58842

Електричний струм у розчинах і розплавах електролітів. Закони електролізу. Застосування електролізу

Конспект урока

Педагогика и дидактика

Закони електролізу. Застосування електролізу Мета: розяснити учням фізичну природу електропровідності рідких провідників навчити учнів застосовувати закони електролізу Фарадея під час розвязання задач. Ознайомити з технічним застосуванням електролізу. Тип уроку: виклад нового матеріалу Демонстрації: явище електролізу; фрагмент відеофільму âЕлектроліз та його промислове застосуванняâ.

Украинкский

2014-06-05

79 KB

3 чел.

Електричний струм у розчинах і розплавах електролітів. Закони електролізу. Застосування електролізу

Мета: роз’яснити учням фізичну природу електропровідності рідких провідників, навчити учнів застосовувати закони електролізу Фарадея під час розв’язання задач. Ознайомити з технічним застосуванням електролізу. Розвивати уміння застосовувати вивчений матеріал при розв’язанні задач та у повсякденному житті. Виховати старанність, самостійність та відповідальність при виконанні завдань, поставлених вчителем.

Тип уроку: виклад нового матеріалу

Демонстрації:

  1.  явище електролізу;
  2.  фрагмент відеофільму Електроліз та його промислове застосування.

Обладнання: склянка з водним розчином сульфату міді (CuSO4); склянка з дистильованою водою, кухонна сіль, мідні електроди; джерело постійного струму; секундомір або годинник з секундною стрілкою; ключ; з'єднувальні провідники; лампа.

Хід уроку

  1.  Перевірка домашнього завдання.
  2.  Виклад нового матеріалу

Рідини, як і тверді тіла, можуть бути діелектриками, провідниками і напівпровідниками. Діелектриком є також дистильована вода.

2.1   Фронтальний експеримент

Складемо коло за схемою (рис.1.)

Рис.1.

Розглянемо три випадки:

  1.  В склянку наллємо дистильовану воду і опустимо два електроди – струму в колі немає (лампа не світиться). Дистильована вода – діелектрик.
  2.  В склянці насиплемо кухонну сіль (NaCl) – струму в колі немає (лампа не світиться). Кухонна сіль – діелектрик.
  3.  В склянку наллємо дистильовану воду і розчинемо в ній кухонну сіл (розчин солі) – замкнувши ключем коло, лампа починає світитись.

Питання: Чому сіль і дистильована вода окремо не проводить струм а якщо їх змішати струм в колі є?

Пояснення досліду.

До провідників належать розплави і розчини електролітів: кислот, лугів і солей. Рідкими напівпровідниками є розплавлений селен, розплави сульфідів та ін.

Під час розчинення електролітів під впливом електричного поля полярних молекул води відбувається розпад молекул електролітів на іони. Цей процес називають електролітичною дисоціацією, в результаті якої нейтральні молекули розпадаються на позитивні та негативні іони. В електроліті з'являються вільні носії зарядів і він починає проводити струм. Оскільки заряд у водних розчинах чи розплавах електролітів переноситься іонами, то таку провідність називають іонною. За іонної провідності проходження струму пов'язано із перенесенням речовини. На електродах відбувається виділення речовин, які входять до складу електроліту. На аноді негативно заряджені частинки віддають свої зайві електрони (окиснювальна реакція), а на катоді позитивні іони отримують електрони (реакція відновлення). Процес виділення на електроді речовини, пов'язаний із окиснювально-відновлювальними реакціями, називають електролізом. У розчині може відбуватися процес об’єднання іонів у нейтральні молекули, такий процес називається рекомбінацією.

  1.   Розглянемо явище електролізу на прикладі мідного купоросу (складемо коло за схемою рис.1). В результаті електролітичної дисоціації CuSO4 = Cu2+ + SO42-. Позитивно заряджені іони міді під дією електричного струму будуть переміщуватися до катода, де отримають електрони і виділяться на ньому у вигляді нейтральних атомів міді (рис. 2.). Негативно заряджені іони під дією електричного поля перемістяться до анода, де віддадуть вільні електрони і також виділяться на ньому.

Рис.2.

Нехай за час t через електроліт буде перенесено заряд. Кількість іонів, які досягли електрода, дорівнюватиме:

, (1)

де q0 = Ze - заряд іона; Z - валентність іона; e - елементарний заряд.

