58599

Электропитание системного блока ПК

Доклад

Педагогика и дидактика

В некоторой степени блок питания также: выполняет функции стабилизации и защиты от незначительных помех питающего напряжения; будучи снабжён вентилятором участвует в охлаждении компонентов персонального компьютера Компьютерный блок питания для настольного компьютера стандарта PC персонального или игрового...

Русский

2014-04-27

153 KB

3 чел.

Электропитание системного блока ПК

Компьютерный блок питания (англ. power supply unit, PSU — блок питания, БП) — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электрической энергией постоянного тока, путём преобразования сетевого напряжения до требуемых значений.

В некоторой степени блок питания также:

• выполняет функции стабилизации и защиты от незначительных помех питающего напряжения;

• будучи снабжён вентилятором, участвует в охлаждении компонентов персонального компьютера

Компьютерный блок питания для настольного компьютера стандарта PC, персонального или игрового, согласно спецификации ATX 2.x, должен обеспечивать выходные напряжения ±5, ±12, +3,3 Вольт, а также +5 Вольт дежурного режима (англ. standby).

Основными силовыми цепями являются напряжения +3,3, +5 и +12 В. Причем, чем выше напряжение, тем большая мощность передается по данным цепям. Отрицательные напряжения питания (−5 и −12 В) допускают небольшие токи и в современных материнских платах в настоящее время практически не используются:

1) Напряжение −5 В использовался только интерфейсом ISA материнских плат. Для обеспечения −5 В постоянного тока в ATX и ATX12V версии до 1.2 использовался контакт 20 и белый провод. Это напряжение < а также контакт и провод> не является обязательным уже в версии 1.2 и полностью отсутствует в версиях 1.3 и старше.

2) Напряжение −12 В необходим лишь для полной реализации стандарта последовательного интерфейса RS-232, поэтому также часто отсутствует.

Напряжения ±5, ±12, +3,3, +5 В дежурного режима используются материнской платой. Для жёстких дисков, оптических приводов, вентиляторов используются только напряжения +5 и +12 В.

Современные электронные компоненты используют напряжение питания не выше +5 Вольт. Наиболее мощные потребители энергии, такие как видеокарта, центральный процессор, северный мост подключаются через размещенные на материнской плате или на видеокарте вторичные преобразователи с питанием от цепей как +5 В так и +12 В.

Напряжение +12 В используется для питания наиболее мощных потребителей. Разделение питающих напряжений на 12 и 5 В целесообразно как для снижения токов по печатным проводникам плат, так и для снижения потерь энергии на выходных выпрямительных диодах блока питания.

Напряжение +3,3 В в блоке питания формируется из напряжения +5 В, а потому существует ограничение суммарной потребляемой мощности по ±5 и +3,3 В.

В большинстве случаев используется импульсный блок питания, выполненный по полумостовой (двухтактной) схеме. Блоки питания с накапливающими энергию трансформаторами (обратноходовая схема) естественно ограничены по мощности габаритами трансформатора и потому применяется значительно реже.

Функциональная схема блока питания ПК

Широко распространённая схема импульсного источника питания состоит из следующих частей:

Входные цепи

1) Входной фильтр, предотвращающий распространение импульсных помех в питающую сеть[1]. Также, входной фильтр уменьшает бросок тока заряда электролитических конденсаторов при включении БП в сеть (это может привести к повреждению входного выпрямительного моста).

2) В качественных моделях — пассивный (в дешёвых) либо активный корректор мощности (PFC) снижающий нагрузку на питающую сеть.

3) Входной выпрямительный мост, преобразующий переменное напряжение в постоянное пульсирующее.

4) Конденсаторный фильтр, сглаживающий пульсации выпрямленного напряжения.

5) Отдельный маломощный блок питания, выдающий +5 В дежурного режима мат. платы и +12 В для питания микросхемы преобразователя самого ИБП. Обычно он выполнен в виде обратноходового преобразователя на дискретных элементах (либо с групповой стабилизацией вых. напряжений через оптрон плюс регулируемый стабилитрон TL431 в цепи ОС, либо линейными стабилизаторами 7805/7812 на выходе) или же (в топовых моделях) на микросхеме типа TOPSwitch.

