5857

Специальные основные системы метода сил

Реферат

Архитектура, проектирование и строительство

Специальные основные системы метода сил 1. Статически неопределимые фермы Фермы, применяемые в строительстве, строго говоря, всегда статически неопределимы в силу жесткости узлов. Мы будем понимать под статически неопределимой фермой ее расчетную сх...

Русский

2012-12-23

127 KB

15 чел.

Специальные основные системы метода сил

1. Статически неопределимые фермы

Фермы, применяемые в строительстве, строго говоря, всегда статически неопределимы в силу жесткости узлов. Мы будем понимать под статически неопределимой фермой ее расчетную схему с учетом ранее введенных допущений об идеальном шарнирном соединении стержней и узловой нагрузке.

Различают внешне и внутренне статически неопределимые фермы (рис. 1а и  2 б).

Степень статической неопределимости в любом случае находят по формуле:

W = C – 2Y,

где С – количество стержней в ферме, включая и опорные;

Y – количество узлов в ферме.

W = 17 –  28 = 1

В случае внешне статически неопределимой фермы основная система получается путем замены «лишних» связей в виде опорных реакций неизвестными усилиями (рис. 1 б). Как правило, фермы внешне статически неопределимы бывают один или два раза, поэтому выбор основной системы не затруднителен. 

W = 19 – 29 = 1

При выбор основной системы для внутренне статически неопределимой фермы необходимо строго проверить ее геометриче-

скую неизменяемость. Это связано с тем, что в качестве неизвестных усилий в основной системе принимаются усилия в стержнях фермы (рис. 2 б), а такая замена может привести к геометрической неизменяемости.

Расчет статически неопределимых ферм принято вести в табличной форме (рассмотрим на практических занятиях). Порядок расчета совпадает с порядком расчета рам, и вообще он един для всех статически неопределимых стержневых систем. В случае ферм надо помнить, что коэффициенты канонических уравнений ik, и iP определяются только через нормальные усилия:

Окончательные нормальные усилии найдем по формуле:

.

Деформационная проверка, устанавливающая верность решения:

.

2. Статически неопределимые арки

Аркой называется распорная система, имеющая вид кривого бруса.

Арки могут быть трехшарнирными – статически определимые (рассмотрели ранее); двухшарнирные – один раз статически неопределимы (рис. 3 а); одношарнирными – дважды статически неопределимы (рис. 4 а) и бесшарнирные (рис. 5 а). К бесшарнирной арке можно свести задачу о своде – пространственной распорной системе (рис. 5 б). Для перехода от свода к арке следует вырезать из свода (мысленно, естественно) полосу двумя параллельными плоскостями, отстоящими друг от друга на расстоянии единица.

В мостовых конструкциях чаще применяются двух- и бесшарнирные арки.

Нам известно уже, что выбор основной системы метода сил предопределяет трудоемкость решения. Уделим основное внимание выбору основных систем для различного типа арок.

1. Двухшарнирная арка (рис. 3 а). В двухшарнирной арке основных систем может быть только две, причем они равнозначны. Первая может быть получена путем замены одной из горизонтальных опор неизвестным усилием (рис. 3 б) или путем врезания замкового шарнира – сведением, таким образом, к трехшарнирной арке (рис. 3 в).

Каноническое уравнение 11x1 + 1P = 0 в первом случае отражает отсутствие горизонтального перемещения правой опоры, а во втором – отсутствие взаимного угла поворота криволинейных стержней, сходящихся в замковом шарнире.

2. Одношарнирная арка (рис. 4 а). Воспользуемся симметрией арки и проведем сечение по замковому шарниру (рис. 4 б). Система канонических уравнений распадется на два независимых уравнения, так как х1 – симметричное неизвестное, а х2 – кососимметричное:

.

Бесшарнирная арка (рис. 5 а) является трижды статически неопределимой. Арка симметрична, поэтому основную систему метода сил следует также принять симметричной, проведя замкнутое сечение по оси симметрии – имеем право, так как криволинейные стержни образуют с основанием замкнутый контур (рис. 5.б). Система распадется на две части, что, как известно, облегчает решение.

Коэффициенты канонических уравнений метода сил найдем с учетом всех внутренних усилий:

,

.

Обратим внимание на то, что неизвестные усилия х1 и х2 будут симметричными, а х2 – кососимметрично. Тогда система канонических уравнений распадется на две:

,

.

Хотя система канонических уравнений распалась на две части, что, конечно, облегчит вычисления, однако полного эффекта за счет симметрии мы не достигли.

Проблема: нельзя ли выбрать такую основную систему, чтобы прийти к трем независимым каноническим уравнениям метода сил. Да, если бы коэффициенты 13 = 31 = 0. Тогда система канонических уравнений приняла бы следующий вид:

,

,

.

