59031

Позакласна робота з математики. Логічні задачі

Конспект урока

Педагогика и дидактика

Завжди робіть таблицю, у ній ви зможете враховувати всі ймовірні варіанти. Уважно читайте кожне твердження. По-справжньому уважно. Звичайно кожне твердження містить щось таке, що дозволить вам спростувати хоча б один із варіантів.

Украинкский

2014-05-03

48 KB

0 чел.

Позакласна робота з математики

Логічні задачі

П'ять простих кроків на шляху пошуку розв'язку логічної задачі:

Завжди робіть таблицю, у ній ви зможете враховувати всі ймовірні варіанти.

Уважно читайте кожне твердження. По-справжньому уважно. Звичайно кожне твердження містить щось таке, що дозволить вам спростувати хоча б один із варіантів.

Намагайтесь відшукати головне твердження. У складних задачах воно може стояти не спочатку і навіть не на другому місці, але воно обов'язково є. Найімовірніше, головним буде третє або четверте твердження. Але пам'ятайте: у логічних задачах не існує сталих правил.

Після того як переглянули всі твердження й викреслили ті з них, безглуздість яких видно неозброєним оком, порівняйте ті, що залишилися, між собою й визначте зв'язки та протиріччя.

Розв'язок можна знайти простим методом послідовних виключень. Тільки не відступайте, якщо не можете розв'язати задачу. Як тільки зрозумієте принцип побудови такої задачі, ви почнете "лускати" їх, як горішки. А чим більше будете тренуватися, тим краще це буде виходити.

ЗАДАЧІ

1. На всесвітньому фестивалі молоді зустрілись 6 делегатів. Виявилось, що серед будь-яких трьох з них двоє можуть порозумітися між собою якоюсь мовою. Доведіть, що тоді найдеться 3 делегатів, кожен з яких може порозумітись з кожним.

2. Маємо 2 купи каміння. Гра складається з того, що кожен із двох гравців по черзі забирає будь-яку кількість камінців тільки з однієї купи. Виграє той, хто бере останнім. Знайти спосіб гри, який забезпечує виграш тому гравцеві, який може або розпочати гру, або надати перший хід своєму партнеру.

3. З картону вирізано 2 правильних восьмикутники. У вершинах одного з них поставлені по черзі (навпроти годинникової стрілки) числа від 1 до 8. Чи можна розставити в вершинах другого восьмикутника ті самі числа так, щоб у будь-якому накладенні другої фігури на першу яка-небудь вершина потрапляла у вершину з тим самим номером.

4. Щоденно впродовж року учень розв'язував не менше однієї задачі кожного дня, при цьому кожного тижня він розв'язував не більше як 12 задач. Довести, що знайдеться декілька послідовних днів, в які він розв'язував 20 задач.

5. В школі 740 учнів. Довести, що троє з них в один і той же день святкують свій день народження.

6. З 61 монети за 4 зважування відокремити фальшиву (вона тяжча, ніж інші).

7. Кожен із трьох друзів зіграв однакову кількість шахових партій з іншим. При цьому вияснилось, що перший з них виграв найбільшу кількість партій, другий програв найменшу кількість партій, а третій набрав найбільшу кількість очків. Чи могло так бути? Якщо ні, то доведіть. Якщо так, то наведіть приклад.

8. Вчитель перевірив роботи трьох учнів - Олексієва, Василенка і Сергієнка, але не приніс у клас. Учням він сказав: "Один із вас отримав "3", другий - "4", а третій - "5". У Сергієнка не "5", у Василенка не "4", а у Олексієва, здається, "4".

Коли принесли зошити, то виявилось, що вчитель тільки одному учневі сказав правильну оцінку, двом іншим - неправильну. Які оцінки отримали учні?

9. Є 5 монет, серед яких одна - фальшива. Невідомо, легше вона або тяжча дійсної. Вага дійсної монети - 5 г. Як за допомогою двох зважувань на терезах можна знайти фальшиву монету, маючи одну гирю вагою 5 г?

10. Три розбійника хочуть поділити здобич порівну. Кожен з них упевнений, що тільки він поділить здобич на рівні частини, але інші не мають довіри до нього. Якщо б розбійників було двоє, тоді було б легше вийти з цього становища: один розділив би здобич на 2 частини, а другий взяв би ту частину, яка здавалась йому більшою. Як повинні діяти розбійники, щоб кожен з них був упевнений, що його здобич не менше третьої частини всієї здобичі?