Преобразователь

1) Полумостовой преобразователь на двух биполярных транзисторах

2) Схема управления преобразователем и защиты компьютера от превышения/снижения питающих напряжений, обычно на специализированной микросхеме (TL494, UC3844, KA5800, SG6105 и пр.).

3) Импульсный высокочастотный трансформатор, который служит для формирования необходимых номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга). Пиковые напряжения на выходе высокочастотного трансформатора пропорциональны входному питающему напряжению и значительно превышают требуемые выходные.

4) Цепи обратной связи, которая поддерживает стабильное напряжение на выходе блока питания.

Формирователь напряжения PG (Power Good, «напряжение в норме»), обычно на отдельном ОУ.

Выходные цепи

1) Выходные выпрямители. Положительные и отрицательные напряжения (5 и 12 В) используют одни и те же выходные обмотки трансформатора, с разным направлением включения диодов выпрямителя. Для снижения потерь, при большом потребляемом токе, в качестве выпрямителей используют диоды Шоттки, обладающие малым прямым падением напряжения.

2) Дроссель выходной групповой стабилизации. Дроссель сглаживает импульсы, накапливая энергию между импульсами с выходных выпрямителей. Вторая его функция — перераспределение энергии между цепями выходных напряжений. Так, если по какому-либо каналу увеличится потребляемый ток, что снизит напряжение в этой цепи, дроссель групповой стабилизации как трансформатор снизит напряжение по другим цепям. Цепь обратной связи обнаружит снижение выходных цепей, увеличит общую подачу энергии, и восстановит требуемые значения напряжений.

3) Выходные фильтрующие конденсаторы. Выходные конденсаторы, вместе с дросселем групповой стабилизации интегрирует импульсы, тем самым получая необходимые значения напряжений, которые значительно ниже напряжений с выхода трансформатора

4) Один (на одну линию) или несколько (на несколько линий, обычно +5 и +3,3) нагрузочных резисторов 10-25 Ом, для обеспечения безопасной работы на холостом ходу.

Достоинства такого блока питания:

1) Простая и проверенная временем схемотехника с удовлетворительным качеством стабилизации выходных напряжений.

2) Высокий КПД (65-70 %). Основные потери приходятся на переходные процессы, которые длятся значительно меньшее время, чем устойчивое состояние.

3) Малые габариты и масса, обусловленные как меньшим выделением тепла на регулирующем элементе, так и меньшими габаритами трансформатора, благодаря тому, что последний работает на более высокой частоте.

4) Меньшая металлоёмкость, благодаря чему мощные импульсные источники питания стоят дешевле трансформаторных, несмотря на бо́льшую сложность

5) Возможность включения в сети широкого диапазона напряжений и частот, или даже постоянного тока. Благодаря этому возможна унификация техники, производимой для различных стран мира, а значит и её удешевление при массовом производстве.

Недостатки полумостового блока питания на биполярных транзисторах:

1) При построении схем силовой электроники использование биполярных транзисторов в качестве ключевых элементов снижает общий КПД устройства[2]. Управление биполярными транзисторами требует значительных затрат энергии.

Всё больше компьютерных блоков питания строится на более дорогих мощных MOSFET-транзисторах. Схемотехника таких компьютерных блоков питания реализована как в виде полумостовых схем, так и обратноходовых преобразователей. Для удовлетворения массогабаритных требований к компьютерному блоку питания, в обратноходовых преобразователях используются значительно более высокие частоты преобразования (100-150 кГц).

2) Большое количество намоточных изделий, индивидуально разрабатываемых для каждого типа блоков питания. Такие изделия снижают технологичность изготовления БП.

3) Во многих случаях недостаточная стабилизация выходного напряжения по каналам. Дроссель групповой стабилизации не позволяет с высокой точностью обеспечивать значения напряжений во всех каналах. Более дорогие, а также мощные современные блоки питания формируют напряжения ±5 и 3,3 В с помощью вторичных преобразователей из канала 12 В.

