6021

Прямое и обратное преобразование Радона

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Цель работы: Ознакомление с прямым и обратным преобразованием Радона изображений. Реализация прямого и обратного преобразований Радона с помощью функций в среде MatLAB (ImageProcessingToolbox). Короткие теоретические сведения ...

Русский

2012-12-27

1.24 MB

87 чел.

Цель работы: Ознакомление с прямым и обратным преобразованием Радона изображений. Реализация прямого и обратного преобразований Радона  с помощью функций в среде MatLAB (Image Processing Toolbox).

Короткие теоретические сведения

 Преобразование Радона.

С помощью преобразования Радона изображение представляется в виде набора проекций вдоль различных направлений. В результате получается совокупность теней, т.е. трёхмерная структура объекта сводится к набору двумерных изображений. При этом, проекция функции двух переменных f(x,y) представляет собой интеграл в определённом направлении.  Например, интеграл от f(x,y) в вертикальном направлении является проекцией  f(x,y) на ось x; интеграл в горизонтальном направлении является проекцией на ось  y.

Рис.1

Проекции могут быть вычислены вдоль любого угла  θ. Так, проекция  функции двух переменных  f(x,y) на ось  задаётся  интегралом

где оси   и   задаются поворотом против часовой стрелки на угол θ с использованием следующего выражения:

Геометрическое представление  преобразования Радона приведено на рисунке 2.

Рис.2

Преобразование Радона для большого количества углов чаще всего отображается в виде изображения. Например, преобразование Радона для прямоугольника при изменении θ от  0 до 180° с шагом 1° имеет вид (рис.3):

Рис.3

Обратное преобразование Радона реконструирует изображение по его матрице проекций. В компьютерной томографии (рис.4) осуществляется восстановление изображения сечения человеческого тела с использованием облучения рентгеновскими лучами под различными углами. Задача восстановления f(x,y) сводится к решению конечного числа уравнений  при различных значениях угла θ.

Рис.4

В большинстве случаев, не существует исходного изображения, от которого получают проекции. Например, при томографии, проекции формируются путём измерения интенсивности излучения, проходящего через физический объект под различными углами. Значения проекций накапливаются в специальном оборудовании, а затем с помощью обратной функции Радона выполняется неинвазивное (без вторжения во внутрь) восстановление внутренней структуры объекта (человека).

 


Порядок работы

  1.  Исследования преобразований Радона на модели

С помощью функции phantom сымитировать срез головы человека. Выполнить прямое преобразование Радона (radon), выбрав различные углы. Восстановить изображение с помощью обратного преобразования Радона. Исследовать влияние параметров команды iradon на сходство восстановленного изображения с оригиналом, а также на время выполнения обратного преобразования. Оценить качество восстановленного изображения.

close all; clear all; clc;

P=phantom(256); %Создание искусственного изображения среза головы

figure(1)

imagesc(P);

title('Head Phantom');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

%Прямые преобразования Радона с различными углами theta

theta1 = 0:10:170;

[R1,xp1] = radon(P,theta1);

theta2 = 0:5:175;

[R2,xp2] = radon(P,theta2);

theta3 = 0:2:178;

[R3,xp3] = radon(P,theta3);

theta4 = 0:0.1:179;

[R4,xp4] = radon(P,theta4);

figure(2)

subplot(2,2,1)

imagesc(theta1,xp1,R1)

title('Num angles = 18');

xlabel('Rotation Angle - \theta (degrees)');

ylabel('Sensor Position - x\prime (pixels)');

colormap(hot)

subplot(2,2,2)

imagesc(theta2,xp2,R2)

title('Num angles = 36');

xlabel('Rotation Angle - \theta (degrees)');

ylabel('Sensor Position - x\prime (pixels)');

colormap(hot)

subplot(2,2,3)

imagesc(theta3,xp3,R3)

title('Num angles = 90');

xlabel('Rotation Angle - \theta (degrees)');

ylabel('Sensor Position - x\prime (pixels)');

colormap(hot)

subplot(2,2,4)

imagesc(theta4,xp4,R4)

title('Num angles = 1791');

xlabel('Rotation Angle - \theta (degrees)');

ylabel('Sensor Position - x\prime (pixels)');

colormap(hot)

