5931

Динамические и частотные характеристики САУ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Динамические и частотные характеристики САУ Цель работы: Ознакомление с динамическими и частотными характеристиками систем автоматического управления (САУ) и получение навыков исследования линейных динамических моделей. Постановка задачи: В качестве...

Русский

2012-12-25

165.9 KB

30 чел.

Динамические и частотные характеристики САУ

Цель работы:

Ознакомление с динамическими и частотными характеристиками систем автоматического управления (САУ) и получение навыков исследования линейных динамических моделей.

Постановка задачи:

В качестве объекта исследования выступают линейные (линеаризованные) динамические стационарные системы управления с одним входом и одним выходом. При этом модель одномерной САУ задана в виде комплексной передаточной функции, записанной как отношение полиномов

Необходимо:

  1. Определить полюса и нули передаточной функции;
  2. Записать дифференциальное уравнение, определяющее функционирование САУ;
  3. Построить графики переходной и импульсно-переходной функции:
  4. h(t), w(t);
  5. Построить логарифмические частотные характеристики
  6. L (w );
  7. Построить частотный годограф Найквиста;
  8. W(iw ), w = [0, Y ].
  9. Представить исходную систему в виде последовательного соединения типовых звеньев. Построить характеристики этих типовых звеньев.

Выполнение работы.

Задана передаточная функция САУ:

.

  1. Создадим LTI-объект с именем w, для этого выполним:

  1. Найдем полюса и нули передаточной функции с использованием команд pole, zero.

  1. Построим переходную функцию командой step(w). Результат ее выполнения приведен на рисунке 1.

Рисунок 1 – Переходная функция h(t).


  1. Построим импульсную переходную функцию командой impulse(w). Результат показан на рисунке 2.

Рисунок 2 – Импульсная переходная функция.

  1. Диаграмму Боде получим, используя команду bode(w) – рисунок 3.

                        

Рисунок 3 – Логарифмические частотные характеристики.

  1.  
    Определим частотный годограф Найквиста, выполнив команду nyquist(w) – рисунок 4.

Рисунок 5 – Частотный годограф.

  1.  Аналогичные результаты (рисунок 6) можно получить, используя команду ltiview(w), с соответствующими настройками в меню “Plot Configuration”.

Рисунок – LTI-viewer.

Каждая из построенных характеристик полностью и однозначно определяет рассматриваемую систему управления.

Вывод: в ходе выполнения работы я ознакомился с динамическими и частотными характеристиками систем автоматического управления (САУ) и получил навыки исследования линейных динамических моделей.


 

А также другие работы, которые могут Вас заинтересовать

38945. Определение, назначение, действие, применение и классификация лидаров 244 KB
  Действие лидара основано на таких свойствах лазерного излучения как высокая мощность квазимонохроматичность направленность и малая длительность импульсов и таких физических процессах как упругое молекулярное и упругое аэрозольное рассеяние упругое резонансное и неупругое комбинированное рассеяние флюоресценция и поглощение лазерного излучения при его взаимодействии с атомами молекулами и другими частицами веществ в окружающей среде. При распределении зондированного лазерного излучения ЛИ от передающего устройства лидара в исследуемой...
38946. Типы и характеристики излучения лазеров для лидаров 26.5 KB
  Если в лидаре используется лазер с перестраиваемой частотой или длиной волны зондирующего излучения υи = с λи то лидар можно применять для лазерного химического анализа состава атмосферы Земли на основе эффекта комбинационного рассеяния молекулами химических соединений компонент атмосферы. Лидар с перестраиваемой λи зондирующего лазерного излучения может быть использован для химического анализа атмосферы Земли путем измерения интенсивности после прохождения исследуемой трассы. Поэтому исследуя зависимость интенсивности прошедшего в атмосфере...
38948. Физические процессы взаимодействия лазерного излучения с веществом 558 KB
  Физические процессы взаимодействия лазерного излучения с веществом. Действия лидаров для исследования атмосферы основано: лазерное излучение распространяясь в реальной атмосфере оставляет в ней след вызванный взаимодействием фотонов лазерного излучения с атомами и молекулами газов частицами аэрозолей и неоднородностями атмосферы обусловленными турбулентными вихревыми движениями воздуха. Это взаимодействие прежде всего проявляется в упругом и неупругом рассеянии лазерного излучения в атмосфере при которых в частности образуется...
38949. Методические погрешности анализа спектра с использованием процедуры ДПФ. Растекание спектра (эффект Гиббса - leakige). Слияние отсчетов спектра 20.21 KB
  Методические погрешности анализа спектра с использованием процедуры ДПФ. Растекание спектра эффект Гиббса lekige. Слияние отсчетов спектра.Эффект появления ложных спектральных составляющих При расчете параметров процедуры ДПФ выбирают некоторую граничную частоту fg из логарифмического уравнения и находят интервал дискретизации t как: t = 1 2 fg 1.
38950. Синтез линейных элементов ОЭП методом рекуррентных разностных уравнений (РРУ). Алгоритм РРУ, связь с преобразованием Лапласа. Расчет параметров алгоритма РРУ методом Тастина 222.5 KB
  Синтез линейных элементов ОЭП методом рекуррентных разностных уравнений РРУ. Алгоритм РРУ связь с преобразованием Лапласа. Расчет параметров алгоритма РРУ методом Тастина Алгоритм РРУ при синтезе ЛЭ явлся альтернативой свертки.N1 алгоритм РРУ определяет значение ym резщей последовательности с номером m по соотношению: Где m = 0.
38951. Особенности анализа оптических сигналов с помощью процедуры двумерного ДПФ. Методические погрешности 298 KB
  Массив gk1k2 трактуется как результат дискретизации некоторого изображения или излучающей поверхности gху т. что отсчеты спектра соответствующие высоким пространственным частотам находятся в центральной ийласти результирующего массива а соответствующие низким пространственным частотам в угловых областях Для...
38952. Синтез линейных элементов ОЭП с помощью процедуры дискретной свертки (ДС). Вид выражения одномерной и двумерной ДС, его связь с аналоговой сверткой 784 KB
  сигнала gτ St – сигналы на входе и выходе ht – ИХ линейного элемента При проектировании gτ St известны ht искомая. сигнала является дискретным аналогом свертки. сигнала hk – отсчеты ИХ ЛЭ ym – результирующая последовательность отсчетов вых. сигнала При переходе к автоматическому проектированию необходимо вхю сигнал и ИХ ограничить некоторым временным интервалом затем дискретезировать.
38953. Синтез случайных величин как базовая операция процедуры анализа параметрической чувствительности. Методы: «обратной функции», Неймана, «кусочной аппроксимации» 353.5 KB
  Синтез случайных величин как базовая операция процедуры анализа параметрической чувствительности. расчет качества ОЭС при условии изменения параметров элементов в соответствии с законами распределения их как случайных величин. Ядро процедуры – синтез случайных величин с известными параметрами. Методы синтеза основаны на преобразовании исходной последовательности значений gk случ велич Г р м распределенной в интервале [0;1] в последовательность значений xi случ величины Х с заданной функцией распределения ФР Fx или плотностью...