6014

Исследование детекторов частотно-модулированных сигналов

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Радиоприемные устройства Исследование детекторов частотно-модулированных сигналов 1. Цель работы Изучение принципов работы и основных характеристик детекторов частотно-модулированных колебаний. Экспериментальное исследование схем частотных детекторо...

Русский

2012-12-27

413 KB

67 чел.

Радиоприемные устройства

Исследование детекторов частотно-модулированных сигналов

1. Цель работы

Изучение принципов работы и основных характеристик детекторов частотно-модулированных колебаний. Экспериментальное исследование схем частотных детекторов (ЧД) с двумя взаимно расстроенными контурами и автокорреляционного (с элементом задержки).

2. Расчетная часть

Исходные данные для расчета:

Средняя частота сигнала

Девиация частоты

Обобщенная начальная расстройка контуров

Коэффициент усиления по напряжению усилителя-ограничителя

Коэффициент передачи диодных детекторов

Напряжение на входе ЧД

1. Рассчитать эквивалентную добротность контуров частотного детектора на расстроенных контурах из условия получения требуемой начальной расстройке, равной девиации частоты полезной модуляции.

2. Рассчитать и построить детекторную характеристику ЧД на расстроенных контурах Uвых=ψ(∆f) при добротности контуров рассчитанных в первом пункте.

∆f, кГц

ψ(∆f)

Uвых, В

30

0,065465279

0,366606

28

0,076337433

0,42749

26

0,090283403

0,505587

24

0,108630811

0,608333

22

0,133534546

0,747793

20

0,168692107

0,944676

18

0,220880808

1,236933

16

0,303437394

1,699249

14

0,443492082

2,483556

12

0,679188793

3,803457

10

0,868202436

4,861934

8

0,653041474

3,657032

6

0,389668088

2,182141

4

0,218578632

1,22404

2

0,099077492

0,554834

0

0

0

-2

-0,09907749

-0,55483

-4

-0,21857863

-1,22404

-6

-0,38966809

-2,18214

-8

-0,65304147

-3,65703

-10

-0,86820244

-4,86193

-12

-0,67918879

-3,80346

-14

-0,44349208

-2,48356

-16

-0,30343739

-1,69925

-18

-0,22088081

-1,23693

-20

-0,16869211

-0,94468

-22

-0,13353455

-0,74779

-24

-0,10863081

-0,60833

-26

-0,0902834

-0,50559

-28

-0,07633743

-0,42749

-30

-0,06546528

-0,36661

3. Рассчитать максимально допустимую задержку сигнала в автокорреля-ционном ЧД и величину задержки, при которой фазовый сдвиг между входным и задержанным сигналами будет равен 90° на средней частоте fo.

Максимально допустимую задержку сигнала определяем из условия:

Тогда

Величину задержки, при которой фазовый сдвиг равен 90°, определяем из равенства:

Тогда

3. Описание схем лабораторной работы

В работе исследуется балансный ЧД на расстроенных контурах и автокорреляционный (с элементом задержки). Схемы для исследований приведены на рисунках 1 и 2. На рисунке 1 представлена схема ЧД на расстроенных контурах. Детектор относится к типу частотно-амплитудных. Преобразователем вида модуляции служат два контура, настроенных на частоты f1 и f2, с начальной расстройкой ∆fо в разные стороны относительно средней частоты сигнала fo. Амплитудные детекторы выполнены на диодах VD1 и VD2 и включены по схеме вычитания. Схема является аналоговым прототипом цифрового частотного детектора, в котором используются цифровые фильтры, чаще всего второго порядка, с цифровыми амплитудными детекторами.

Рисунок 1 - Схема ЧД на расстроенных контурах

Рисунок 2 – Схема автокорреляционного ЧД

На транзисторе VT1 и VT2 выполнен последний каскад тракта промежуточной частоты в режиме амплитудного ограничителя. Он представляет собой усилительный каскад с эмиттерной связью.

