розв’язувати квадратні рівняння за допомогою цієї формули. Розвиваюча: розвивати розумову діяльність; Виховна: виховувати самостійність, намагатися скласти ситуацію успіху для кожного учня.

Тип уроку: засвоєння нових знань, умінь, навичок.

Обладнання та наочність: роздавальний матеріал та правила проведення інтерактивних вправ «Карусель» та «Поспішай та  не помились», комп’ютер.

      

                  Хід уроку

1.  Організаційний момент

2. Перевірка домашнього завдання

1) Перевірка завдання заданого за підручником

Два учні біля дошки відтворюють ті завдання, які для більшості дітей   показалися   найважчими.

2)  Перевірка   додаткового  завдання

З  місця   один  з  учнів    пояснює   розв’язання   додаткового   завдання.

3)  Індивідуальне  опитування

-  Які    рівняння    називаються   квадратними?   Наведіть  приклади.

-  Як    називаються    коефіцієнти    квадратного   рівняння

               ах² + bх +с =0?

- Які   квадратні   рівняння   називаються   неповними?    Наведіть  приклади.

-  Скільки   коренів   мають   неповні   квадратні   рівняння   кожного  виду?

3.   Актуалізація   опорних   знань

Інтерактивна   гра  «  Поспішай   та   не  помились»

Учитель   по   черзі   вивішує   завдання      за   завданням,  для   кожного  з  варіантів  а  учні   на   аркушах – трафаретах   пишуть  відповіді.

   

     Варіант    1

    Варіант    2

1.   У  квадратному   рівнянні    підкресліть    однією    лінією    старший   коефіцієнт,   двома    лініями  -   другий  і  трьома   -  вільний   член:

а)2х²  + 3х -4 =0;

б)  13х -5х² +1=0;

в) 12+ х² -5х=0;

г) х² + 4=6х

а)  4х² -2х+5=0;

б)  11-2х² +4=0;

в)  14-х² -2х=0;

г) 7х -х² =5

2.  Складіть   квадратне  рівняння   ах² +bх +с=0,  в  якому:    

а) а=1,  b=-2,  с=3;

б) b=4,  а=-1, с=4;

в) с=-5,  а=2,  b=-1;

г)  b=0,  с=9,  а=-1.

а) а=2, b=-1,   с=5;

б) b=-5,  с=3,  а=-1;

в)  с=-4,   b=2, а=-3;

г) с=0,  а=5, b=-3.

3.  Виділіть   квадрат   двочлена:

4х² + 20х + 31;

х² + 10х +16

9х² + 24х+20;

х² +14х+25

Підводиться   підсумок  виконання  завдань.

4.  Мотивація   навчальної  діяльності

 Застосування  основних   властивостей    значно   полегшує   розв’язання   багатьох   рівнянь.  Отже,  сьогодні   на   уроці   ми  з  вами  вивчимо   формулу    коренів   квадратного   рівняння.

Оголошення    теми  і  мети  уроку.

5.  Вивчення   нового  матеріалу

 План   вивчення   теми

1.  Виведення   формули   коренів  квадратного    рівняння.

2.  Алгоритм   розв’язання   квадратного   рівняння   за  формулою.

3.  Кількість   дійсних   коренів   квадратного   рівняння.

Вивчення   нового  матеріалу   проводиться   за   допомогою   комп’ютера.

Пояснення  вчителя     супроводжується     презентацією   створеною   на  комп’ютері.

Вираз   b²  - 4ас  називають   дискримінантом   даного   квадратного   рівняння.

Якщо    D<0,  то  дане   рівняння    не  має   коренів:  не  існує   такого   значення   х,   при   якому   значення   виразу   (  2ах+   b)²  було б   від’ємним.

Якщо    D=0,     то  2ах +b=0,  звідси  х= -b : 2а  -  єдиний   корінь.

Якщо   D>0,  то  дане  квадратне   рівняння   рівносильне   рівнянню  ( 2ах+b)²=(√D)².   У  цьому  випадку   рівняння   має   два  корені,   які  відрізняються   тільки   знаками   перед     √D.  Коротко   записують   їх   так:

                         -b±√D

                Х    =  ------ ,   де   D=b² - 4ас.  -  це   формула   коренів  

                           2а                                                                                                                                                                   

квадратного   рівняння    ах² + bх + с =0.  Користуючись   нею   можна   розв’язати   будь-яке  квадратне   рівняння.   Дану   формулу   застосовують   для   розв’язування   багатьох   рівнянь,   які  зводяться   до  квадратних.   Якщо   перший   коефіцієнт   квадратного   рівняння   дорівнює   1,  то  таке   рівняння   називають   зведеним.

  Розглянемо   приклад.

Розв’яжіть   рівняння      

3х² - 5х +2 =0;

D = 25 -24 =1,      D>0,   - рівняння   має   два   корені.