%Вычисление обратного преобразования Радона с различными углами theta

IR1=iradon(R1,theta1,'nearest','Ram-Lak',1,256);

IR2=iradon(R2,theta2,'nearest','Ram-Lak',1,256);

IR3=iradon(R3,theta3,'nearest','Ram-Lak',1,256);

IR4=iradon(R4,theta4,'nearest','Ram-Lak',1,256);

figure(3)

subplot(2,2,1)

imagesc(theta1,xp1,IR1)

title('Num angles = 18');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,2,2)

imagesc(theta2,xp2,IR2)

title('Num angles = 36');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,2,3)

imagesc(theta3,xp3,IR3)

title('Num angles = 90');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,2,4)

imagesc(theta4,xp4,IR4)

title('Num angles = 1791');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

%Среднеквадратическая относительная погрешность (18 углов)

close all; clear all; clc;

P=phantom(256);

theta1 = 0:10:170;

[R1,xp1] = radon(P,theta1);

IR1=iradon(R1,theta1,'nearest','Ram-Lak',1,256);

d1_18=((abs(sum(sum((P-IR1).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность (18 углов)

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_18=((abs(sum(sum((P-IR1).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность (18 углов)

d3_18=max(max(abs(P-IR1)))

%Максимальная относительная погрешность (18 углов)

d4_18=((max(max(abs(P-IR1))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность (18 углов)

d5_18=((sum(sum(abs(P-IR1))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность (18 углов)

d6_18=(sum(sum(abs(P-IR1))))

%Среднеквадратическая абсолютная погрешность (18 углов)

d7_18=sqrt(sum(sum((P-IR1).^2)))

Погрешность

Количество углов

18

36

90

1791

d1 %

96.0877

60.1466

37.0012

32.1464

d2 %

110.8376

69.3794

42.6810

37.0810

d3

1.4261

1.1539

1.0088

0.9241

d4 %

142.6084

115.3943

100.8821

92.4145

d5 %

131.8101

81.1806

38.1935

17.2767

d6

1.0603e+004

6.5302e+003

3.0723e+003

1.3897e+003

d7

60.5740

37.9166

23.3256

20.2652

%Вычисление обратного преобразования Радона с различными типами интерполяции

close all; clear all; clc;

P=phantom(256);

theta = 0:0.5:179;

[R,xp] = radon(P,theta);

IR1=iradon(R,theta,'nearest','Ram-Lak',1,256);

%Среднеквадратическая относительная погрешность

d1_nearest=((abs(sum(sum((P-IR1).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_nearest=((abs(sum(sum((P-IR1).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_nearest=max(max(abs(P-IR1)))

%Максимальная относительная погрешность

d4_nearest=((max(max(abs(P-IR1))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_nearest=((sum(sum(abs(P-IR1))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_nearest=(sum(sum(abs(P-IR1))))

%Среднеквадратическая абсолютная погрешность

d7_nearest=sqrt(sum(sum((P-IR1).^2)))

IR2=iradon(R,theta,'linear','Ram-Lak',1,256);

%Среднеквадратическая относительная погрешность

d1_linear=((abs(sum(sum((P-IR2).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_linear=((abs(sum(sum((P-IR2).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_linear=max(max(abs(P-IR2)))

%Максимальная относительная погрешность

d4_linear=((max(max(abs(P-IR2))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_linear=((sum(sum(abs(P-IR2))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_linear=(sum(sum(abs(P-IR2))))

%Среднеквадратическая абсолютная погрешность

d7_linear=sqrt(sum(sum((P-IR2).^2)))

IR3=iradon(R,theta,'spline','Ram-Lak',1,256);