Для исследования на вход схемы подаётся сигнал с генератора G1 или G2, амплитуда которого контролируется вольтметром PV1. На выходе ограничителя напряжение сигнала с амплитудой Uогр измеряется вольтметром PV2. Выпрямленные напряжения U1 и U2 на нагрузочных резисторах R9 и R10 и напряжение на выходе ЧД Uвых =U1-U2 измеряются соответственно вольтметрами PV3, PV4 и PV5.

При помощи графопостроителя можно видеть АЧХ резонансных контуров. Осциллограф позволяет наблюдать визуально сигнал в отдельных частях схемы.

На рисунке 2 приведена схема автокорреляционного частотного детектора. На входе схемы присутствует триггер Шмитта на микросхеме DD1, который преобразует аналоговый сигнал в последовательность импульсов прямоугольной формы. Инвертор DD2 позволяет избавиться от инверсии в триггере DD1 и наилучшим образом согласовать полученный сигнал с входными уровнями микросхемы DD3 и линией задержки Delay. Задержка сигнала в одной линии задержки Delay на основной частоте f0 составляет 90°.

Одна из возможных схемных реализаций линии задержки представлена на рисунке 3. Здесь сдвиг сигнала на выходе буфера появляется за счет ненулевого времени распространения. Величину задержки можно изменять, включая элементы последовательно.

Рисунок 3 – Схема задержки сигнала

Фазовый детектор (ФД) состоит из перемножителя, реализуемого в виде схемы совпадений на элементе 2И микросхемы DD3 и интегратора или фильтра нижних частот Int. Возможна и цифровая реализация ЧД на микропроцессоре. Напряжение сигнала на выходе схемы измеряется вольтметром PV1. Для визуального наблюдения сигнала служит осциллограф. Переключатель SA1 позволяет подавать на вход схемы сигнал с генератора частотно-модулированного сигнала G1 или с генератора синусного напряжения G2 при исследовании детекторных характеристик. При помощи переключателя SA4 можно также подать на вход схемы частотно-манипулированный сигнал с модулятора G3, при этом на выходе появляется возможность визуального наблюдения модулирующего сигнала генератора G4. Задержку сигнала можно изменять ступенчато, т.е. 45°, 90° и 135° при помощи переключателей SA2 и SA3. В зависимости о положения этих переключателей в схему включается одна, две или три линии задержки на 45°

4. Задание

4.1. В схеме ЧД на расстроенных контурах снять зависимости выпрямленных напряжений U1 и U2 на нагрузочных сопротивлениях детектора R9 и R10 от частоты входного сигнала. На основе полученных зависимостей построить детекторную характеристику ЧД.

4.2. Снять экспериментальную детекторную характеристику ЧД на расстроенных контурах и сравнить её с полученной в пункте 4.1.

4.3. Снять амплитудную характеристику усилителя-ограничителя в схеме ЧД на расстроенных контурах. Зарисовать форму сигнала на выходе амплитудного ограничителя и сравнить её со входной.

4.4. В схеме автокорреляционного ЧД исследовать зависимости детекторных характеристик от величины задержки входного сигнала. Зарисовать форму сигнала на входе и выходе триггера Шмитта.

4.5. Исследовать работу автокорреляционного ЧД при воздействии на входе частотно-модулированного и частотно-манипулированного сигнала.

5. Указания к выполнению экспериментальной части

5.1 Снятие зависимостей выпрямленных напряжений U1 и U2 на нагрузочных сопротивлениях R9 и R10 от частоты входного сигнала

Схема ЧД на расстроенных контурах (рисунок 1). С генератора подать на вход схемы немодулированное колебание напряжением Uвх=0,5 В. Изменяя частоту генератора G2 в пределах 70...130 кГц снять зависимость выходного напряжения U1 от частоты. Особое внимание обратить на точность измерения на частоте, соответствующей максимальному значению напряжения U1.

Аналогично провести измерение напряжения U2.

Полученные зависимости U1 и U2 с учетом знака построить на одном графике.

