58832

Площа криволінійної трапеції

Конспект урока

Педагогика и дидактика

Освітня мета уроку математики: закріпити вміння і навички знаходження площі криволінійної трапеції через поняття первісної; ознайомити учнів із наближеними методами обчислення площі криволінійної трапеції; підготувати учнів до свідомого сприймання поняття інтегралу.

Украинкский

2014-04-30

42.5 KB

6 чел.

Бінарний урок з інформатики та алгебри 11 клас

„ Площа криволінійної трапеції”.

 

Освітня мета уроку з інформатики: формувати практичні уміння і навички складати алгоритмічні конструкції, що містять цикл, будувати математичну модель задачі та реалізовувати її за допомогою програми.

Освітня мета уроку математики: закріпити вміння і навички знаходження площі криволінійної трапеції через поняття первісної; ознайомити учнів із наближеними методами обчислення площі криволінійної трапеції; підготувати учнів до свідомого сприймання поняття інтегралу.

Розвиваюча мета бінарного уроку: сприяти розвитку мислення та розкриття творчих здібностей учнів, розвивати вміння проводити дослідницьку роботу наукового характеру.

Виховна мета бінарного уроку: виховувати в учнів інтерес до предметів на прикладах оригінальних розв’язків математичних задач за допомогою комп’ютера; використовуючи диференціальний та особистісний підхід, сприяти самореалізації учнів.

Хід уроку:

І. Організаційний момент.

Учитель інформатики: Починаємо наш урок з повторення правил техніки безпеки під час роботи за комп’ютером.

ІІ. Актуалізація опорних знань учнів.

Учитель математики:

  •  Що собою являє криволінійна трапеція?
  •  Як знайти площу криволінійної трапеції? Який метод використовується для цього? (Відповідь на це питання повинна бути проілюстрована малюнком і подана детальна математична інтерпретація завдання).

Учитель інформатики: Оскільки на уроці не обійтися без допомоги комп’ютера, то пригадаємо деякі важливі факти:

  •  Які алгоритмічні структури вам відомі?
  •  Що являє собою циклічний алгоритм?
  •  Як записується оператор циклу в Turbo Pascal 7.0?
  •  Що являють собою програми з розгалуженням?

ІІІ. Мотивація навчання.

Учитель математики: Наша мета сьогодні – не тільки закріпити вміння і навички знаходження площі криволінійної трапеції за допомогою означення первісної і метода прямокутників, але й творчий пошук інших шляхів розв’язку даної задачі.

Учитель інформатики: А також реалізація розв’язку задачі за допомогою ЕОМ.

ІV. Створення і розв’язання  проблемної ситуації.

Учитель математики: - Як ви вважаєте, знаходження площі криволінійної трапеції шляхом розбиття відрізка на n частин та суми площ утворених прямокутників – це єдиний спосіб?

Авжеж, можна визначити площу криволінійної трапеції і методом трапецій. (Учень під контролем, а якщо необхідно, за допомогою учителя записує на дошці розв’язання поставленої задачі.)

Учитель інформатики: А тепер складіть алгоритми та програми знаходження площі криволінійної трапеції і методом прямокутників і методом трапецій.

(Учні класу поділяються на 2 групи, в кожній з яких заздалегідь призначено консультантів з найбільш сильних учнів. Першій групі пропонується скласти алгоритм та програму знаходження площі криволінійної трапеції  методом прямокутників мовою Pascal. Другій групі пропонується скласти алгоритм та програму знаходження площі криволінійної трапеції  методом  трапецій мовою Pascal. )

  •  Після перевірки правильності написання програм, учні вводять програми в комп’ютер і одержують персональні завдання:

Завдання 1.

  1.  Обчислити площу фігури, обмеженої лініями .....................

Знайти площу цієї фігури при n = ...........

  1.  Порівняти одержані результати обчислення площі на комп’ютері з результатами розв’язання даного завдання через поняття первісної.

Завдання 2.

На комп’ютері дослідити точність результатів при n = 5, 10, 20, 50, 100, 1000.

Завдання 3.(Для консультантів)

Порівняти точність результатів розв'язання завдань з однією і тою ж самою функцією різними методами.

