58841

Розв’язування нестандартних задач

Конспект урока

Педагогика и дидактика

Програма факультативного курсу допомагає розширити вивчення програмового матеріалу доповнити базову програму з математики новими темами забезпечити повторення всього курсу математики посилити практичну сторону застосування теоретичних знань при розв’язуванні задач різного рівня...

Украинкский

2014-04-30

120 KB

8 чел.

«Розвязування нестандартних задач»

(для учнів 10 -11 класів загальноосвітніх шкіл)

Пояснювальна записка

Факультативні заняття з математики напрямлені на розширення, поглиблення та корекцію знань учнів з математики у відповідності до їх потреб, а також підвищення пізнавальної діяльності.

Пропонована програма призначена для організації роботи з учнями, які навчаються за різними профілями та мають бажання добре підготуватися до серйозного випробування з математики та успішно пройти зовнішнє незалежне оцінювання .

Програма факультативного курсу допомагає розширити вивчення програмового матеріалу, доповнити базову програму з математики новими темами, забезпечити повторення всього  курсу математики, посилити практичну сторону застосування теоретичних знань при розвязуванні задач різного рівня складності.

Вивчення курсу «Розв’язування нестандартних задач» сприятиме розвитку науково-теоретичного мислення та виробленню практичних навичок застосування математичного апарату до розв’язування завдань державної підсумкової атестації та зовнішнього незалежного оцінювання.

Одним із головних завдань курсу є забезпечення умов для досягання кожним учнем практичної компетентності

Мета курсу: 

  •  розвиток математичних здібностей учнів;
  •  формування алгоритмічного мислення та високої логічної культури;
  •  вироблення навичок самостійної роботи при розвязуванні задач;
  •  перенесення засвоєних знань на розвязування складних та нестандартних задач;
  •  якісна підготовка до незалежного зовнішнього тестування з математики.

Після вивчення курсу учні повинні

знати:

  •  математичні факти;
  •  основні алгоритми та методи розв’язування алгебраїчних та геометричних  задач з необхідним обґрунтуванням ;

вміти:

  •  оволодівати необхідною інформацією для розуміння постановки математичної задачі; 
  •  проектувати і здійснювати алгоритмічну та евристичну діяльність на математичному матеріалі;
  •  розвязувати завдання в знайомих ситуаціях із достатнім поясненням;
  •  використовувати набуті знання і вміння в незнайомих ситуаціях;
  •  узагальнювати й систематизувати набуті знання;
  •  самостійно розвязувати нестандартні задачі і вправи;
  •  приймати рішення та вибирати оптимальне.

Для реалізації програми рекомендована кількість годин:

                            10 клас  1 год на тиждень, 35 год на рік

                            11 клас  1 год на тиждень, 30 год на рік

Для 11 класу пропонується 30 годин на рік з урахуванням термінів проходження зовнішнього незалежного  тестування.

Орієнтовний тематичний план

Клас

Назва теми

Кількість годин

10

1.

Многочлени

4

2.

Метод інтервалів

4

3.

Задачі з параметрами

6

4.

Тригонометрія

6

5.

Ірраціональні рівняння , нерівності та їх системи

5

6.

Показникова функція

5

7.

Логарифмічна функція

5

11

1.

Планіметрія

4

2.

Стереометрія

3

3.

Похідна

8

4.

Первісна та інтеграл

3

5.

Розвязування стереометричних задач із застосуванням тригонометрії

6

6.

Розвязування прикладних текстових задач.

6

10 КЛАС

Зміст

Кількість

годин

Вимоги до математичної підготовки учнів

1. Многочлени

4 год

Многочлени  вищих степенів.

Ділення многочленів.  

Теорема Безу.СхемаГорнера.

Розвязування рівнянь  вищих

степенів.

2

2

Учні повинні

знати:

  •  методи

знаходження раціональних коренів многочленів з  раціональними коефіцієнтами;

уміти:

  •  розвязувати

рівняння вищих степенів.

2. Метод інтервалів

4 год

Узагальнення методу інтервалів.