Затем на тех же координатных осях построить детекторную характеристику Uвых=ψ(∆f), где Uвых =U1-U2.

Зарисовать АЧХ расстроенной пары контуров (с экрана графопостроителя).

5.2 Снятие детекторной характеристики ЧД на расстроенных контурах

Подать на вход схемы с генератора G2 сигнал 0,5 В. Изменяя частоту генератора в пределах 70...130 кГц снять зависимость выходного напряжения Uвых от частоты, т. е. детекторную характеристику. Необходимо особо отметить среднюю частоту детекторной характеристики, на которой выходное напряжение равно нулю, а также частоты, соответствующие максимальному положительному и отрицательному положению на выходе ЧД. Сравнить полученные результаты с характеристикой полученной в пункте 5.1.

5.3 Снятие амплитудной характеристики-усилителя ограничителя

Установить частоту входного сигнала генератора G2 равной средней частоте f0 = 100 кГц. Изменяя входное напряжение от 0 до 1 В с шагом 0,05 В, снять амплитудную характеристику Uогр = ψ(Uвх). Оценить пороговое напряжение. Uвх.пор=0,2В

Зарисовать осциллограммы напряжений на входе и выходе ограничителя при действии амплитудно-модулированного сигнала генератора G1 с коэффициентом модуляции m=0.5 и уровне входного сигнала выше порогового для чего клавишей “Space” подключить генератор АМ. Оценить эффективность амплитудного ограничителя.

5.4 Исследование зависимости детекторных характеристик автокорреляционного частотного детектора от величины             задержки входного сигнала

Схема автокорреляционного ЧД по рисунку 2. Установить максимально допустимую задержку входного сигнала τ, согласно предварительному расчету. Изменяя частоту генератора G2 в пределах 50...150 кГц снять детекторную характеристику Uвых=ψ(f).

Аналогично установить задержку, при которой фазовый сдвиг между входным и задержанным сигналам будет равен 45°, 90° и 135° . Построить детекторные характеристики для различных τ на одном графике. Сделать выводы.

5.5 Исследование работы автокорреляционного ЧД                                  при воздействии на входе частотно-модулированного                                   и частотно-манипулированного сигнала

Установить задержку 90°, при этом SA2 находится в вержнем, а SA3 в нижнем положении. Подключить на вход сначала ЧМ-генератор G1, зарисовать осциллограммы на выходе автокорреляционного ЧД при воздействии на входе частотно-модулированного сигнала. Частота модулирующего сигнала равен 1 кГц.

Затем подать на вход сигнал с частотного манипулятора G3, зарисовать осциллограммы на выходе автокорреляционного ЧД. Период повторения модулирующих импульсов равен 3,8 мс.

6. Выводы по результатам исследования

Качество детектирования определяется шириной и линейностью рабочего участка характеристики. Недостатком ЧД на двух взаимно расстроенных контурах является сильная зависимость формы детекторной характеристики от расстройки контуров, вызванной дестабилизирующими факторами. Для получения симметричной статической характеристики ЧД полосы пропускания обоих контуров должны быть одинаковыми. Несмотря на сложность в настройке, ЧД на двух взаимно расстроенных контурах используется в РПрУ, где допустимые нелинейные искажения не должны превышать долей процентов. 

Достоинством ЧД с линией задержки является примерно в 2 раза более широкая рабочая полоса детекторной характеристики по сравнению с ЧД на расстроенных контурах при одинаковом уровне нелинейных искажений, а также в 3...5 раз меньшее время переходного процесса ввиду отсутствия резонансных контуров. Последнее важно при детектировании импульсных сигналов. Заметим, что линия задержки должна быть тщательно согласована для исключения отражений с обоих ее концов во избежание появления изрезанности в форме детекторной характеристики.