11. Плитка шоколаду складається з 35 квадратиків (7 5). Ламають по прямих, які ділять квадратики до тих пір, поки не одержать окремі 35 квадратиків. Скільки разів потрібно поділити шоколадку?

12. Яку найбільшу кількість слонів можна розташувати на шаховій дошці, щоб ані один із слонів не був під подвійною бійкою?

13. Серед трьох монет одна фальшива (вона легше, ніж дві інші однакової ваги). За допомогою одного зважування на терезах (без гир) знайти фальшиву монету.

14. Трьом учням в темній кімнаті одягли на голову по чорній шапці. Перед ними поставлено завдання відгадати, хто в якій шапці, якщо всього шапок 5, причому 2 з них - сірі, а 3 - чорні. Сірі шапки сховали перед тим, як у кімнаті запалили світло. Через деякий час один учень відгадав, що він стоїть в чорній шапці. Як він це зробив?

ВІДПОВІДІ

1. Хай делегат А може поговорити з трьома іншими делегатами, назвемо їх В, С, D. Серед останніх можливо двоє також можуть порозумітися між собою, скажімо, В і С. Тоді А, В, С - шукана трійка. Якщо А може поговорити не більше, ніж з двома іншими делегатами, то знайдуться три делегати Е, F, G, ні з одним з яких А не може говорити. Тоді Е, F, G утворюють шукану трійку.

2. Кожен раз треба брати каміння з тієї купи, яка більше, так, щоб обидві купи ставали однаковими. Якщо на початку гри обидві купи містили рівну кількість каміння, то необхідно надати перший хід партнеру.

3. Припустімо, що це можливо. Накладемо другий восьмикутник так, щоб одиниці співпадали. Хай при цьому проти числа і на верхньому восьмикутнику на нижньому знаходиться цифра а1 (а1 = 1, 2 ..., 8). Для того, щоб поєднати цифри а1 верхнього і нижнього восьмикутника, можна повернути верхній восьмикутник проти годинникової стрілки на кут b1 Ч 45°, де

b1 =     і - а1, якщо і > а1,

і - а1 + 8, якщо і Ј а1

Доведіть, що b1 приймає всі значення 1, 2, ..., 8. Складаючи b1, отримаємо b1 + b2 + ... + b8 = (1 + 2 + ... + 8) - (а1 + а2 + ... + а8) + 8К,

де К - яке-небудь ціле число. Але а1 + а2 + ... + а8 = b1 + b2 + ... + b8 = 1 + 2 + ... + 8 = 36

А 36 не ділиться на 8, то приходимо до протиріччя.

4. Будемо вважати, що рік складається з 52 тижнів. За цей час учень розв'язав не більше 624 задач. Позначимо через а1 кількість задач, розв'язаних за перший день, через а2 - кількість задач, розв'язаних за два дні; а3 - кількість задач, розв'язаних за три дні і т. д. Кожне з чисел а1, а2, а3, ... а364. Не більше, ніж 52 Ч 12 = 624. Всі ці числа різні. Розглянемо також 364 таких числа: а1 + 20, а2 + 20, а3 + 20, ..., а364 + 20.

Серед цих чисел немає ні однієї пари однакових, кожне з них менше 644.

Значить, серед 728 цілих позитивних чисел, кожне з яких менше 644, знайдеться більше, ніж одна пара рівних. Хай ак = а1 + 20, тоді ак - а1 = 20. А це значить, що за час між "к-тим" та "і-тим" днями учень розв'язав рівно 200 задач. До речі, впродовж року буде 84 таких проміжків часу, коли учень розв'язував по 20 задач.

У цій задачі достатньо обмежитися часом значно меншим, ніж рік. Аналогічно можна показати, наприклад, що впродовж 77 днів також знайдеться декілька послідовних днів, коли учень розв'язував рівно 20 задач.

5. Якщо б кожного дня два учні святкували свій день народження, то в школі було б 732 учня.

6. Поділимо монети на 3 групи: 21, 21 і 19. На терези покладемо перші 2 групи по 21 монеті, а третю групу з 19 монет відкладемо. При цьому можливі два випадки: чаші терезів урівноважені і неврівноважені. Розглянемо кожен з цих випадків.

1) Чаші врівноважені, отже, тяжча (фальшива) монета знаходиться серед 19 відкладених. Розділимо ці 19 монет на 3 групи (7, 7 і 5) і порівняємо на терезах вагу перших двох груп (це буде друге зважування). Знову може вийти, що:

а) терези врівноважені; б) терези неврівноважені.