Также на БП размещаются:

• 4-контактный разъём ATX12V (именуемый также P4 power connector) — вспомогательный разъём для питания процессора: вилка типа MOLEX 39-01-2040 или эквивалентная с контактами Molex 44476-1112 (HCS) или эквивалентными; розетка ответной части на материнской плате типа Molex 39-29-9042 или эквивалентная. Провод толщиной 18 AWG. В случае построения высокопотребляемой системы (свыше 700 Вт), расширяется до EPS12V (англ. Entry-Level Power Supply Specification) — 8-контактного вспомогательного разъёма для питания материнской платы и процессора 12 В,

• 4-контактный разъём для Floppy-дисковода с контактами AMP 171822-4 или эквивалентными. Провод толщиной 20 AWG.

• 4-контактный разъём для питания периферийного устройства типа жёсткого диска или оптического накопителя с интерфейсом P-ATA: вилка типа MOLEХ 8981-04P или эквивалентная с контактами AMP 61314-1 или эквивалентными. Провод толщиной 18 AWG.

• 5-контактные разъёмы MOLEX 88751 для подключения питания SATA-устройств состоит из корпуса типа MOLEX 675820000 или эквивалентного с контактами Molex 675810000 или эквивалентными[4].

• 6- либо 8-контактные разъёмы для питания PCI Express x16 видеокарт.

В конце 2000-х годов для монтажа кабелей стал применятся модульный принцип, когда из корпуса БП выходит лишь основной 24(20+4)-контактный кабель и 4+4-контактный кабель питания EPS12V для материнской платы ATX12V/EPS12V, прочие же кабеля для периферии выполняются съёмными, на разъёмах.[5].

КПД «обычного» блока питания (описанного выше) имеет величину порядка 65–70 %. Для получения бо́льших величин применяются специальные схемотехнические решения.

Сертификация 80 PLUS (как часть принятого в 2007 году стандарта энергосбережения Energy Star 4.0) подразумевает сертификацию компьютерных блоков питания на соответствие определённым нормативам по эффективности энергопотребления: КПД БП должен быть не менее 80 % при 20, 50 и 100 % нагрузке относительно номинальной мощности БП, а коэффициент мощности должен быть 0,9 или выше при 100 % нагрузке.

И хотя первоначально сертификация по стандарту 80 PLUS проводилась только для использования в сетях с напряжением 115 В (которые распространены, к примеру, в США, но не на территории России), и поэтому КПД блоков питания сертифицированных по стандарту 80 PLUS может быть ниже 80 % в сетях 220/230 В, однако последующие уровни спецификации, начиная с 80 PLUS Bronze, сертифицировались и для применения в сетях 230 В. Тем не менее, сертифицированные по стандарту 80 PLUS БП могут иметь КПД ниже 80 % при нагрузках менее 20 %, что достаточно важно, так как большинство ПК редко работают в режиме максимальной потребляемой мощности, а гораздо чаще простаивают. Также, КПД может быть ниже заявленного в условиях эксплуатации БП при температуре, отличной от комнатной (при которой проводится сертификация).

Система защиты от КЗ

Для питания собираемых конструкций радиолюбители нередко используют простейшие блоки, состоящие из понижающего трансформатора и выпрямителя с конденсатором фильтра. И, конечно, в таких блоках нет никакой защиты от короткого замыкания (КЗ) в нагрузке, хотя оно подчас приводит к выходу из строя выпрямителя и даже трансформатора.

Применять в таких блоках питания в качестве элемента защиты плавкий предохранитель не всегда удобно, да и, кроме того, быстродействие у него невысокое.

Один из вариантов решения проблемы защиты от КЗ - включение последовательно с нагрузкой полевого транзистора средней мощности с встроенным каналом. Дело в том, что на вольт-амперной характеристике такого транзистора есть участок, на котором ток стока не зависит от напряжения между стоком и истоком. Поэтому на этом участке транзистор работает как стабилизатор (ограничитель) тока.