Розвязування  раціональних нерівностей та їх систем.

1

3

Учні повинні

знати:

  •  алгоритм

узагальненого методу інтервалів;

уміти:

  •  розвязувати

алгебраїчні нерівності та їх системи , в тому числі  і нестандартні.

3. Завдання з параметрами

6 год

Знайомство з параметром

( поняття ).

Розвязування  лінійних і квадратних рівнянь з параметром.

Розвязування квадратичних нерівностей з параметром.

     

Теорема Вієта в завданнях з параметром.

1

2

2

      1

Учні повинні

знати:

  •  означення

поняття параметра;

  •  означення

рівняння та нерівності, що містять параметр;

уміти:

  •  розв’язувати

лінійні та квадратні рівняння з параметрами;

  •  досліджувати

кількість розв’язків рівнянь і нерівностей в залежності від параметрів.

4. Тригонометрія

6 год

Перетворення тригонометричних виразів.

Доведення  тригонометричних тотожностей.

Розвязування тригонометричних рівнянь та їх систем.

Розвязування тригонометричних нерівностей та їх систем.

1

1

      

2

2

Учні повинні

знати:

  •  основні тригонометричні тотожності;
  •  формули пониження степеня, половинного, подвійного та потрійного аргументів;
  •  формули розвязків найпростіших тригонометричних рівнянь та нерівностей;

уміти:

  •  застосовувати формули тригонометрії до розвязування завдань достатнього та високого рівня складності.

5. Ірраціональні рівняння, нерівності та їх системи

5год

Розвязування ірраціональних рівнянь.

Завдання з параметрами.

Розвязування ірраціональних

нерівностей.

Завдання з параметрами.

Розвязування систем ірраціональних рівнянь та ірраціональних нерівностей.

1

1

1

1

1

Учні повинні

знати:

  •  алгоритми розв’язування ірраціональних рівнянь та нерівностей.

уміти:

  •  розв’язувати завдання з параметрами.

6. Показникова функція

5 год

Розвязування  показникових  рівнянь та їх систем.  

Завдання з параметрами.

Розвязування  показникових нерівностей та їх систем.

Завдання з модулями та

параметрами.

1

1

1

2

Учні повинні

знати:

алгоритми розв’язування показникових рівнянь;

властивість монотонності показникової функції при розв’язуванні показникових нерівностей.

уміти:

розвязувати показникові  рівняння нестандартними методами;

здійснювати перехід від показникової  нерівності до непоказникової.

7. Логарифмічна функція

5 год

Розв’язування логарифмічних рівнянь та їх систем.

Завдання з параметрами.

Розвязування  логарифмічних нерівностей та їх систем.

Завдання з модулями та

параметрами.

1

1

1

2

Учні повинні

знати: 

  •  алгоритми розв’язування логарифмічних рівнянь та їх систем;
  •  властивість монотонності логарифмічної функції при розв’язуванні логарифмічних нерівностей.

уміти:

  •  розв’язувати логарифмічні  рівняння нестандартними методами;
  •  здійснювати перехід від логарифмічної нерівності до

нелогарифмічної;

11 КЛАС

Зміст

Кількість годин

Вимоги до математичної підготовки учнів

1. Планіметрія

4 год

Розв’язування прямокутних трикутників.

Теорема про середнє пропорційне.

Теорема про властивість бісектриси трикутника.

Теорема косинусів та наслідок з неї.

Теорема синусів та наслідок з неї.

1

1

1

1

Учні повинні

знати:

  •  програмовий планіметричний матеріал 7 – 9 класів.

уміти: 

  •  застосовувати набуті знання при розвязуванні нестандартних планіметричних задач.

2. Стереометрія.

3 год

Кут між прямою і площиною.

Кут між площинами.

1

2

Учні повинні

знати:

  •  означення кута між прямою і площиною;
  •  означення двогранного кута;

уміти:

  •  будувати кут між прямою і площиною та та обґрунтовувати його побудову;
  •  будувати кут між площинами та обґрунтовувати його побудову;
  •  застосовувати забуті знання при розвязуванні нестандартних задач.