Кількість іонів N дорівнює кількості атомів речовини, що виділиться на електроді, а маса виділеної речовини

, (2)

де m0 - маса одного атома,  μ - молярна маса речовини.

Для кожного хімічного елемента можна у виразі (2) виділити сталу величину k, яку називають електрохімічним еквівалентом речовини:

, (3)                                            

У СІ електрохімічний еквівалент вимірюють у кілограмах на кулон: [k] = кг/Кл.

Виходячи з цього можна записати, що m = kq = kIΔt (4)

Маса речовини, яка виділяється на катоді за час Δt, пропорційна силі струму і часу. Це твердження, встановлене експериментально Фарадеєм (1831 р.), має назву першого закону Фарадея для електролізу.

Електрохімічний еквівалент речовини визначено для всіх хімічних елементів. Він є табличною величиною, але його не важко розрахувати:, де  хімічний еквівалент речовини.  Добуток числа Авогадро на заряд електрона називають сталою Фарадея:

F = NAe = 6,02·1023 1/моль ×1,6·10-19 Кл = 96500 Кл/моль.

Стала Фарадея дорівнює заряду, під час перенесення якого одновалентними іонами через розчин або розплав електроліту виділяється 1 моль речовини.

З цих міркувань вираз (4) набуде вигляду:  (5)

Формула (5) виражає другий закон Фарадея для електролізу: електрохімічні еквіваленти різних речовин прямо пропорційні їх хімічним еквівалентам. Якщо у вираз (4) підставити співвідношення (3), то отримаємо об'єднаний закон Фарадея для електролізу:

  1.   Явище електролізу має широке застосування в електрометалургії (добування чистих металів); у гальваностегії (нанесення металевих покриттів для запобігання корозії металів); у гальванопластиці (виготовлення копій з матриць) тощо. Будову хімічних джерел струму (гальванічних елементів та акумуляторів) також засновано на процесах взаємодії металів з електролітами.

Фрагмент відеофільму Електроліз та його промислове застосування.

3. Питання для закріплення матеріалу

1. Які речовини належать до електролітів?

2. Що таке електролітична дисоціація?

3. Що називають електричним струмом у рідинах?

4. Чим зумовлено електропровідність електролітів?

5. Чому під час проходження струму через розчин електроліту відбувається перенесення речовини, а під час проходження по металевому провіднику не відбувається?

6. Що називають електролізом?

7. Що називають електрохімічним еквівалентом речовини? Який його фізичний зміст?

8. Наведіть приклади застосування електролізу.

4.  Завдання додому

§116, 117, 118, розв’язати впр. 30 (1,2,3) (Гончаренко С.У. Фізика 10 клас. – К.: Освіта, 1995)

Опорні записи до конспекту учня

Електроліт — це розчин або розплав, що проводить електричний струм.

УВАГА! Причиною дисоціації є не електричне поле, а дія розчинника або нагрівника.

Електроліз — це процес виділення на електродах речовин    внаслідок   відновлювально-окислювальних реакцій, що відбуваються на електродах.

Рекомбінація – процес об’єднання іонів у нейтральні молекули.

m — маса речовими.

μ — молярна маса

NA — стала Авогадро,

N  — кількість іонів,

Z — валентність

e — заряд електрона,

I—сила струму,

F — стала Фарадея.

Закон електролізу

 

m = k·I·t

F = NAe

Застосування електролізу:

добування алюмінію з розплаву бокситів, цинку і нікелю з розчинів:

очищення (рафінування) металів від домішок:

гальваностегія (нікелювання, хромування і т. д.);

гальванопластика (одержання металевих рельєфних копій):

електролітичне полірування поверхні.