Рис.1

Схема подключения транзистора к блоку питания приведена на рис.1, а вольт-амперные характеристики транзистора для различных сопротивлений резистора R1 - на рис.2. Работает защита так. Если сопротивление резистора равно нулю (т. е. исток соединен с затвором), а нагрузка потребляет ток около 0,25 А, то падение напряжения на полевом транзисторе не превышает 1,5 В, и практически на нагрузке будет все выпрямленное напряжение. При появлении же в цепи нагрузки КЗ ток через выпрямитель резко возрастает и при отсутствии транзистора может достичь нескольких ампер. Транзистор ограничивает ток короткого замыкания на уровне 0,45...0,5 А независимо от падения напряжения на нем. В этом случае выходное напряжение станет равным нулю, а все напряжение упадет на полевом транзисторе. Таким образом, в случае КЗ мощность, потребляемая от источника питания, увеличится в данном примере не более чем вдвое, что в большинстве случаев вполне допустимо и не отразится на "здоровье" деталей блока питания.

Рис. 2

Уменьшить ток короткого замыкания можно увеличением сопротивления резистора R1. Нужно выбирать такой резистор, чтобы ток короткого замыкания был примерно вдвое больше максимального тока нагрузки.

Подобный способ защиты особенно удобен для блоков питания со сглаживающим RC-фильтром - тогда полевой транзистор включают вместо резистора фильтра (такой пример показан на рис. 3).

Поскольку во время КЗ на полевом транзисторе падает почти все выпрямленное напряжение, его можно использовать для световой или звуковой сигнализации. Вот, к примеру, схема включения световой сигнализации - рис.7. Когда с нагрузкой все в порядке, горит светодиод HL2 зеленого цвета. При этом падения напряжения на транзисторе недостаточно для зажигания светодиода HL1. Но стоит появиться КЗ в нагрузке, как светодиод HL2 гаснет, но зато вспыхивает HL1 красного свечения.

Резистор R2 выбирают в зависимости от нужного ограничения тока КЗ по высказанным выше рекомендациям.

Схема подключения звукового сигнализатора приведена на рис. 4. Его можно подключать либо между стоком и истоком транзистора, либо между стоком и затвором, как светодиод HL1.

При появлении на сигнализаторе достаточного напряжения вступает в действие генератор ЗЧ, выполненный на однопереходном транзисторе VT2, и в головном телефоне BF1 раздается звук.

Однопереходный транзистор может быть КТ117А- КТ117Г, телефон - низкоомный (можно заменить динамической головкой небольшой мощности).

Остается добавить, что для слаботочных нагрузок в блок питания можно ввести ограничитель тока КЗ на полевом транзисторе КП302В. При выборе транзистора для других блоков следует учитывать его допустимую мощность и напряжение сток - исток.

Защита мощных блоков питания от перегрева

Довольно часто мощные линейные блоки питания (БП) при длительной работе или при работе с токами нагрузки, близкими к максимальным, перегреваются. Это может привести к отказу элементов схемы стабилизатора, перенапряжению и выходу из строя питаемых от этих БП достаточно дорогостоящих устройств. Этот недостаток имеют многие БП, изготовленные как радиолюбителями, так и заводского производства, как отечественные, так и импортные. Причин перегрева может быть множество: недостаточная площадь радиаторов охлаждения, повышенное напряжение в сети, высокая температура в месте установки, экономия на емкости сглаживающих конденсаторов, запыленность радиаторов, плохие условия для конвекции и т.п. В основе этих причин лежат неправильный расчет БП, недостаточный учет реальных условий эксплуатации при расчете теплового режима [1] или сознательное ухудшение параметров БП относительно заявленных с целью уменьшения себестоимости и габаритов. Такие БП автор рекомендует доработать простой системой защиты от перегрева, состоящей из вентилятора обдува, включаемого при температуре 50-60 град. и устройства защиты, отключающего нагрузку при нагреве радиатора до температуры 70-80 град. Проще всего реализовать такую систему на биметаллических термореле, срабатывающих на замыкание [2]. Но такие реле в настоящее время дефицитны.

Зато в последние годы в продаже появилось множество типов импортных термореле (термостатов), срабатывающих на размыкание и предназначенных для применения в бытовой технике (нагревателях, фенах и т.п.).

