588

Многопролетное одноэтажное здание каркасного типа

Курсовая

Архитектура, проектирование и строительство

В проекте разрабатываются архитектурные, конструктивные решения промышленного здания с учетом заданных габаритов, материалов, целевой направленности и основных нормативных требований.

Русский

2013-01-06

72.5 KB

62 чел.

САНКТ-ПЕТЕРБУРГСКИЙ

ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ИНЖЕНЕРНО СТРОИТЕЛЬНЫЙ ФАКУЛЬТЕТ

Кафедра гидротехнического строительства

Отделение речных воднотранспортных сооружений

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовому проекту

Архитектура промышленных

зданий и сооружений

      Выполнил студент группы 2012/3                                                Лёвина Е.Б.

      Руководитель, преподаватель                                                      Симоненко А.В.

Санкт – Петербург

2011


Содержание

Введение 3

1. Объемно-планировочное решение 4

2.Конструктивное решение 5

2.1.Конструктивная схема 5

2.2.Конструктивные элементы 5

2.2.1.Фундаменты 5

2.2.2.Колонны 6

2.2.3.Фермы 6

2.2.4. Подкрановые балки 7

2.2.5. Плиты покрытия и кровля 7

2.2.6. Ограждения 8

2.2.7. Полы 8

Список литературы 10


Введение

Курсовой проект выполнен в соответствие с выданным заданием и требованиями действующих СНиП.

Проектируемый объект – многопролетное одноэтажное здание каркасного типа.

Цель курсового проекта “Промышленное здание”: закрепление знаний, полученных при изучении теоретического курса “Архитектура ПГЗ", освоение методов архитектурного проектирования здания, предназначенного для временного пребывания людей , а так же приобретения первоначальных навыков инженерно-конструкторской деятельности и усвоение специфики проектирования общественных зданий.

В проекте разрабатываются архитектурные, конструктивные решения промышленного здания с учетом  заданных габаритов, материалов, целевой направленности и основных нормативных требований.


1. Объемно-планировочное решение

Проектируемое промышленное здание является одноэтажным многопролетным сооружением; прямоугольное в плане, с габаритными размерами 144х90 м. Всего запроектировано 4 пролета. В здании предусмотрен один деформационный шов.

Размеры пролетов и грузоподъемность кранов.

Таблица №1

Пролет

В осях

L,

длина пролета

Н,

Высота пролета

Q,

Грузоподъемность крана

-

м

м

т

А-Б

30

15.6

30

В-Г

18

12

10

Г-Д

18

12

10

Д-Е

18

12

20


2.Конструктивное решение

2.1.Конструктивная схема 

Конструктивная схема здания - каркасная. Здание запроектировано как типовая стоечно-балочная система, выполняемая из унифицированных элементов. Вертикальными несущими элементами являются железобетонные колонны, горизонтальными – металлические фермы, связи металлические. Ограждающие конструкции – сэндвич-панели.

 2.2.Конструктивные элементы

 2.2.1.Фундаменты 

Принятые столбчатые монолитные железобетонные фундаменты под железобетонные колонны промышленного здания состоят из подколонника и трехступенчатой плитной части. Высота фундамента 1,8 м.

При вскрытии основания целиковый грунт, непосредственно воспринимающий нагрузку, выравнивается и накрывается бетонной подготовкой толщиной 100 мм из бетона класса В5. На бетонную подготовку ложится подошва фундамента. Обрез фундамента располагается на отметке -0.15 м.

Фундаменты армируются типовыми арматурными сетками (горизонтальный элемент) и плоскими каркасами (вертикальный элемент). Сетки и плоские каркасы изготавливаются из арматуры периодического профиля на автоматических линиях с применением контактной точечной электросварки во всех местах пересечения стержней.

Применены следующие типоразмеры фундаментов: ФБ-61 и ФД-51

Таблица №2

Поз.