 

А также другие работы, которые могут Вас заинтересовать

21721. Модели отказов электроустановок 177.5 KB
  Вероятность безотказной работы такой системы определяется как вероятность безотказной работы всех элементов в течение времени t: где n число элементов последовательно соединенной системы; событие безотказной работы; вероятность безотказной работы iго элемента. В случае невосстанавливаемых элементов вероятность отказа системы определяется как вероятность совпадения отказов или m элементов в течение расчётного времени. Если отказы одного элемента не зависят от отказов других элементов то формулы для оценки вероятности безотказной...
21722. МОДЕЛИ ОЦЕНКИ НАДЕЖНОСТИ ЭМС 117.5 KB
  Распределение экстремальных значений Пусть имеется случайная выборка объемом n взятая из бесконечной совокупности имеющей распределение Fx где х непрерывная случайная величина.1 Так как разрушение материала связано с существованием наиболее слабой точки в работах по теории надежности рассматривается распределение экстремальных значений. Здесь будет рассмотрено распределение наименьших значений однако этот подход может быть использован и при выводе распределений наибольших значений. Функция распределения наименьших значений функция...
21723. Модели надёжности установок с восстановлением 310 KB
  Модели надёжности установок с восстановлением При экспоненциальном законе распределения времени восстановления и времени между отказами для расчёта показателей надёжности установки с восстановлением пригоден математический аппарат марковских случайных процессов. Дискретный случайный процесс называется марковском если все вероятностные характеристики будущего протекания этого процесса при зависят лишь от того в каком состоянии этот процесс находился в настоящий момент времени и не зависят от того каким образом этот процесс протекал до...
21724. Общие принципы определения ущерба от нарушений электроснабжения 80 KB
  Общие принципы определения ущерба от нарушений электроснабжения Проблема оценки ущерба от нарушений электроснабжения вызываемых отказами электрооборудования возникает как при проектировании так и при эксплуатации энергетических объектов. При проектировании потребность в характеристике ущерба ощущается как правило когда определяется экономическая эффективность капитальных вложений при выборе вариантов технических и организационнохозяйственных решений влияющих на степень надежности электроснабжения потребителей. При эксплуатации...
21725. Технико-экономическая оценка последствий от нарушений электроснабжения объектов производственных систем 240 KB
  Техникоэкономическая оценка последствий от нарушений электроснабжения объектов производственных систем 8.1 Модель поведения участка производства при нарушениях его электроснабжения По характеру последствий все отказы участков производственной системы можно разделить на три группы: 1 не обесценивающие производственную продукцию; 2 частично обесценивающие; 3 полностью обесценивающие. В этом случае длительность простоя производственного участка соответствует длительности нарушения электроснабжения . Большинство нарушений электроснабжения...
21726. Накопители на жестких магнитных дисках 116 KB
  1 БУСД блок управления 3х фазным синхронным двигателем шпинделя; И инвертор; СД синхронный двигатель; БП блок питания; ВК внутренний контроллер БУП блок управления позиционированием головки; ОЗУ оперативное запоминающее устройство ВК; см сервометка; ДПГ датчик позиционирования головки. Кроме того он дает разрешение на выпуск головки при достижении минимальной скорости вращения. Для записи и считывания используются магнитные головки представляющие собой катушки индуктивности которые выполняются по тонкопленочной технологии....
21727. Устройства массовой памяти на сменных носителях 180 KB
  Устройства массовой памяти на сменных носителях Вопросы: Магнитооптические диски. Оптические диски CD DVD PD. Эти устройства подключаются к компьютеру с помощью следующих интерфейсов: АТА SCSI USB Наибольшей популярностью пользуются в настоящее время CD DVD и магнитооптические диски. Магнитооптические диски.
21728. Аудио система персонального компьютера 245.5 KB
  Собственно цифровые каналы звуковой карты проходят через интерфейсные схемы например MIDI от шины расширения до ЦАП и от АЦП обратно к шине. На этих картах располагается и порт традиционного MIDI. Интерфейс MIDI Цифровой интерфейс музыкальных инструментов MIDI Musical Instrument Digital Interface является последовательным асинхронным интерфейсом с частотой передачи 3125 Кбит с. В настоящее время интерфейс MIDI имеют и дорогие синтезаторы и дешевые музыкальные клавиатуры пригодные в качестве устройств ввода компьютера.
21729. Коммуникационные устройства 306.5 KB
  Обмен данными требуется для различных целей: передачи файлов совместного использования периферийных устройств например принтеров доступа к разнообразным информационным услугам Интернета и частных сетей приема и передачи факсимильных сообщений посылки сообщений на пейджеры и мобильные телефоны установление голосовой связи IPтелефония видеосвязи и даже совместных игр по сети. СОМпорт Последовательный интерфейс для передачи данных в одном направлении использует одну сигнальную линию по которой информационные биты передаются друг за...