На основі одержаних результатів робиться загальний висновок: і метод прямокутників і метод трапецій є наближеними; точність результату зростає зі збільшенням кількості відрізків, тобто числа n.

 

Завдання 4. (Додаткове при наявності часу)

Обчислити площу фігури, обмеженої лініями: y = 1/(1+x)2 +1, x = 0, x = 3, користуючись поняттям первісної і за допомогою складеної програми.

V. Підсумки уроку:

Учитель математики: Ми ознайомилися з кількома методами обчислення площі криволінійної трапеції. Ви зрозуміли, що метод прямокутників дуже наближений, а метод трапеції ефективніше, але поступається іншим методам. Розглянутий матеріал буде використано на наступних уроках алгебри під час введення нового математичного поняття – „інтеграл”.

Учитель інформатики: Ви помітили, що склавши програму знаходження                 площі криволінійної трапеції для функції загального виду f(x) , обчислення конкретних площ для конкретних функцій займає лічені хвилини, що явно показує перевагу розв’язування  задач за допомогою комп’ютера і ще раз доводить важливість набуття вмінь і навичок користування ЕОМ.

VI. Домашнє завдання.  

Учитель математики: §4 п.1, стор. 404, № 6, 9, 12, дод. 15, 16.

Учитель інформатики: Удоскональте програму обчислення площі так, щоб можна було повторити обчислення, розбиваючи відрізок [a, b] на різну кількість частин і обчислити абсолютну і відносну похибку експериментів. § 20 підручника Я. М. Глинського.

Додаток 1.

Індивідуальні завдання для учнів.

Групи отримують однакові пакети індивідуальних завдань.

Завдання 1.

  1.  Обчислити площу фігури, обмеженої лініями  
  2.  y = 1 – x, y = 3 – 2x – x2;
  3.  y = x2 +1, y = x + 3;
  4.  y = 4 – x2, y = x + 2, y = 0;
  5.  y = 3x2, y = 1,5x + 4,5, y = 0;
  6.  y = x3, y = 2x – x2, y = 0;
  7.  y = x½, y = x;
  8.  y = - x½, y = 2 – x2, x = 1, y = 0;
  9.   y = x3, y = x½
  10.  y = x2, y = 2x2 – 1;
  11.  y = x2 – 2x +2, y = 2 + 4xx2;
  12.  y = ex, y = e-x, y = e;
  13.  y = sin x, y = cos x, 0<x< π/2.

Знайти площу цієї фігури при n = 15.

Додаток  2.


program f_rect;

 var a,b,n,nt,i : integer;

     x,y,h,s,st : real;

begin

 write('Enter a:'); readln(a);

 write('Enter b:'); readln(b);

 write('Enter n:'); readln(n);

 write('Enter nt:'); readln(nt);

 h:=(b-a)/n;

 s:=0;

 for i:=0 to n-1 do begin

   x:=a+i*h;

   y:=(3-2*x-x*x)-(1-x);

   s:=s+y;

 end;

 s:=s*h;

 writeln('S=',s);

 h:=(b-a)/nt;

 st:=0;

 for i:=0 to nt-1 do begin

   x:=a+i*h;

   y:=(3-2*x-x*x)-(1-x);

   st:=st+y;

 end;

 st:=st*h;

 writeln('St=',st);

 writeln('Absolutnaya pogreshnost:',abs(St-s));

 writeln('Otnositelnaya pogreshnost:',abs((St-s)/St)*100:6:3,'%');

end.

Додаток 3.

program f_rect;

 var a,b,n,nt,i : integer;

     x,y,h,s,st : real;

begin

 write('Enter a:'); readln(a);

 write('Enter b:'); readln(b);

 write('Enter n:'); readln(n);

 write('Enter nt:'); readln(nt);

 h:=(b-a)/n;

 s:=0;

 for i:=1 to n-1 do begin

   x:=a+i*h;

   y:=(3-2*x-x*x)-(1-x);

   s:=s+y;

 end;

 s:=s*2;

 x:=a; y:=(3-2*x-x*x)-(1-x);

 s:=s+y;

 x:=b; y:=(3-2*x-x*x)-(1-x);

 s:=s+y;

 s:=s*h/2;

 writeln('S=',s);