Размеры в плане, axbxh, м

Первая ступень плитной части

Вторая ступень

Третья ступень

А

4.2х2.7х0.3

3.6х2.1х0.3

3.0х2.1х0.3

Б,В

             4.8х3.0х0.3

3.6х2.4х0.3

2.7х1.8х0.3

Г,Д,Е

             4.2х2.7х0.3

3.6х2.1х0.3

3.0х2.1х0.3

Фундаменты под смежные колонны в температурных швах и в местах перепада высоты здания делаются общими независимо от числа колонн в узле.

Цоколь здания выполнен из кирпича. По всему периметру здания выполнена отмостка, предназначенная для защиты фундамента от дождевых и талых вод, проникающих в грунт близ стен здания.

В качестве фундаментных балок применены балки марки 3БФ60-5 серия 1.415.1-2.

 2.2.2.Колонны 

 Каркас состоит из поперечных рам, образованных защемленными в фундаментах колоннами и шарнирно опирающимися на колонны стропильными фермами.

По положению в здании колонны подразделяются на крайние и средние. К крайним колоннам с наружной стороны примыкают стеновые ограждения. Крайние колонны при этом подразделяются на основные, воспринимающие нагрузки от стен ,кранов и конструкций  покрытия, и фахверковые ,служащие только для крепления стен.

В проекте, в качестве основных, используются типовые железобетонные двух-ветвевые колонны ступенчатого очертания. Колонны подобраны с учетом пролетов, высоты здания и грузоподъемности кранов.

Продольную устойчивость каркаса обеспечивают связи: надкрановые V – образные в крайних шагах температурных отсеков и портальные подкрановые.

Таблица№3

Поз.

Высота колонны

Шаг колонны

Г/п крана

м

м

т

А

16,2

6

5

Б

16,2

6

5

В

12,6

6

50

Г

12,6

12

50

Д

12,6

12

50

Е

12,6

6

30

 

По контуру здания располагаются стальные фахверковые колонны, выполненные из сварных двутавров.

 2.2.3.Фермы

 Фермы металлические полигональные. Устанавливаются с шагом 6 метров. Стержни фермы соединяются в узлах на сварке с помощью фасонок и образованы из парных прокатных уголков расположенных с зазорами, определяемыми толщиной фасонки.

Для опирания ферм в пролетах между колоннами выполняют стальные подстропильные фермы с параллельными поясами.


Таблица№4

Поз.

Пролет фермы

м

А-Б

-

В-Г, Г-Д, Д-Е

18

2.2.4. Подкрановые балки

Применяем металлические подкрановые балки из сварных двутавров. Крепление подкрановой балки к консоли производятся на анкерных болтах, предварительно пропущенных сквозь опорный лист, предварительно приваренный к нижней закладной пластине, а к шейке колонны – путем приварки вертикального листа к закладным пластинам. Болтовые соединения после рихтовки завариваются.

Рельс на длину температурного отсека укладывается на упругой прокладке из прорезиненной ткани типа транспортных лент толщиной 8- 10 мм с двухсторонней резиновой обкладкой и закрепляется парными лапками на болтах. Стык рельсов над деформационным швом обжимается стальными накладками фигурного профиля.

Для предотвращения возможного тарана краном торцовой стены на торцовых балках устанавливаются стальные концевые упоры, страхующие здание в случае отказа автоматических тормозных устройств.

В проекте приняты подкрановые балки серии 1.426-1

Таблица№5

Поз.

Грузоподъемность

т

Е

5

В, Г, Д

50

А, Б

30

2.2.5. Плиты покрытия и кровля

В качестве плит покрытия используем железобетонные ребристые плиты, изготавливаемые длинной 6 м и шириной 3 м. Плиты снабжены продольными ребрами высотой 0.3 м и поперечными ребрами высотой до 0.15 м, расположенными через 1 м. При установке плиты привариваются не менее чем в трех точках к стропильным конструкциям. Швы между ними заполняются бетоном класса В15 на мелком заполнителе.