У випадку а) фальшива монета серед 5 відкладених. З них під час наступних двох зважувань спочатку порівняємо 2 і 2 монети, відкладаючи п'яту. Якщо п'ята не фальшива, тоді зважимо дві монети з тієї чаші терезів, що перетягнула.

Якщо терези неврівноважені (випадок б), тоді фальшива монета знаходиться серед 7 монет. Розділимо цю групу на 3, 3 і 1 монету і покладемо на терези по 3 монети і т. д. І в цьому випадку для розв'язання необхідно 2 зважування - не більше.

2) Чаші з монетами (на кожній по 21) неврівноважені. Відкладаємо 7 монет. Це буде друге зважування. Отож, і в цьому випадку потрібно чотири зважування.

У цьому випадку, коли з умови не випливає вага предмета (легший він або тяжчий за інші), для його виявлення потрібно, як правило, зробити додаткове зважування. Так, у задачі про виявлення серед 9 монет однієї фальшивої (невідомо, легша вона або тяжча в порівнянні з теперішньою) двома зважуваннями не обійтись. Доведеться "переважувати " монети тричі.

Інколи в таких задачах дещо змінюють, наприклад, введенням виокремленого числа гир певної ваги.

7. Так могло статись. Хай двоє зіграли між собою по 10 партій. При цьому перший виграв у другого 3 партії і другий виграв у нього стільки ж. У третього перший переміг у 4-х партіях, але програв йому 5 партій. Всі інші партії закінчились нічиєю. Тоді перший, який переміг у 7 партіях, програв 8 і 5 закінчив нічиєю, буде мати 9,5 очків, другий, котрий програв 3 партії і переміг у 3-х партіях, а в 14 партіях зіграв унічию, буде мати 16 очків. Третій набере 11,5 очків, тобто у нього 5 перемог, 4 поразки і 11 нічиїх.

8. Можливі 6 варіантів розташування оцінок: АВС, АСВ, ВСА, СВА. Кожен запис означає, що "5" отримав перший учень, "4" - другий, "3" - третій. З цих записів лише перший підходить до умови задачі: в твердженнях вчителя одна оцінка правильна, а дві інші - ні. Тому Сергієнко отримав "3", Василенко - "4", Олексієв - "5".

9. Позначимо монети А, В, С, D, Е. Покладемо монети А і В на одну чашу терезів, а монету С з гирею - на другу. Якщо терези врівноважені, тоді фальшива монета серед відкладених D і Е. Наступним зважуванням знайдемо фальшиву і покладемо на терези гирю і монету D (за рівноваги терезів - Е, за нерівноваги - D). В одному з цих випадків не можна встановити, легша чи тяжча фальшива монета, але цього і не вимагає умова задачі.

Коли терези врівноважені, то потрібно розглянути 2 випадки. Якщо переважує чаша з монетами А і В, тоді фальшива монета серед трьох: А, В (тоді вона важча) або С (тоді С легша). Відкладені монети D і Е - справжні.

Для другого зважування покладемо на чашу терезів монети А і С, а на другу - 2 справжніх (або одну справжню і гирю, що одне й те саме), а монету В відкладемо. Якщо монети врівноважаться, то монета В - фальшива (тяжча за справжню). Якщо терези не врівноважаться і переважать чаші з монетами А і С, тоді фальшива А (тяжча), коли ж ця чаша легша, тоді і фальшива монета С легша.

10. Хай один із розбійників розділить здобич на 3, на його думку, рівні частини. Якщо при цьому інші розбійники виберуть собі по одній з частин, то третя частина залишиться для розбійника, який ділив цю здобич. Якщо двоє захочуть узяти одну й ту саму частину, то вони поділять на 2 частини між собою способом, який описаний в умові задачі. Якщо 2 розбійника, які отримали половину своєї частини здобичі, показують на різні частини, то кожен із них поділить ці частини з розбійником, який здійснював перший розподіл.

11. При будь-якому розламуванні плитки кількість квадратиків збільшується на 1. Щоб отримати 35 квадратиків, потрібно розламати плитку 34 рази.

12. Слон, який стоїть на внутрішній клітині дошки, тримає під загрозою більшу кількість клітин, аніж слон, який стоїть на клітині будь-якого крайнього ряду (горизонтального або вертикального). Потрібно розташувати слонів так, щоб вони загрожували найменшій кількості клітин, а значить, їх потрібно поставити на клітини одного з крайніх рядків. Ці 8 слонів не будуть загрожувати шести клітинам протилежного крайнього ряду (в цьому рядку під загрозою поставлених восьми слонів знаходяться тільки дві крайні клітини) - на ці шість клітин і поставимо ще по слону на кожну. Отже, 8 + 6 = 14 слонів - це найбільша кількість слонів, яку можна розташувати на шаховій дошці так, щоб жоден із двох слонів не був під подвійною загрозою.