                                      

3. Похідна

8 год

Границя функції в точці. Теореми про границі. Обчислення границь функцій. Друга похідна.

Механічний та геометричний зміст другої похідної.

Асимптоти. Застосування похідної для дослідження функції  та побудови їх  графіків.

Розвязування текстових задач за знаходження найменшого та найбільшого значення функції.

Застосування похідної до розвязування задач з фізики.

Розвязування задач з параметрами.

2

1

1

2

1

1

Учні повинні

знати:

  •  механічний і геометричний зміст другої похідної;
  •  загальну схему дослідження функції за допомогою похідної;
  •  алгоритм знаходження найменшого і найбільшого значень функції;

уміти:

  •  будувати графіки функцій;
  •  розв’язувати алгебраїчні, геометричні  задачі та задачі з параметрами на знаходження  найменшого та найбільшого значення;
  •  розвязувати задачі з параметрами із застосуванням похідної.

4. Первісна та інтеграл

3 год

Розв’язування задач на знаходження площ фігур та об’ємів тіл обертання.

3

Учні повинні

знати:

  •  формули інтегрування функцій;
  •  формули для обчислення площ фігур
  •  формули для обчислення об’ємів тіл обертання.

 уміти:

  •  будувати графіки функцій на координатній площині;
  •  зображати фігури, обмежені даними лініями;
  •  обчислювати значення площі фігур та об’ємів тіл обертання.

5. Розвязування стереометричних задач із застосуванням тригонометрії

6 год

Комбінації просторових фігур.

Вписані та описані кулі.

Розвязування задач на відшукання найбільших та найменших значень площ поверхонь та об’ємів просторових тіл.

2

1

3

Учні повинні

знати:

  •  розташування центра кулі, вписаної у многогранник та описаної навколо многогранника;
  •  формули для обчислення площ поверхонь, обємів просторових фігур;

уміти:

  •  застосовувати планіметричний матеріал при розвязуванні стереометричних задач.

6. Розвязування прикладних текстових задач

6 год

Розв’язування задач на суміші, сплави, відсотки;

Розв’язування задач на пропорційний поділ;

Розв’язування задач на спільну роботу;

Розв’язування задач на рух.

Розв’язування задач високого рівня складності.

2

1

1

1

1

Учні повинні

знати:

  •  означення прикладної задачі;
  •  типи прикладних задач;
  •  алгоритми розвязування

прикладних задач;

уміти:

  •  розвязувати  різні типи прикладних задач.

Бібліографія

1. Вишенський В.А., Перестюк М.О., Самойленко А.М. Збірник задач з математики: навчальний посібник. – К.: Либідь, 1993. – 344 с.

2. Горделадзе Ш.Х., Кухарчук М.М., Яремчик Ф.П. Збірник конкурсних задач з математики: навчальний посібник. – К.: Вища школа, 1988. – 328 с.

3. Горнштейн П.И., Полонский В.Б.,Якир М.С. Задачи с параметрами. – К.: РИА «Текст»МП«ОКО», 1992. – 287 с.

4. Михайловський В.І. Практикум з розвязування задач з математики. –К.: Вища школа, 1989. – 421 с.

5.Сканаві М.І. Збірник задач з математики для вступників до втузів.

 – К.: Вища школа, 1992. – 443 с.

6. Ципкін О.Г. Довідник з математики для середніх навчальних закладів. – К.: Вища школа, 1988. – 408 с.

7. Шарыгин В.И. Факультативный курс по математике для 10 класса. – М.: Просвещение,1989. – 350 с.

8. Шарыгин И.Ф., Голубев В.И. Факультативный курс по математике для 11 класса. М.: Просвещение, 1991. - 383 с.