     5±√1      5±1                                        2

Х =------=  ------;     Х1  =1,          Х2=  - -- ;

         6         6                                           3

6.   Закріплення    нових   знань  і  вмінь

1.  Робота   з   підручником

Учні   по  черзі   виходять   до   дошки   і  під   керівництвом   учителя   розв’язують    рівняння    № 931,    933,   936.

2.   Інтерактивна   вправа    «   Карусель»

 Учні   сидять   у   двох   колах   обличчям   один   до  одного.    Внутрішнє   коло   нерухоме,   а  зовнішнє   рухається.   Вчитель  вивішує   на  дошці     завдання,   учні  розв’язують   його   в  парах   (  як  сидять  -  один   навпроти   одного ).    За  сигналом  вчителя   відбувається   зміна   партнерів,  і  робота  продовжується   вже  у  складі   інших   пар.  Учитель   контролює   роботу.

Завдання

1.  Складіть   квадратне   рівняння,   корені   якого   дорівнюють:

а)  3  і  6;

 б)  - 1 і 0,5;

в)  - √3 і √3.

2.  Розв’яжіть   квадратне   рівняння   за   допомогою   виділення   квадрата   двочлена:

а)  9х² + 6х +1=0;

б)  х² + 4х + 8=0;

в)  4х² - 12х – 16=0.

По  закінченні   вправи   підводиться  підсумок.

7.  Підсумок   уроку.

Прес – конференція.

Обговорення  того,  наскільки   повно   було   виконано   роботу,  в  якому   напрямку   необхідно  працювати   далі.

8.   Домашнє   завдання

Основний   рівень    

  Завдання   за   підручником

Високий   рівень

При  яких   додатних   значеннях    m    обидва   корені    рівняння     0,25х² + 7х +m² =0  рівні   між   собою?

8.  Виставлення   оцінок    за   урок                                            


 

А также другие работы, которые могут Вас заинтересовать

26902. Питание и иннервация стенок грудной полости 3.53 KB
  Задние межреберные артерии aa. ветви внутренней грудной артерии пронизывают межреберные промежутки и участвуют в кровоснабжении большой грудной мышцы.Нервы Имеется двенадцать пар основных передних грудных нервных ветвей верхние одиннадцать представляют собой межреберные нервы nn. Межреберные нервы с третьего по шестой в целом имеют типичный ход тогда как в топографии всех остальных имеются отклонения.
26903. Артерии головы 5.34 KB
  Кровь к голове поступает по левой и правой общим сонным артериям которые берут свое начало из общего ствола сонных артерий. Внутренняя сонная артерия а. carotis interna –кровоснабжает головной мозг Наружная сонная артерия a. Затылочная артерия a.
26904. Артерии грудной конечности 3.46 KB
  Подмышечная артерия а. Впереди сустава от нее отходит надлопаточная артерия a. suprascapularis позади сустава подмышечная артерия делится на подлопаточную и плечевую. Подлопаточная артерия a.
26905. Грудная аорта. Парные ветви брюшной аорты 1.78 KB
  Отдает: а дорсальная ветвь для разгибателей спины и кожи б спинномозговая ветвь и в вентральная ветвь 2. Каждая отдает а дорсальную ветвь для разгибателей спины и кожи б вентральную ветвь для брюшной стенки в спинномозговую ветвь г мышечную ветвь для вентральных мышц поясницы 2.
26906. Непарные ветви брюшной аорты 3.35 KB
  Чревная артерия a. Делится на 3 ссуда: Селезеночная артерия a. Henaus переходит в левую желудочную Левая желудочная артерия a. Печеночная артерия a.
26907. Внутренняя и наружная подвздошные артерии 4.1 KB
  Внутренняя подвздошная артерия – а.: 1 внутренняя срамная артерия – а. От неё берут начало: а пупочная артерия а. vesicalis cranialis; б артерия предстательной железы влагалищная а.
26908. Артерии тазовой конечности 5.3 KB
  Наружная подвздошная артерия а.: 1окружная глубокая подвздошная артерия – а. 2 маточная артерия а. 3глубокая бедренная артерия – а.
26909. Краниальная полая вена. Вены головы 5.32 KB
  Краниальная полая вена. Краниальная полая вена v.путём слияния левой и правой чрёмных вен с левой и правой подмышечными венами. Ярёмная вена на своём пути принимает: пищеводные трахеальные и мышечные ветви.
26910. Каудальная полая вена. Воротная вена 7.65 KB
  Глубокая венозная магистраль- начин.из концевой дуги и из венозной сети копыта 2 плантарными пальцевыми венами- в. Digitalis plantares medialis et lateralis. Они под путовым суставом обр.дистальн.глубокую плантарную дугу. Из дуги берут начало 5 вен: 2 и 3 плантарные плюсневые вены