Схема защиты БП от перегрева на таких элементах показана на рис.1. При нагреве радиатора БП до 50 град. разомкнутся контакты термостата SF1, откроется транзисторVT1 и включится вентилятор М1. Через некоторое время, когда температура радиатора снизится, контакты термостата SF1 замкнутся и вентилятор выключится. Если температура радиатора продолжает повышаться (при неисправности вентилятора или по другим причинам), то при нагреве радиатора до 70 град. разомкнутся контакты термостата SF2, откроется транзистор VT2, сработает реле К1 и своими контактами К1.1 отключит от выпрямителя стабилизатор и нагрузку. При этом загорится красный светодиод HL1и включится зуммер HA1. Зуммер можно отключить тумблером SA1. Резисторы R1 и R4 обеспечивают работу транзисторов в режиме насыщения.

Резисторами R2, R3, R5, R6 устанавливаются рабочие токи соответствующих элементов. Если требуется защитить от перегрева трансформатор БП (например, при межвитковом замыкании), следует включить последовательно с термостатом SF2 термостат с такой же температурой срабатывания, имеющий тепловой контакт с обмоткой трансформатора.

Для обдува радиатора можно применить вентиляторы охлаждения блока питания или процессора компьютеров IBM. Термостаты могут быть типов В-1002А, В-1009N, ТК20, Т24, KSD301 и т.п. Они должны быть установлены на радиаторе в непосредственной близости от наиболее тепловыделяющих элементов БП. Реле К1 может быть любого типа, устойчиво срабатывающее от минимального напряжения выпрямителя и способное коммутировать максимальный ток БП (например, автомобильное 90.3747-01). Транзисторы могут быть любыми, способными коммутировать рабочий ток вентилятора М1 и реле К1. Светодиод HL1, зуммер HA1 и тумблер SA1 также могут быть любого типа. Если имеется термостат с большим рабочим током (например, KSD301, 250 В, 10 А), то можно обойтись без реле К1, включив термостат вместо контактов К1.1. В этом случае элементы сигнализации R5, HL1, R6, SA1, HA1 включаются параллельно контактам термостата. Так как рабочим для термостата является переменный ток, то можно предположить (по аналогии с реле, у которых коммутируемый ток при коммутации постоянного тока низкого напряжения гораздо выше, чем при коммутации переменного тока высокого напряжения при одинаковом количестве срабатываний), что термостат при напряжении 20-40 В может достаточно надежно коммутировать 20-30 А постоянного тока. Можно также включить два термостата (с одинаковой температурой срабатывания) параллельно.

Настройка схемы сводится к установке резисторами R2, R3, R5, R6 номинальных рабочих токов (напряжений) соответствующих элементов при питании цепочек от выпрямителя БП и установке резисторами R1, R4 режима насыщения транзисторов. Предварительную проверку срабатывания термостатов можно выполнить с применением фена и цифрового термометра. Для проверки работоспособности системы защиты следует подключить к БП нагрузку, обеспечивающую максимальный ток. После нагрева радиатора до температуры срабатывания термостата SF1 должен включиться вентилятор. После этого вентилятор следует отключить (отпаять) и дождаться срабатывания сигнализации (отключения нагрузки). Для ускорения процесса БП можно чем-либо накрыть и использовать для нагрева радиатора фен. Температуру радиатора желательно контролировать цифровым термометром.


 