 

А также другие работы, которые могут Вас заинтересовать

34637. Составляющие успеха организации 30.46 KB
  Для этого организации периодически приходится менять свои цели разрабатывать новые виды продукции и услуг. Необходимость управления практическая реализация Внутренняя среда организации Под внутренней средой организации понимается совокупность присущих ей свойств переменных элементов факторов конкретной характеристики которых в сочетании придают ей определенное лицо. Внутренние переменные ситуационные факторы внутри организации которые в совокупности придают ей определенное лицо Цель – конкретное конечное состояние или желаемый...
34639. Школа научного управления 1875 -1920 (Ф.Тейлор, Ф. и Л. Гилберт, Г. Гант) 26.04 KB
  Контактная аудитория – общественная организация по защите прав потребителя Мотивация Мотивация – процесс побуждения себя и других к деятельности для достижения личных целей или целей организации. Существует 2 типа создания мотивов: Внутренняя мотивация – самовырабатываемые факторы которые заставляют людей вести себя определенным образом Внешняя мотивация – то что делается с людьми или для людей чтобы создать у них побудительные мотивы.
34640. Школа административного (классического управления) 1920 – 1950 (Файоль, Урвик, Муни, Слоун) 17.13 KB
  Факторы на которые не может влиять организация: Экономический фактор – состояние экономики влияет на стоимость всех ввозимых ресурсов и на способность потребителей покупать товары и услуги Политический – совокупность госучреждений и структур которые оказывают влияние и ограничивают деятельность организации учитывается уровень коррупции возможность смены власти политическая стабильность доверие населения к власти проводимая политическая линия НТП Технология – учет научнотехнических достижений прогноз развития науки и техники...
34641. Школа человеческих отношений (1930 – 1950) и поведенческих наук (1950 – наше время) 17.02 KB
  Школа поведенческих наук Макгрегор – повышение эффективности организации за счет повышения эффективности её человеческих ресурсов. Решения выбора альтернативы Управленческое решение – обдуманный вывод о необходимости осуществить какието действия связанные с достижением цели организации либо наоборот воздержаться от них. Эффективным организационным решением будет то которое будет на самом деле реализовано и внесет наибольший вклад в достижение целей организации.
34642. Типы организаций 21.39 KB
  Процесс принятия рационального решения Состоит из 7 основных этапов Диагностика или определение проблемы Существует 2 способа рассмотрения проблемы: Проблемой считается ситуация когда поставленные цели не достигнуты. Проблема как потенциальная возможность для этого необходима релевантная информация это данные касающиеся только конкретной проблемы человека цели в определенный период времени Все проблемы имеют: Определенное лицо Что Связанный с какимто конкретным местом Где Время возникновения и частота повторяемости...
34643. Общие характеристики организаций 40.73 KB
  Необходимость управления практическая реализация Факторы влияющие на процесс принятия решений Личностная оценка руководителя – субъективное ранжирования важности качества или блага. Среда принятия решений Все решения принимаются в разных обстоятельствах по отношению к риску и выделяют: Условие определенности когда точно известен результат каждого из альтернативного варианта выбора Условие риска – результаты этих решений не являются определенными но вероятность каждого результата известна. Негативные последствия – принятие...
34644. Личность. Методы принятия решений 22.49 KB
  ЯОбраз – какими мы видим себя Идеальное Я – какими нам хотелось бы быть Зеркальное Я – какими по нашему мнению нас видят другие Реальное Я –каковы мы в действительности Методы принятия решений При принятии решений вне зависимости от применяемых моделей существует правило принятия решений. Соответственно существуют следующие методы принятия решений: Платежная матрица – оказывает помощь руководителю в выборе одного из нескольких вариантов решений. Методы прогнозирования – в них используется как накопленный опыт так и текущие допущения на...
34645. Понятие алгоритма. Свойства, способы описания 90 KB
  Понятие алгоритма и способы его описания; Типы алгоритмов; Блоксхемы; Базовые структуры применяемые при создании алгоритмов. Иначе говоря блоксхема служит для графического изображения структуры алгоритма. Последовательность действий в соответствии с блоксхемой указывается с помощью стрелок соединяющих отдельные блоки и показывающих какой блок и вслед за каким должен выполняться. В ходе изучения данной дисциплины будут рассматриваться алгоритмы описанные при помощи языка программирования и при помощи специальных схем...