%Среднеквадратическая относительная погрешность

d1_spline=((abs(sum(sum((P-IR3).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_spline=((abs(sum(sum((P-IR3).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_spline=max(max(abs(P-IR3)))

%Максимальная относительная погрешность

d4_spline=((max(max(abs(P-IR3))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_spline=((sum(sum(abs(P-IR3))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_spline=(sum(sum(abs(P-IR3))))

%Среднеквадратическая абсолютная погрешность

d7_spline=sqrt(sum(sum((P-IR3).^2)))

figure(1)

subplot(1,3,1)

imagesc(theta,xp,IR1)

title('Интерполяция по ближайшей окрестности');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(1,3,2)

imagesc(theta,xp,IR2)

title('Линейная интерполяция');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(1,3,3)

imagesc(theta,xp,IR3)

title('Сплайновая интерполяция');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');


Погрешность

Тип интерполяции

nearest

linear

spline

d1 %

32.4182

31.2885

31.6798

d2 %

37.3945

36.0914

36.5428

d3

0.9206

0.8663

0.9012

d4 %

92.0633

86.6276

90.1225

d5 %

20.0611

15.4540

15.1226

d6

1.6137e+003

1.2431e+003

1.2165e+003

d7

20.4365

19.7244

19.9711


%Вычисление обратного преобразования Радона с различными типами фильтра

close all; clear all; clc;

P=phantom(256);

theta = 0:0.5:179;

[R,xp] = radon(P,theta);

IR1=iradon(R,theta,'linear','Ram-Lak',1,256);

%Среднеквадратическая относительная погрешность

d1_Ram=((abs(sum(sum((P-IR1).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_Ram=((abs(sum(sum((P-IR1).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_Ram=max(max(abs(P-IR1)))

%Максимальная относительная погрешность

d4_Ram=((max(max(abs(P-IR1))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_Ram=((sum(sum(abs(P-IR1))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_Ram=(sum(sum(abs(P-IR1))))

%Среднеквадратическая абсолютная погрешность

d7_Ram=sqrt(sum(sum((P-IR1).^2)))

IR2=iradon(R,theta,'linear','Shepp-Logan',1,256);

%Среднеквадратическая относительная погрешность

d1_Shepp=((abs(sum(sum((P-IR2).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_Shepp=((abs(sum(sum((P-IR2).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_Shepp=max(max(abs(P-IR2)))

%Максимальная относительная погрешность

d4_Shepp=((max(max(abs(P-IR2))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_Shepp=((sum(sum(abs(P-IR2))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_Shepp=(sum(sum(abs(P-IR2))))

%Среднеквадратическая абсолютная погрешность

d7_Shepp=sqrt(sum(sum((P-IR2).^2)))

IR3=iradon(R,theta,'linear','Cosine',1,256);

%Среднеквадратическая относительная погрешность

d1_Cosine=((abs(sum(sum((P-IR3).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_Cosine=((abs(sum(sum((P-IR3).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_Cosine=max(max(abs(P-IR3)))

%Максимальная относительная погрешность

d4_Cosine=((max(max(abs(P-IR3))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_Cosine=((sum(sum(abs(P-IR3))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_Cosine=(sum(sum(abs(P-IR3))))

%Среднеквадратическая абсолютная погрешность

d7_Cosine=sqrt(sum(sum((P-IR3).^2)))

IR4=iradon(R,theta,'linear','Hamming',1,256);

%Среднеквадратическая относительная погрешность

d1_Hamming=((abs(sum(sum((P-IR4).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_Hamming=((abs(sum(sum((P-IR4).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_Hamming=max(max(abs(P-IR4)))

%Максимальная относительная погрешность

d4_Hamming=((max(max(abs(P-IR4))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_Hamming=((sum(sum(abs(P-IR4))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_Hamming=(sum(sum(abs(P-IR4))))

%Среднеквадратическая абсолютная погрешность

d7_Hamming=sqrt(sum(sum((P-IR4).^2)))

IR5=iradon(R,theta,'linear','Hann',1,256);