Так как от  возникают только изгибающие моменты, то требуется добиться выполнения следующего условия:

.

Запишем аналитические выражения для усилий и :

,

.

Оказывается, что обе эпюры симметричны.

Проблема: в каком случае произведение двух симметричных эпюр будет равно нулю? Очевидно, что только в том случае, когда одна эпюра однозначна, а другая – двухзначна. При ранее принятой основной системе достичь подобного невозможно. Следовательно, надо попытаться выбрать другую основную систему, сохранив преимущество первой в виде симметрии и удовлетворив сформулированному решению двузначности одной из эпюр. Заранее знаем, что двузначной может быть только эпюра от , что видно из записанных выше аналитических выражений внутренних усилий.

Трудно сказать, кому первому пришла идея о следующей основной системе для бесшарнирной арки (рис. 6).

Докажем, что новая основная система правомочна. Ее правильность следует из следующих рассуждений:

– канонические уравнения обеспечивают отсутствие взаимных смещений точки приложения неизвестных усилий хi, но введенные консоли бесконечно жесткие, т.е. недеформируемые и тогда отсутствуют взаимные перемещения во всех точках, принадлежащих им, а значит и точек присоединения жестких консолей и криволинейных стержней. Другими словами, криволинейные стержни в месте сквозного сечения не получат взаимных смещений, тем самым обеспечена эквивалентность новой основной системы и соответствующей ей системе канонических уравнений заданной арке.

Построим схематично эпюры изгибающих моментов от и  (рис. 7 а и б).

  

  

Установим аналитические выражения для изгибающих моментов от  и :

Найдем аналитическое выражение коэффициента 13 и приравняем его нулю:

.

Примем, что EI = const, тогда

.Тогда длина бесконечно жестких консолей будет равна:

,

где L – длина дуги арки.


 

А также другие работы, которые могут Вас заинтересовать

6003. Расчет количества технических обслуживаний подвижного состава за год 88.85 KB
  Введение На современном этапе перехода к рыночным отношениям возникает потребность ускоренного развития производственной инфраструктуры, в том числе транспорта, обеспечивающей надежное обращение материальных ресурсов. Ежегодно в нашей стране образуе...
6004. Автоматизация учета приема оплаты с юридических лиц за коммунальные услуги 1.18 MB
  В настоящее время приемом оплаты за коммунальные услуги занимаются предприятия, аналогичные МУП ГЕРЦ г.Махачкалы. Все эти предприятия широко распространены. Сказать, что все предприятия имеют сходную структуру, полномочия и обязанности, з...
6005. Аграрное право Российской Федерации. Курс лекций 552.5 KB
  Тема № 1. Источники аграрного права Вопрос № 1. Понятия и виды источников аграрного права В современной теории права выражение источник права часто используется в двух значениях: материальном и формальном. В материальном значении под источником пр...
6006. Неметаллические материалы. Материаловедение 939 KB
  В пособии подробно описаны основные характеристики неметаллических материалов, с точки зрения возможности их использования в качестве конструкционных. Приведены контрольные вопросы по разделу Неметаллические материалы и варианты тестовых заданий Вве...
6007. Базовые концепции логистики 685.5 KB
  Рассматриваются базовые концепции логистики: точно в срок, планирование потребности/ресурсов, стройного производства, реагирование на спрос, а также микрологистические системы, основанные на данных концепциях. Теоретические положения иллюстрируются ...
6008. Методика определения погрешностей приборов 63.5 KB
  Методика определения погрешностей приборов Погрешность срабатывания определяют путем математической обработки результатов проведенного эксперимента (рис. 1). На измерительный стержень 2 прибора 3, прикрепленный к кронштейну 5 стойки 6, воздействует ...
6009. Испытания и поверка приборов активного контроля в динамическом режиме 63 KB
  Испытания и поверка приборов активного контроля в динамическом режиме Эксплуатация приборов активного контроля и применение нормативно-технической документации, регламентирующей их точностные показатели, привели к необходимости создания специальных ...
6010. Активный контроль деталей с прерывистыми поверхностями 68 KB
  Активный контроль деталей с прерывистыми поверхностями К деталям с прерывистой поверхностью относятся такие, у которых на гладкой контролируемой поверхности имеются разрывы в виде отверстий, пазов, срезов и других углублений. При перемещении такой д...
6011. Электроконтактные преобразователи 72 KB
  Электроконтактные преобразователи По назначению преобразователи разделяются на предельные, предназначенные для контроля размера детали, и амплитудные, предназначенные для контроля отклонений от правильной геометрической формы. В предельных пре...