 

А также другие работы, которые могут Вас заинтересовать

23104. Співвідношення невизначеності Гейзенберга, приклади його проявів 74.5 KB
  Нехай стан частинки опивується хв. Остаточно Співвідношення невизначеностей проявляється при будьякій спробі вимірювання точного положення або точного імпульса частинки. Виявляється що уточнення положення частинки впливає на те що збільшується неточність в значенні імпульса і навпаки. Часто втрачає зміст ділення повної енегрії частинкияк квантового об’єкту на потенціальну і кінетичну .
23105. Сестринский процесс при холециститах 25.25 MB
  Воспаление желчного пузыря регистрируется почти у 10% населения планеты, причем в 3-4 раза чаще холециститом страдают женщины. Большинство людей не следят за своим рационом, ведут сидячий образ жизни.
23106. Теорія молекули водню. Обмінна взаємодія 371 KB
  Оскільки гамільтоніан не залежить від спінових змінних то хвильова функція зображається добутком спінової функції на просторову . За допомогою хвильової функції знаходимо середнє значення повного гамільтоніана системи: де кулонівський інтеграл К характаризує ел. наближені хвильові функції Кулонівський інтеґрал К є малим числом і головну роль відіграє обмінний інтеґрал який у ділянці малих є додатною величиною а при змінює знак. Таким чином для симетричної просторової функції є можливим зв'язаний стан системи і теорія...
23107. Прискорювачі заряджених частинок та принципи їх роботи 62.5 KB
  При непрямих методах прискорення електричне поле індукується змінним магнітним полем або використовується змінне електричне поле у вигляді біжучих або стоячих хвиль. Ідея прискорення заряджених частинок електричним полем яке породжується змінним магнітним полем. Основна складова – потужний електромагніт обмотка якого живиться змінним струмом з частотою сотні МГц. При зміні маг потока з’являється вихрове ел поле і на кожний електрон в камері діє сила eE.
23108. Общая характеристика экономики государственного сектора 262 KB
  Под государственным сектором экономики страны понимают сектор, представляющий и обслуживающий интересы всего населения. Государство является основным институтом, организующим и координирующим взаимоотношения граждан и социальных групп в стране и обеспечивающим условия для их совместной деятельности
23109. Сучасні уявлення про ядерні сили. Моделі атомного ядра 136.5 KB
  За сучасними поглядами сили між нуклонами є виявом сильної кваркглюонної взаємодії. Така частинканосій сильної міжкваркової взаємодії називається глюоном. При взаємодії глюонів з кварками колір кварків змінюється. Аромат кварків їхній електричний та баріонний заряди не змінюються тобто колір є найбільш важливою властивістю кварків при взаємодії.
23110. Теорія молекули водню. Обмінна взаємодія 59.5 KB
  Теорія молекули водню. Відносне розміщення цих центрів атомних ядер визначає просторрову конфігурацію молекули при цьому стійкому рівноважному стану відповідає мінімум енергії молекули. Відносний рух ядер коливання ядер і обертання молекули як цілої – це окремі задачі. Таким чином для Н2 хвильове рівняння можна записати у вигляді: де V – потенціальна енергія молекули V=V1V2 – енергія першого ел.
23111. Методи визначення роботи виходу електрона 973.5 KB
  Методи визначення роботи виходу електрона. Енергію яку потрібно виконати для вибиття електрону з металу або рідини у вакуум називається роботою виходу. Еіон енергія іонізації А – робота виходу електрона за межі поверхні тіла – кін. Величина роботи виходу A в значній мірі залежить від чистоти поверхні емітера.
23112. Досліди Франка і Герца по визначенню потенціалів іонізації 52 KB
  При непружніх зіткненнях електрона з атомом відбувається передача енергії від електрона атому. Якщо внутрішня енергія атома змінюється неперервно то атому може бути передана будьяка порція енергії. Якщо ж стани атома дискретні то його внутрішня енергія при зіткненні з електороном повинна змінюватись також дискретно – на значення що дорівнюють різниці внутрішньої енергії атома в стаціонарних станах. Отже про непружньому зіткненні електрон може передати атому лише певні значення енергії.