%Среднеквадратическая относительная погрешность

d1_Hann=((abs(sum(sum((P-IR5).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_Hann=((abs(sum(sum((P-IR5).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_Hann=max(max(abs(P-IR5)))

%Максимальная относительная погрешность

d4_Hann=((max(max(abs(P-IR5))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_Hann=((sum(sum(abs(P-IR5))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_Hann=(sum(sum(abs(P-IR5))))

%Среднеквадратическая абсолютная погрешность

d7_Hann=sqrt(sum(sum((P-IR5).^2)))

figure(1)

subplot(2,3,1)

imagesc(theta,xp,IR1)

title('Усеченный фильтр Рама-Лака');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,3,2)

imagesc(theta,xp,IR2)

title('Фильтр Шеппа-Логана');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,3,3)

imagesc(theta,xp,IR3)

title('Косинусный фильтр');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,3,4)

imagesc(theta,xp,IR4)

title('Фильтр Хэмминга');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,3,5)

imagesc(theta,xp,IR5)

title('Фильтр Ханна');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)'); 


Погрешность

Тип фильтра

Рама-Лака

Шеппа-Логана

Косинусный

Хэмминга

Ханна

d1 %

31.2885

31.1055

31.0972

31.5070

31.6213

d2 %

36.0914

35.8803

35.8707

36.3435

36.4753

d3

0.8663

0.8476

0.8124

0.7917

0.7852

d4 %

86.6276

84.7566

81.2392

79.1673

78.5186

d5 %

15.4540

15.3622

15.8115

16.9154

17.1456

d6

1.2431e+003

1.2357e+003

1.2719e+003

1.3607e+003

1.3792e+003

d7

19.7244

19.6090

19.6037

19.8621

19.9341


%Вычисление обратного преобразования Радона с различными параметрами d (сдвиг по частотной области)

close all; clear all; clc;

P=phantom(256);

theta = 0:0.5:179;

[R,xp] = radon(P,theta);

IR1=iradon(R,theta,'linear','Cosine',0.1,256);

%Среднеквадратическая относительная погрешность

d1_01=((abs(sum(sum((P-IR1).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_01=((abs(sum(sum((P-IR1).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_01=max(max(abs(P-IR1)))

%Максимальная относительная погрешность

d4_01=((max(max(abs(P-IR1))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_01=((sum(sum(abs(P-IR1))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_01=(sum(sum(abs(P-IR1))))

%Среднеквадратическая абсолютная погрешность

d7_01=sqrt(sum(sum((P-IR1).^2)))

IR2=iradon(R,theta,'linear','Cosine',0.5,256);

%Среднеквадратическая относительная погрешность

d1_05=((abs(sum(sum((P-IR2).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_05=((abs(sum(sum((P-IR2).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_05=max(max(abs(P-IR2)))

%Максимальная относительная погрешность

d4_05=((max(max(abs(P-IR2))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_05=((sum(sum(abs(P-IR2))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_05=(sum(sum(abs(P-IR2))))

%Среднеквадратическая абсолютная погрешность

d7_05=sqrt(sum(sum((P-IR2).^2)))

IR3=iradon(R,theta,'linear','Cosine',0.9,256);

%Среднеквадратическая относительная погрешность

d1_09=((abs(sum(sum((P-IR3).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_09=((abs(sum(sum((P-IR3).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_09=max(max(abs(P-IR3)))

%Максимальная относительная погрешность

d4_09=((max(max(abs(P-IR3))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_09=((sum(sum(abs(P-IR3))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_09=(sum(sum(abs(P-IR3))))

%Среднеквадратическая абсолютная погрешность

d7_09=sqrt(sum(sum((P-IR3).^2)))

figure(1)

subplot(1,3,1)

imagesc(theta,xp,IR1)

title('D=0.1');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(1,3,2)

imagesc(theta,xp,IR2)

title('D=0.5');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(1,3,3)

imagesc(theta,xp,IR3)

title('D=0.9');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');