Применяем кровлю из рулонных материалов с битумной пропиткой, которую составляют:

- защитный слой гравия светлых тонов толщиной 25мм, фракцией 15мм, утопленный в битумную мастику. Защитный слой гравия исключает механические повреждения при хождении по кровле и сбрасывания снега;

- четырехслойный водоизоляционный рубероидный ковер;

- цементно-песчаная стяжка 20 мм;

- теплоизоляционный слой из полужестких минеральных плит 100мм;

- пароизоляционный слой – рубероид на мастике.

В местах примыкания к выступающим конструкциям слой основного ковра заканчивается на переходном валике. На вертикальные поверхности наклеиваются усиливающие кровлю в месте примыкания дополнительные слои рубероида. Обрез кровли располагается на высоте снежного покрова (300мм), накрывается фартуком из оцинкованной кровельной стали, и закрепляется стальной полосой, пристреленной дюбелями.

Деформационные швы по граням температурных отсеков выполняются в виде упругой арочки из полужестких минераловатных плит, обжатых цилиндрическими фартуками из оцинкованной стали. В месте устройства шва ковер усиливается подстилаемыми под ними слоями стеклоткани.

2.2.6. Ограждения

В качестве стенового ограждения используем стальные трехслойные панели типа «сэндвич» с шагом колонн 6м. Трехслойные стальные панели состоят из стальных облицовочных профилированных листов и внесенного между ними утеплителя из полиуретана. Тощина панелей 180мм. Угловые панели удлиняются присоединяемыми к ним доборными угловыми блоками. Высота и толщина угловых блоков соответствует размерам основной панели, длина равна толщине панели и величине привязки.

Конструктивная схема стены – навесная.

Применяем стальные оконные панели из горячекатаных и гнутых профилей.

Панели имеют номинальные размеры по фасаду 6x8м, состоят из несущей рамы, выполненной из холодногнутых профилей, соединенных точечной сваркой. Эти панели скомпонованы на заводе в более крупные блоки. Оконные панели к колоннам подвешиваются на крепежных уголках. С крепежными уголками панели соединяются болтами.

2.2.7. Полы

Конструктивное решение пола связано с конкретными назначением помещения.

Пол состоит из покрытия – верхнего слоя, непосредственно подвергающегося всем эксплуатационным воздействиям, и подстилающего слоя, воспринимающего вертикальные нагрузки и передающего их на основание – грунт. Покрытию придается уклон к сточным лоткам до 3%. Место примыкания пола к стене накрывается растворным плинтусом.


Список литературы

  1.  ГОСТ 8239-89 Двутавры стальные горячекатаные.
  2.  СНиП 31-03-2001 Производственные здания.
  3.  СНиП 52-01-2003 Бетонные  железобетонные конструкции.
  4.  СНиП 3.03.01-87 Несущие и ограждающие конструкции.
  5.  Серия 1.424-4 Стальные колонны одноэтажных производственных зданий.
  6.  Серия 1ю426ю2-3 Стальные подкрановые балки.
  7.  Р. И. Трепененков Альбом чертежей конструкций и деталей промышленных зданий.
  8.  И. А. Шерешевский Конструирование промышленных зданий и сооружений.


 