А также другие работы, которые могут Вас заинтересовать

24651. Методика аналізу якості продукції 33 KB
  Методика аналізу якості продукції. Показники якості продукції є одними з найважливіших показників діяльності підприємства. Якість продукції залежить від багатьох факторів таких як: техніка і технологія впровадження іновацій організація виробництва і праці організація роботи служби матеріально технічного постачання трудова дисципліна та ін. Якість продукції впливає на обсяг товарної і реаліз.
24652. Аналіз динаміки та структури основних фондів 35 KB
  Характеристику руху о з дають коефіцієнти оновлення і вибуття Коефіцієнт оновлення=вартість прибулих о з за звітний період розділити на первісну вартість о з на кінець звітного періоду Показує яку частку від наявності на кінець звітного періоду складають нові о з Коеф вибуття= вартість вибулих о з за звітний період розділити на первісну вартість о з на початок звітного періоду Показує яка частина о з з якими підприємство починало свою діяльність у звітному році вибула через зношеність та інші причини. Технічний стан о з характеризується: Коеф...
24653. Аналіз ефективності використання основних фондів 26.5 KB
  Аналіз ефективності використання основних фондів. Під раціональним та найповнішим використанням діяючих промисловиробничих основних засобів розуміють той максимальний економічний ефект який отримує суспільство за певний період у вигляді відповідного обсягу та якості продукції. Економічна ефективність використання основних засобів визначається відношенням економічного ефекту одержаного на підприємстві за відповідний період до витрат необхідних для створення основних засобів. Для характеристики ефективності використання основних засобів...
24654. Оцінка забезпеченості підприємства трудовими ресурсами 31.5 KB
  Аналізуючи питання забезпеченості робочою силою потрібно пам'ятати що в сучасних умовах внаслідок помітних скорочень обсягів виробництва підприємства більше стикаються не з проблемою недостачі а з наявністю зайвої робочої сили необхідністю скорочення робочих місць і водночас збереження кваліфікованих кадрів на майбутнє. Із питанням забезпечення робочою силою тісно пов'язане питання закріплення кадрів на підприємстві. При цьому вивчають загальні показники прийняття та звільнення робітників і службовців розраховують коефіцієнти обороту...
24655. Аналіз ефективності використання робочої сили 24.5 KB
  прийому = Чпр сер Ч Коеф вибуття = Чвир сер Ч Коеф заг обор = Чпр Чвир сер Ч Коеф пот кадрів = Ч виб за власним бажанням сер Ч.
24656. Аналіз продуктивності праці 29.5 KB
  Розрахунок продуктивності праці: ПП = V серЧ V обсяг виробництва продукції сер Ч середньооблікова чисельність персоналу для окремих цехів: ПП = Vнат сер Ц сер Ч Vнат обсяг в натуральних одиницях сер Ц середньооблікова ціна Оцінка впливу обсягу виробництва продукції дельта ППв дельта ППв = Vф сер Цпл сер Чпл Пл. сер Цпл сер Чпл Оцінка впливу середньооблікової чисельності робітників дельта ППч = Vф чер Цпл сер ЧФ Vф сер Цпл сер Чпл Оцінка впливу середньої оптової ціни дельта ППсер ц = Vф сер Цф сер Чф Vф сер Цпл...
24657. Аналіз ефективності використання матеріальних ресурсів 25.5 KB
  Аналіз використання матеріалів здійснюється за наступними узагальнюючими показниками: матеріаловіддача зняття продукції із гривні витрат на матеріали це відношення обсягу випущеної продукції до загальної суми матеріальних витрат; матеріалоємність сума матеріальних витрат на випуск однієї гривні продукції це відношення загальної суми матеріальних витрат на обсяг виготовленої продукції. У процесі аналізу можна використати також допоміжні показники рівня використання матеріальних ресурсів: коефіцієнт використання матеріалів рівень...
24658. Аналіз витрат на виробництво за елементами та статтями витрат 26.5 KB
  Аналіз витрат на виробництво за елементами та статтями витрат. Найбільш корисним для вивчення змін у структурі витрат на виробництво є аналіз собівартості за елементами витрат. Елементні витрати це однорідні за складом витрати підприємства. До них належать матеріальні витрати оплата праці відрахування на соціальні потреби амортизаційні відрахування інші грошові витрати.
24659. Аналіз витрат на одну гривню товарної продукції 25 KB
  Аналіз витрат на одну гривню товарної продукції.товарної продукції є основним показником який харзує рівень і динаміку витрат на підво які розробляють різновидну продукцію. товварної продукції є загальним показником рівня витрат він може бути розрахованим для будь якого підващо дуже важливо до порівняння аналізу між підвами їх оцінки конкурентно спроможності. товарної продукції харзує успішність роботи підвапо впровадженя нової технікипідвищення продукції праці раціонально викорастаних ресурсів.