5858

Рациональные основные системы метода сил для рам

Реферат

Архитектура, проектирование и строительство

Рациональные основные системы метода сил для рам. Решение статически неопределимых рам методом сил вручную оказывается довольно громоздким, с обилием вычислений и проверок. При этом выбор основной системы предопределяет объем вычислений и характер р...

Русский

2012-12-23

103.5 KB

27 чел.

Рациональные основные системы метода сил для рам.

Решение статически неопределимых рам методом сил вручную оказывается довольно громоздким, с обилием вычислений и проверок. При этом выбор основной системы предопределяет объем вычислений и характер решения. Сформулируем основные требования к выбору основной системы метода сил для рам, выполнение которых упростит решение.

Основная система должна быть такой, чтобы:

  1.  Обеспечивалась простота построения эпюр Mi и MP.
  2.  Объем вычислений был минимален при определении коэффициентов ij и  iP.
  3.  Часть или все побочные коэффициенты канонических уравнений равнялись нулю: ij = 0 (ij), что существенно упростит решение системы канонических уравнений.

Основная система метода сил, удовлетворяющая всем или части перечисленных требований (при невозможности другого), называется рациональной основной системой.

Рассмотрим некоторые приемы, позволяющие упростить выбор рациональной основной системе метода сил.

2.1. Способ замкнутых сечений

Рассмотри случай, когда рама является многопролетной с опорами в виде защемления (рис. 2.1).

Степень статической неопределимости будет:

W = 3K – Ш = 3∙3 – 0 = 9, или

W = 2∙Ш + Со – 3Д = 12 – 3 = 9

Если принять за основную систему статически определимую раму, полученную путем замены «лишних» связей в виде опорных реакций (рис. 2.2 а), то все коэффициенты ij ≠ 0 и придется решать полную систему алгебраических уравнений.

Иная картина будет, если применить способ замкнутых сечений, в основе которого лежит рассечение системы на отдельные самостоятельные части (рис. 2.2 б). В этом случае «лишними» усилиями являются внутренние усилия и часть коэффициентов dij = 0, а именно:

17 = 71 = 0; 18 = 81 = 0; 19 = 91 = 0;

27 = 72 =0; 28 = 82 = 0; 29 = 92 = 0;

37 = 73 = 0; 38 = 83 = 0; 39 = 93 = 0.

Естественно, при выборе такой основной системы упроститься построение эпюр,  уменьшится объем вычислений и  легче будет решить систему канонических уравнений.

Этот же прием, примененный к симметричным статически неопределимым рамам, жестко связанным с основанием (рис. 2.3 а), еще более упрощает решение. Воспользуемся имеющейся симметрией и основную систему примем тоже симметричной, проведя замкнутое сечение по оси симметрии (рис. 2.3 б).

Обратим внимание на то, что часть внутренних усилий, являющиеся «лишними» неизвестными, в сечении будут симметричны – усилия х1 и  х3 , а х2 – кососимметрично. Понятно, что от симметричного загружения эпюры изгибающих моментов симметричны, а от кососимметричного , соответственно, кососимметричны.

Итак,  и  будут симметричны, а  – кососимметрична. Коэффициенты канонических уравнений, получаемые путем перемножения симметричной эпюры на кососимметричную равны нулю. В нашем случае d12 = d21 =0, d23 = d32 = 0. Тогда система канонических уравнений распадется на две независимые – в одну будут входить только симметричные неизвестные, а в другую – только кососимметричные:

Можно сделать следующее обобщение: для симметричных статически неопределимых рам следует принять симметричную основную систему.

2. Способ группировки неизвестных

Если статически неопределимая рама симметрична, но не все опоры являются жесткими (рис. 2.4 а), то применить для выбора основной системы способ замкнутых сечений невозможно. В любом случае в качестве неизвестных усилий войдут опорные реакции (рис. 2.4.б). Основную систему можно выбрать симметричной, но только в отношении геометрии. Неизвестные усилия не будут симметричны и, конечно, все коэффициенты канонических уравнений dij будут отличны от нуля. Проблема: а нельзя ли представить неизвестные усилия каким-то образом симметричными и кососимметричными в нашем конкретном случае? Оказывается можно однозначно решить данную задачу. Действительно, перейдем к другим неизвестным усилиям путем разложения неизвестных хi на симметричные и кососимметричные (рис. 2.5). Правомочность разложения следует из однозначности определения новых неизвестных zi из решения следующих систем алгебраических уравнений:

,

.

