58842

Електричний струм у розчинах і розплавах електролітів. Закони електролізу. Застосування електролізу

Конспект урока

Педагогика и дидактика

Закони електролізу. Застосування електролізу Мета: розяснити учням фізичну природу електропровідності рідких провідників навчити учнів застосовувати закони електролізу Фарадея під час розвязання задач. Ознайомити з технічним застосуванням електролізу. Тип уроку: виклад нового матеріалу Демонстрації: явище електролізу; фрагмент відеофільму “Електроліз та його промислове застосуванняâ€.

Украинкский

2014-06-05

79 KB

3 чел.

Електричний струм у розчинах і розплавах електролітів. Закони електролізу. Застосування електролізу

Мета: роз’яснити учням фізичну природу електропровідності рідких провідників, навчити учнів застосовувати закони електролізу Фарадея під час розв’язання задач. Ознайомити з технічним застосуванням електролізу. Розвивати уміння застосовувати вивчений матеріал при розв’язанні задач та у повсякденному житті. Виховати старанність, самостійність та відповідальність при виконанні завдань, поставлених вчителем.

Тип уроку: виклад нового матеріалу

Демонстрації:

  1.  явище електролізу;
  2.  фрагмент відеофільму Електроліз та його промислове застосування.

Обладнання: склянка з водним розчином сульфату міді (CuSO4); склянка з дистильованою водою, кухонна сіль, мідні електроди; джерело постійного струму; секундомір або годинник з секундною стрілкою; ключ; з'єднувальні провідники; лампа.

Хід уроку

  1.  Перевірка домашнього завдання.
  2.  Виклад нового матеріалу

Рідини, як і тверді тіла, можуть бути діелектриками, провідниками і напівпровідниками. Діелектриком є також дистильована вода.

2.1   Фронтальний експеримент

Складемо коло за схемою (рис.1.)

Рис.1.

Розглянемо три випадки:

  1.  В склянку наллємо дистильовану воду і опустимо два електроди – струму в колі немає (лампа не світиться). Дистильована вода – діелектрик.
  2.  В склянці насиплемо кухонну сіль (NaCl) – струму в колі немає (лампа не світиться). Кухонна сіль – діелектрик.
  3.  В склянку наллємо дистильовану воду і розчинемо в ній кухонну сіл (розчин солі) – замкнувши ключем коло, лампа починає світитись.

Питання: Чому сіль і дистильована вода окремо не проводить струм а якщо їх змішати струм в колі є?

Пояснення досліду.

До провідників належать розплави і розчини електролітів: кислот, лугів і солей. Рідкими напівпровідниками є розплавлений селен, розплави сульфідів та ін.

Під час розчинення електролітів під впливом електричного поля полярних молекул води відбувається розпад молекул електролітів на іони. Цей процес називають електролітичною дисоціацією, в результаті якої нейтральні молекули розпадаються на позитивні та негативні іони. В електроліті з'являються вільні носії зарядів і він починає проводити струм. Оскільки заряд у водних розчинах чи розплавах електролітів переноситься іонами, то таку провідність називають іонною. За іонної провідності проходження струму пов'язано із перенесенням речовини. На електродах відбувається виділення речовин, які входять до складу електроліту. На аноді негативно заряджені частинки віддають свої зайві електрони (окиснювальна реакція), а на катоді позитивні іони отримують електрони (реакція відновлення). Процес виділення на електроді речовини, пов'язаний із окиснювально-відновлювальними реакціями, називають електролізом. У розчині може відбуватися процес об’єднання іонів у нейтральні молекули, такий процес називається рекомбінацією.

  1.   Розглянемо явище електролізу на прикладі мідного купоросу (складемо коло за схемою рис.1). В результаті електролітичної дисоціації CuSO4 = Cu2+ + SO42-. Позитивно заряджені іони міді під дією електричного струму будуть переміщуватися до катода, де отримають електрони і виділяться на ньому у вигляді нейтральних атомів міді (рис. 2.). Негативно заряджені іони під дією електричного поля перемістяться до анода, де віддадуть вільні електрони і також виділяться на ньому.

Рис.2.

Нехай за час t через електроліт буде перенесено заряд. Кількість іонів, які досягли електрода, дорівнюватиме:

, (1)

де q0 = Ze - заряд іона; Z - валентність іона; e - елементарний заряд.

Кількість іонів N дорівнює кількості атомів речовини, що виділиться на електроді, а маса виділеної речовини

, (2)

де m0 - маса одного атома,  μ - молярна маса речовини.

Для кожного хімічного елемента можна у виразі (2) виділити сталу величину k, яку називають електрохімічним еквівалентом речовини:

, (3)                                            

У СІ електрохімічний еквівалент вимірюють у кілограмах на кулон: [k] = кг/Кл.

Виходячи з цього можна записати, що m = kq = kIΔt (4)

Маса речовини, яка виділяється на катоді за час Δt, пропорційна силі струму і часу. Це твердження, встановлене експериментально Фарадеєм (1831 р.), має назву першого закону Фарадея для електролізу.

Електрохімічний еквівалент речовини визначено для всіх хімічних елементів. Він є табличною величиною, але його не важко розрахувати:, де  хімічний еквівалент речовини.  Добуток числа Авогадро на заряд електрона називають сталою Фарадея:

F = NAe = 6,02·1023 1/моль ×1,6·10-19 Кл = 96500 Кл/моль.