Погрешность

Сдвиг по частотной области (параметр D)

D=0.1

D=0.5

D=0.9

d1 %

61.8194

33.7143

31.2002

d2 %

71.3089

38.8895

35.9896

d3

0.7558

0.7386

0.8032

d4 %

75.5842

73.8645

80.3183

d5 %

53.7335

20.3204

16.1436

d6

4.3223e+003

1.6346e+003

1.2986e+003

d7

38.9711

21.2536

19.6687


  1.  Преобразование реального биомедицинского изображения

Выполнить прямое и обратное преобразование Радона, используя реальное биомедицинское изображение.

close all; clear all; clc;

Ima=rgb2gray(imread('C:\24','jpg'));

Im=double(Ima);

figure(1)

imshow(Ima)

theta = 0:0.5:179;

[R_Im, xp]=radon(Im,theta);

figure(5)

imagesc(theta,xp,R_Im)

IR_Im=iradon(R_Im,theta,'linear','Cosine',1);

figure(6)

imagesc(theta,xp,IR_Im)

PAGE  2


 

А также другие работы, которые могут Вас заинтересовать

59557. Виховуємо на традиціях рідного народу 46 KB
  Для мене особисто стало доброю традицією розповідати кожному поколінню моїх вихованців про рушники. І вже на конкретних прикладах можна показати різні за призначенням рушники: утирачі стирки покутники плечові подарункові весільні.
59558. Голодомор. Сценарій уроку 79.5 KB
  То ж пом’янемо хоч сьогодні із запізненням у декілька довгих десятиліть мовчання тих великомучеників нашої тяжкої історії мільйони українських селян жертв небаченого в історії людської цивілізації голодомору. Та забути жахи голодомору люди не могли.
59559. Інтегрований урок з основ економіки. Гроші, їх види та функції 71 KB
  Механізми що приводять у дію економіку досить складні але один з найдавніших і важливих гроші. Як економічний механізм гроші відомі нам з раннього дитинства з першої монетки чи банкноти. Рольова гра учні класу виступають у ролі представників наукових і фінансових структур.
59560. Гурток англійської мови 75 KB
  People of different countries celebrate Christmas in various ways. But some traditions of celebrating it are common for all the countries. Two of them should be mentioned here. They are to decorate Christmas tree and to light candles.
59561. Засоби масової інформації 39 KB
  Мета та завдання: познайомити учнів із поняттям засобів масової інформації її інформаційними функціями розвивати вміння знаходити інформацію та користуватись нею аналізувати її розвивати критичне ставлення до подачі інформації.
59562. Здоров’я — мудрих гонорар день здоров’я для вчителів 70.5 KB
  Учителям пропонується пройти стежиною здоров’я. Маршрут стежки здоров’я Перша зупинка Канони здоров’я знайомство з основними заповідями Салернського кодексу здоров’я медичного трактату XIV століття. Друга зупинка Сонячна вибір із палітри фарб кольору здоров’я відбиття власного настрою у виборі вираження обличчя.
59563. Здрастуй, рідна школо! 76.5 KB
  Обладнання: прапори країн; карта світу; стенд присвячений організації ЮНЕСКО; стенди із символікою школи гімн герб прапор з історією виникнення розвитку й досягнень школи; на партах література книги журнали країн світу магнітофон музичні записи; різні сувеніри на яких написано...
59564. Знайомство з історією 38.5 KB
  Знаряддя праці зброя місце поховань храми фундаменти будівель це: а речові історичні джерела; б писемні історичні джерела; в усні історичні джерела. Які історичні джерела допомагають відтворити побачити минуле...
59565. Діагностика ПК за допомогою програм та утиліт 55 KB
  Програми подібного роду дуже часто працюють під управлінням операційної системи MS-DOS, оскільки вона для своєї роботи вимагає дуже мало системних ресурсів, що дозволяє звести до мінімуму вплив на результати тестів. Звично при запуску файлу, при спробі викачування його з Інтернету, пропонується створити завантажувальну дискету...