А также другие работы, которые могут Вас заинтересовать

22114. Понятие устойчивости конечного автомата 48 KB
  Дело в том что триггера в схеме имеет различные времена задержек сигналов обратной связи которые поступают с выходов триггеров на их входы через комбинационную схему II. По этим причинам если при переходе автомата из состояния ai в as должны измениться состояния нескольких триггеров то между выходными сигналами этих триггеров начинаются гонки. изменит свое состояние раньше других триггеров может через цепь обратной связи изменить может изменить сигналы возбуждения на входах других триггеров до того момента как они изменят свои состояния....
22115. Синтез конечных автоматов 31.5 KB
  В ЦА выходные сигналы в данный момент времени зависят не только от значения входных сигналов в тот же момент времени но и от состояния схемы которое в свою очередь определяется значениями входных сигналов поступивших в предшествующие моменты времени. Понятие состояния введено в связи с тем что часто возникает необходимость в описании поведения систем выходные сигналы которых зависят не только от состояния входов в данный момент времени но и от некоторых предысторий т. Состояния как раз и соответствуют некоторой памяти о прошлом...
22116. Способы задания автомата 362 KB
  Существует несколько способов задания работы автомата но наиболее часто используются табличный и графический. Совмещенная таблица переходов и выходов автомата Мили: xj ai a0 an x1 a0x1 a0x1 anx1 anx1 xm a0xm a0xm anxm anxm Задание таблиц переходов и выходов полностью описывает работу конечного автомата поскольку задаются не только сами функции переходов и выходов но и также все три алфавита: входной выходной и алфавит состояний. Для задания автомата Мура требуется одна таблица поскольку в этом...
22117. Частичные автоматы 194 KB
  Оказывается что для любого автомата Мили существует эквивалентный ему автомат Мура и обратно для любого автомата Мура существует эквивалентный ему автомат Мили. Рассмотрим алгоритм перехода от произвольного конечного автомата Мили к эквивалентному ему автомату Мура. Требуется построить эквивалентный ему автомат Мура Sb = {Ab Xb Yb b b} у которого Xb = Xa Yb = Ya т. Для определения множества состояний Ab автомата Мура образуем всевозможные пары вида ai yg где yg выходной сигнал приписанный входящей в ai дуге.
22118. Абстрактный синтез конечных автоматов 25.5 KB
  Составить аналогичную таблицу описывающую работу конечного автомата не представляется возможным т. множество допустимых входных слов автомата вообще говоря бесконечно. Мы рассмотрим один из возможных способов формального задания автоматов а именно задание автомата на языке регулярных событий. Представление событий в автоматах.
22119. Операции в алгебре событий 24.5 KB
  Дизъюнкцией событий S1 S2 Sk называют событие S = S1vS2vvSk состоящее из всех слов входящих в события S1 S2 Sk. Произведением событий S1 S2 Sk называется событие S = S1 S2 Sk состоящее из всех слов полученных приписыванием к каждому слову события S1 каждого слова события S2 затем слова события S3 и т. слова входящие в события S1S2 и S2S1 различны: т. Итерацией события S называется событие{S} состоящее из пустого слова e и всех слов вида S SS SSS и т.
22120. Система основных событий 28.5 KB
  Событие состоящее из всех слов входного алфавита всеобщее событие. F = {x1 v x2 v v xm} Событие содержащее все слова оканчивающиеся буквой xi. Событие содержащее все слова оканчивающиеся отрезком слова l1 S = F l1 Событие содержащее все слова начинающиеся с отрезка слова l1и оканчивающиеся на l2: S = l1 F l2 Событие содержащее только однобуквенные слова входного алфавита S = x1 v x2 v v xm Событие содержащее только двухбуквенные слова входного алфавита S = x1 v x2 v v xm x1 v x2 v v xm Событие содержащее все...
22121. Генетические основы эволюции 118.5 KB
  Комбинативная изменчивость изменчивость в основе которой лежит образование комбинаций генов которых не было у родителей. Комбинативная изменчивость обуславливается следующими процессами: независимым расхождением гомологичных хромосом в мейозе; случайным сочетанием хромосом при оплодотворении; рекомбинацией генов в результате кроссинговера. Частота мутаций не одинакова для разных генов и для разных организмов. Поскольку генов в каждой гамете много например у человека в геноме содержится около 30 тысяч генов то в каждом поколении около...
22122. ЭЛЕМЕНТАРНЫЕ ФАКТОРЫ ЭВОЛЮЦИИ 88 KB
  Тогда частота аллеля b в популяции будет медленно но неуклонно возрастать в каждом поколении на одну десятитысячную если этому возрастанию не будут препятствовать или способствовать другие факторы эволюции. В принципе только благодаря мутационному процессу новый аллель может практически полностью вытеснить старый аллель из популяции. Однако в одной популяции растущей на вершине урансодержащих гор вблизи Большого Медвежьего озера Канада обнаружены многочисленные мутантные растения с бледнорозовыми цветками. Изоляция это прекращение...