13. Припустімо, на чаші терезів по одній монеті, а третю відкладемо в сторону. Якщо чаші знаходяться в рівновазі, то відкладена монета і є фальшивою. В другому випадку терези покажуть монету, яка легша, тобто фальшиву.

14. Цей учень думав так: "Хай я в сірій шапці, тоді мій сусід ліворуч буде бачити мене в сірій, а третього учня в чорній шапці. Тоді як сірих шапок лише дві, то один з моїх товаришів повинен зразу здогадатися, що він у чорній шапці. Але він мовчить, а тому я не можу бути в сірій шапці. Тому на мені чорна шапка".

ЗАМІСТЬ ПІСЛЯМОВИ

А тепер, набувши досвіду розв'язання задач, ви зможете вигадати власну логічну задачу. Найпростіший спосіб - уявіть собі ситуацію з трьома або чотирма гравцями, а потім, аби трохи ускладнити завдання, виключіть з нього підказки. Напевне, ви почнете з трьох друзів, у кожного з яких вдома є жива істота. З цього місця можете вигадувати самі. Додайте більше подробиць, поки не отримаєте справжню головоломку, а потім відкиньте деталі, що можуть підказати розв'язок, залишивши рівно стільки, щоб задачу все-таки можна було розв'язати.


 

А также другие работы, которые могут Вас заинтересовать

22414. Отображения. Числовые функции 326.5 KB
  Отображением f множества X в множество Y называется всякое правило которое любому элементу xX ставит единственный элемент y обозначаемый fx. Бинарным отношением f между множествами X и Y называется любое подмножество множества XY. Бинарное отношение f между множествами X и Y называется отображением множества X в множество Y если для любого элемента xX существует один и только один элемент yY такой что x yf . Отображение f множества X в Y называется также функцией определенной на множестве X со значениями в множестве Y.
22415. Числовая последовательность и ее предел 211.5 KB
  Числовая последовательность и ее предел Числовая последовательность и свойства последовательностей. Числовая последовательность и свойства последовательностей. Числовой последовательность или просто последовательность называется функция f определенная на множестве натуральных чисел N значения которой числа действительные или комплексные. Последовательность обозначаем через ее значения : x1 x2 x3 xn или кратко {xn}.
22416. Предел функции 329.5 KB
  Предел функции Предел функции в точке по Коши и по Гейне. Предел функции на бесконечности. Бесконечно малые и бесконечно большие функции и их свойства. Свойства предела функции.
22417. Україна у Другій Світовій війні та першому повоєнному десятиріччі (1939 – 1955 рр.) 49 KB
  Напередодні Другої світової війни населення Західної України становило близько 7 мли осіб. На всіх цих землях панувала іноземна адміністрація, яка проводила колонізаційну політику. Це викликало обурення українців, призводило до спротиву офіційним властям
22418. Сравнения функций. Свойства функций, непрерывных на отрезке 218.5 KB
  Если предел 1 равен 0 то функция fx называется бесконечно малой более высокого порядка чем gx при x  a а функция gx называется бесконечно малой более низкого порядка чем fx при x  a. Если предел 1 равен   то функция fx является бесконечно малой болей низкого порядка чем gx при x  a а gx функция является бесконечно малой более высокого порядка чем fx при x  a. Если предел 1 равен   то функция является бесконечно большой при x  a. Тогда по свойству бесконечно малых функция бесконечно малая при...
22419. Производная и дифференциал функции одной переменной 224 KB
  Производная и дифференциал функции одной переменной Приращение аргумента и приращение функции. Понятие функции дифференцируемой в точке. Дифференциал функции. Производная функции.
22420. Теоремы о дифференцируемых функциях. Производные и дифференциалы высших порядков 246.5 KB
  Производные и дифференциалы высших порядков Возрастание и убывание функции в точке. Точки экстремума функции. Линеаризация функции. Приближенное вычисление значений функции.
22421. Правила Лопиталя. Формула Тейлора 245 KB
  Формула Тейлора. Формула Тейлора с остаточным членом в форме Пеано. Формула Тейлора с остаточным членом в форме Лагранжа. Разложение основных элементарных функций по формуле Тейлора.
22422. Исследование функции с помощью производной 216 KB
  Исследование функции с помощью производной. Возрастание и убывание функции на промежутке. Точки экстремума функции. Нахождение наибольшего и наименьшего значения функции на отрезке.