Стала Фарадея дорівнює заряду, під час перенесення якого одновалентними іонами через розчин або розплав електроліту виділяється 1 моль речовини.

З цих міркувань вираз (4) набуде вигляду:  (5)

Формула (5) виражає другий закон Фарадея для електролізу: електрохімічні еквіваленти різних речовин прямо пропорційні їх хімічним еквівалентам. Якщо у вираз (4) підставити співвідношення (3), то отримаємо об'єднаний закон Фарадея для електролізу:

  1.   Явище електролізу має широке застосування в електрометалургії (добування чистих металів); у гальваностегії (нанесення металевих покриттів для запобігання корозії металів); у гальванопластиці (виготовлення копій з матриць) тощо. Будову хімічних джерел струму (гальванічних елементів та акумуляторів) також засновано на процесах взаємодії металів з електролітами.

Фрагмент відеофільму Електроліз та його промислове застосування.

3. Питання для закріплення матеріалу

1. Які речовини належать до електролітів?

2. Що таке електролітична дисоціація?

3. Що називають електричним струмом у рідинах?

4. Чим зумовлено електропровідність електролітів?

5. Чому під час проходження струму через розчин електроліту відбувається перенесення речовини, а під час проходження по металевому провіднику не відбувається?

6. Що називають електролізом?

7. Що називають електрохімічним еквівалентом речовини? Який його фізичний зміст?

8. Наведіть приклади застосування електролізу.

4.  Завдання додому

§116, 117, 118, розв’язати впр. 30 (1,2,3) (Гончаренко С.У. Фізика 10 клас. – К.: Освіта, 1995)

Опорні записи до конспекту учня

Електроліт — це розчин або розплав, що проводить електричний струм.

УВАГА! Причиною дисоціації є не електричне поле, а дія розчинника або нагрівника.

Електроліз — це процес виділення на електродах речовин    внаслідок   відновлювально-окислювальних реакцій, що відбуваються на електродах.

Рекомбінація – процес об’єднання іонів у нейтральні молекули.

m — маса речовими.

μ — молярна маса

NA — стала Авогадро,

N  — кількість іонів,

Z — валентність

e — заряд електрона,

I—сила струму,

F — стала Фарадея.

Закон електролізу

 

m = k·I·t

F = NAe

Застосування електролізу:

добування алюмінію з розплаву бокситів, цинку і нікелю з розчинів:

очищення (рафінування) металів від домішок:

гальваностегія (нікелювання, хромування і т. д.);

гальванопластика (одержання металевих рельєфних копій):

електролітичне полірування поверхні.


 

А также другие работы, которые могут Вас заинтересовать

4077. Исследование теплового излучения абсолютно чёрного тела 113 KB
  Цель работы – исследование температурной зависимости энергетической светимости абсолютно черного тела. Приборы и принадлежности –лабораторная работа выполняется на установке ФПК-11, которая включает: - объект исследования – тер...
4078. Поляризация света. Закон Малюса 1.05 MB
  Цель работы: ознакомление с методами получения линейно поляризованного света, некоторыми его свойствами и опытная проверка закона изменения интенсивности света при прохождении поляризованным светом анализатора (закон Малюса). Приборы и принадлежност...
4079. Исследование качества полированной поверхности с помощью микроинтерферометра Линника 788.5 KB
  Цель работы – знакомство с явлением интерференции света и с его использованием в метрологии. Получение практических навыков работы с высокоточным измерительным оптическим прибором и определение качества полированной поверхности исследуемого обр...
4080. Исследование интерференции света и определение длины волны используемого излучения 247.5 KB
  Цель работы - изучение методов наблюдения интерференционной картины и измерения ее параметров, определение длины волны используемого излучения. Приборы и принадлежности Оптическая скамья. Лазер. Бипризма Френеля. Линзы. ...
4081. Обработка результатов физического эксперимента 391.5 KB
  Цель работы – ознакомление с методами оценки результатов измерений и расчета погрешностей. Приборы и принадлежности: исследуемые образцы штангенциркуль микрометр лабораторная установка FPM - 01 пакет компьютерных программ по моделированию...
4082. Изучение центрального абсолютно упругого и неупругого соударения шаров 749 KB
  Цель работы - изучение центрального абсолютно упругого и неупругого соударения шаров. Исследование упругого соударения шаров Физические закономерности, возникающие при ударе двух тел, широко используются в науке и технике, например, при ковке металл...
4083. Изучение равноускоренного движения на машине Атвудаи ее компьютерной модели 1.03 MB
  Дана методика и описаны эксперименты по проверке основных формул кинематики и динамики равноускоренного прямолинейного движения. Эксперименты могут быть проведены как на реальной лабораторной установке (машине Атвуда), так и на ее компьютерной модел...
4084. Изучение вращательного движения с помощью маятника Обербека и его компьютерного имитатора 183.5 KB
  Изложены основные положения кинематики и динамики твердого тела. Приведена методика и описан эксперимент по проверке основного закона динамики вращательного движения. Эксперимент может быть выполнен как на реальной лабораторной установке (маятнике ...
4085. Определение коэффициента трения с помощью установки ФПМ-02 и ее компьютерного имитатора 646 KB
  Цель работы: изучить свободные затухающие колебания наклонного маятника освоить методику определения коэффициента трения. Приборы: установка для определения коэффициента трения ФПМ-02, а также IBM-совместимый персональный компьютер и пакет компьют...