 h:=(b-a)/nt;

 st:=0;

 for i:=0 to nt-1 do begin

   x:=a+i*h;

   y:=(3-2*x-x*x)-(1-x);

   st:=st+y;

 end;

 st:=st*2;

 x:=a; y:=(3-2*x-x*x)-(1-x);

 s:=s+y;

 x:=b; y:=(3-2*x-x*x)-(1-x);

 st:=st+y;

 st:=st*h/2;

 writeln('St=',st);

 writeln('Absolutnaya pogreshnost:',abs(St-s));

 writeln('Otnositelnaya pogreshnost:',abs((St-s)/St)*100:6:3,'%');

end.


 

А также другие работы, которые могут Вас заинтересовать

81219. Русская религиозная философия 28.04 KB
  Рассматривается вопрос мира и бытия человека в нем общественной жизни и исторического процесса. Ее духовным источником было православие а в центре внимания находилась тема Бога и человека взаимоотношение между ними. Основой нравственного прогресса поведения человека его воспитания и всей педагогики является по его мнению \'\' нерасторжимая связь поколений поддерживающих друг друга в прогрессивном исполнении одного общего дела приготовления к явному Царству божию и к воскресению всех \'\'. Смысл и значение человека и человечества встать...
81220. Понятие и сущность религии. Основные подходы к ее трактовке 23.23 KB
  Сегодня существует многообразие исследовательских подходов к изучению природы и сущности религии в рамках которых предлагается разнообразие определений религии. Сущность религии выводят из наличия в мире сверхъестественных сил поэтому объективный идеализм философская основа теологии как системой обоснования и защитой религии. Существование религии объясняется расколом между телом и душой.
81221. Структура религии. Специфика религиозного сознания 24.51 KB
  Она включает в себя такие важнейшие элементы как: религиозное сознание религиозный культ религиозная организация. Интегративной чертой религиозного сознания является религиозная вера. Религиозное сознание неоднородно и существует на двух уровнях: обыденный или религиозная психология: совокупность представлений установок стереотипов чувств и настроений верующих. концептуальный или религиозная идеология: система идей принципов концепций разработанная и пропагандируемая теологами и служителями церкви.
81222. Религиозный культ и религиозные организации 24.7 KB
  Предметом культовой деятельности становятся различные объекты и силы осознаваемые в форме религиозных образов. Способы культовой деятельности определяются содержанием религиозных верований а также зависят от средств культа. На основе религиозных взглядов складываются определенные нормы предписания о том что и как нужно делать. Результатом культовой деятельности является прежде всего удовлетворение религиозных потребностей оживление религиозного сознания.
81223. Религия как социальное явление. Основные функции религи 23.81 KB
  Основные функции религии. Несколько подходов к определению религии: теологический философский критический научный. Два основных взгляда: религия существует в многообразии религий своего рода универсалия общий термин; религии существуют как модификации единой первоначальной религии. Функции религии...
81225. Происхождение религии и ее ранние формы 25.23 KB
  Тотемизм вера в сверхъестественное родство между определенной группой предметов и людей. Магия совокупность представлений и обрядов в основе которых лежит вера в возможность влияния на людей предметы и явления объективного мира с помощью определенных символических действий. Анимизм вера в существование духов и душ. Существует как вера в духов не только умерших людей но и в духов природных явлений.
81226. Национальные религии Индии. Ведизм 20.79 KB
  Ведизм. К национальным религиям Индии относят ведизм индуизм джайнизм и сикхизм. Ведизм считается самой древней из всех национальных религий и одной из самых древних среди мировых. Характерная черта ведизма обожествление сил природы часто в мифологических образах.
81227. Вероучение и культ индуизма 25.24 KB
  В индуизме есть образ Тримурти космического духовного начала имеющего три ипостаси Вишну Шива Брахма. Два других бога Вишну богохранитель и Шива бог разрушитель. Поскольку боги Вишну и Шива стали наиболее популярными божествами это привело к формированию двух основных направлений: вишнуизм вайшнавизм и шиваизм шайвизм. Для вишнуизма характерна вера в аватары буквально: нисхождения то есть периодические воплощения Бога на земле для спасения праведных и наказания грешников.