Из новых неизвестных zi осесимметричны z1 и z3, а кососимметричны z2 и z4. Так как

, то

.

Система канонических уравнений распадется на две – с симметричными и кососимметричными неизвестными:

,

.

Таким образом, группировка неизвестных не только сокращает объем вычислений, но и упрощает систему канонических уравнений – она распадается на две, что упрощает решение.

3. Способ разложения внешней нагрузки на симметричную и кососимметричную

Способ группировки особенно эффективен при одновременном разложении по тому же принципу внешней нагрузки на симметричную и кососимметричную.

Разложение нагрузки на симметричную и кососимметричную упростит построение эпюр и вычисление свободных членов iP. Принцип разложения внешней нагрузки легко понять из рис. 2.5.

К сожалению, способы, упрощающие вычисление коэффициентов и решение канонических уравнений метода сил относятся в большей мере к симметричным рамам. В отношении несимметричных рам можно посоветовать следующее – стремитесь выбрать, а для этого надо иметь не одну, основную систему, в которой общее количество участков в эпюрах от единичных неизвестных было минимальным, что упростит вычисления.


 

А также другие работы, которые могут Вас заинтересовать

17659. Зв’язок між ступенем когерентності і параметром видності 44.88 KB
  Звязок між ступенем когерентності і параметром видності. Поняття когерентності повязане зі здатністю хвиль інтерферувати. Розглянемо ступінь когерентності на прикладі часової когерентності. Нехай в т. Р одночасно в момент часу t приходять 2 хвилі однакової частоти в...
17660. Зірковий інтерферометр Майкельсона 37.3 KB
  1 Зірковий інтерферометр Майкельсона Запропонував Фізо. Для визначення кутових розмірів обєкту зірки. Розміщені навпроти щілин дзеркала нерухомі а дзеркала можна одночасно розсувати. Очевидно що видність смуг залежить від ступеня когерентно
17661. Інтерференція в тонких шарах інтерференційні дзеркала та просвітлююча оптика 28.84 KB
  Інтерференція в тонких шарах: інтерференційні дзеркала та просвітлююча оптика. При освітленні тонкої плівки відбувається накладання хвиль від джерела S які відбилися від передньої і задньої поверхонь плівки. Якщо світло біле то інтерференції смуги будуть кольоро...
17662. Інтерференція поляризованих променів 63.33 KB
  Інтерференція поляризованих променів. Як відомо для інтерференції необхідною умовою є когерентність променів. А також із відомої формули для інтерференційного члена що враховує взаємодію пучків: видно що результат інтерференції лінійно поляризованих променів зале
17663. Інформаційні властивості оптичного зображення 21.59 KB
  Інформаційні властивості оптичного зображення. Потік інформації біт/с виражається формулою Шенона де I кількість інформації у бітах; смуга частот у якій передається інформація; Pc характеристика сигналу потужність в даному разі; Pm характеристика смуги мінімаль
17664. Квантова дисперсійна формула (порівняння з класичною) 24.1 KB
  Квантова дисперсійна формула порівняння з класичною Величини Nkкількості атомів kвласні частоти kкоефіцієнти згасання у класичній теорії дисперсії розглядаються як емпіричні сталі тобто ці величини визначаються з самої кривої дисперсії та положенням спектральн
17665. Класична теорія дисперсії 56.13 KB
  Класична теорія дисперсії. Припустимо що поле представляється плоскою хвилею Амплітуда поля змінюється від точки до точки отже електрон піддається дії поля різної амплітуди. Однак ми знехтуємо цією обставиною вважаючищо амплітуда коливань електрона мала в порі
17666. Комбінаційне розсіяння світла 30.54 KB
  Комбінаційне розсіяння світла. При спектральных исследованиях рассеяния света Мандельштам и Ландсберг обнаружили что каждая спектральная линия падающего света сопровождается появлением системы линий измененной частоты называемых сателлитами .Изменение длины волн
17667. Кристалооптика: трійка векторів 26.87 KB
  Кристалооптика: трійка векторів Кристалооптика наука що вивчає проходження світла крізь кристали та інші анізотропні середовища. Більшість кристалів є анізотропними тобто їх властивості у різних напрямках не однакові. Пояснимо це явище. Фундаментальні рівняння Мак...