6021

Прямое и обратное преобразование Радона

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Цель работы: Ознакомление с прямым и обратным преобразованием Радона изображений. Реализация прямого и обратного преобразований Радона с помощью функций в среде MatLAB (ImageProcessingToolbox). Короткие теоретические сведения ...

Русский

2012-12-27

1.24 MB

84 чел.

Цель работы: Ознакомление с прямым и обратным преобразованием Радона изображений. Реализация прямого и обратного преобразований Радона  с помощью функций в среде MatLAB (Image Processing Toolbox).

Короткие теоретические сведения

 Преобразование Радона.

С помощью преобразования Радона изображение представляется в виде набора проекций вдоль различных направлений. В результате получается совокупность теней, т.е. трёхмерная структура объекта сводится к набору двумерных изображений. При этом, проекция функции двух переменных f(x,y) представляет собой интеграл в определённом направлении.  Например, интеграл от f(x,y) в вертикальном направлении является проекцией  f(x,y) на ось x; интеграл в горизонтальном направлении является проекцией на ось  y.

Рис.1

Проекции могут быть вычислены вдоль любого угла  θ. Так, проекция  функции двух переменных  f(x,y) на ось  задаётся  интегралом

где оси   и   задаются поворотом против часовой стрелки на угол θ с использованием следующего выражения:

Геометрическое представление  преобразования Радона приведено на рисунке 2.

Рис.2

Преобразование Радона для большого количества углов чаще всего отображается в виде изображения. Например, преобразование Радона для прямоугольника при изменении θ от  0 до 180° с шагом 1° имеет вид (рис.3):

Рис.3

Обратное преобразование Радона реконструирует изображение по его матрице проекций. В компьютерной томографии (рис.4) осуществляется восстановление изображения сечения человеческого тела с использованием облучения рентгеновскими лучами под различными углами. Задача восстановления f(x,y) сводится к решению конечного числа уравнений  при различных значениях угла θ.

Рис.4

В большинстве случаев, не существует исходного изображения, от которого получают проекции. Например, при томографии, проекции формируются путём измерения интенсивности излучения, проходящего через физический объект под различными углами. Значения проекций накапливаются в специальном оборудовании, а затем с помощью обратной функции Радона выполняется неинвазивное (без вторжения во внутрь) восстановление внутренней структуры объекта (человека).

 


Порядок работы

  1.  Исследования преобразований Радона на модели

С помощью функции phantom сымитировать срез головы человека. Выполнить прямое преобразование Радона (radon), выбрав различные углы. Восстановить изображение с помощью обратного преобразования Радона. Исследовать влияние параметров команды iradon на сходство восстановленного изображения с оригиналом, а также на время выполнения обратного преобразования. Оценить качество восстановленного изображения.

close all; clear all; clc;

P=phantom(256); %Создание искусственного изображения среза головы

figure(1)

imagesc(P);

title('Head Phantom');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

%Прямые преобразования Радона с различными углами theta

theta1 = 0:10:170;

[R1,xp1] = radon(P,theta1);

theta2 = 0:5:175;

[R2,xp2] = radon(P,theta2);

theta3 = 0:2:178;

[R3,xp3] = radon(P,theta3);

theta4 = 0:0.1:179;

[R4,xp4] = radon(P,theta4);

figure(2)

subplot(2,2,1)

imagesc(theta1,xp1,R1)

title('Num angles = 18');

xlabel('Rotation Angle - \theta (degrees)');

ylabel('Sensor Position - x\prime (pixels)');

colormap(hot)

subplot(2,2,2)

imagesc(theta2,xp2,R2)

title('Num angles = 36');

xlabel('Rotation Angle - \theta (degrees)');

ylabel('Sensor Position - x\prime (pixels)');

colormap(hot)

subplot(2,2,3)

imagesc(theta3,xp3,R3)

title('Num angles = 90');

xlabel('Rotation Angle - \theta (degrees)');

ylabel('Sensor Position - x\prime (pixels)');

colormap(hot)

subplot(2,2,4)

imagesc(theta4,xp4,R4)

title('Num angles = 1791');

xlabel('Rotation Angle - \theta (degrees)');

ylabel('Sensor Position - x\prime (pixels)');

colormap(hot)

%Вычисление обратного преобразования Радона с различными углами theta

IR1=iradon(R1,theta1,'nearest','Ram-Lak',1,256);

IR2=iradon(R2,theta2,'nearest','Ram-Lak',1,256);

IR3=iradon(R3,theta3,'nearest','Ram-Lak',1,256);

IR4=iradon(R4,theta4,'nearest','Ram-Lak',1,256);

figure(3)

subplot(2,2,1)

imagesc(theta1,xp1,IR1)

title('Num angles = 18');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,2,2)

imagesc(theta2,xp2,IR2)

title('Num angles = 36');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,2,3)

imagesc(theta3,xp3,IR3)

title('Num angles = 90');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,2,4)

imagesc(theta4,xp4,IR4)

title('Num angles = 1791');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

%Среднеквадратическая относительная погрешность (18 углов)

close all; clear all; clc;

P=phantom(256);

theta1 = 0:10:170;

[R1,xp1] = radon(P,theta1);

IR1=iradon(R1,theta1,'nearest','Ram-Lak',1,256);

d1_18=((abs(sum(sum((P-IR1).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность (18 углов)

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_18=((abs(sum(sum((P-IR1).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность (18 углов)

d3_18=max(max(abs(P-IR1)))

%Максимальная относительная погрешность (18 углов)

d4_18=((max(max(abs(P-IR1))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность (18 углов)

d5_18=((sum(sum(abs(P-IR1))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность (18 углов)

d6_18=(sum(sum(abs(P-IR1))))

%Среднеквадратическая абсолютная погрешность (18 углов)

d7_18=sqrt(sum(sum((P-IR1).^2)))

Погрешность

Количество углов

18

36

90

1791

d1 %

96.0877

60.1466

37.0012

32.1464

d2 %

110.8376

69.3794

42.6810

37.0810

d3

1.4261

1.1539

1.0088

0.9241

d4 %

142.6084

115.3943

100.8821

92.4145

d5 %

131.8101

81.1806

38.1935

17.2767

d6

1.0603e+004

6.5302e+003

3.0723e+003

1.3897e+003

d7

60.5740

37.9166

23.3256

20.2652

%Вычисление обратного преобразования Радона с различными типами интерполяции

close all; clear all; clc;

P=phantom(256);

theta = 0:0.5:179;

[R,xp] = radon(P,theta);

IR1=iradon(R,theta,'nearest','Ram-Lak',1,256);

%Среднеквадратическая относительная погрешность

d1_nearest=((abs(sum(sum((P-IR1).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_nearest=((abs(sum(sum((P-IR1).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_nearest=max(max(abs(P-IR1)))

%Максимальная относительная погрешность

d4_nearest=((max(max(abs(P-IR1))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_nearest=((sum(sum(abs(P-IR1))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_nearest=(sum(sum(abs(P-IR1))))

%Среднеквадратическая абсолютная погрешность

d7_nearest=sqrt(sum(sum((P-IR1).^2)))

IR2=iradon(R,theta,'linear','Ram-Lak',1,256);

%Среднеквадратическая относительная погрешность

d1_linear=((abs(sum(sum((P-IR2).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_linear=((abs(sum(sum((P-IR2).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_linear=max(max(abs(P-IR2)))

%Максимальная относительная погрешность

d4_linear=((max(max(abs(P-IR2))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_linear=((sum(sum(abs(P-IR2))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_linear=(sum(sum(abs(P-IR2))))

%Среднеквадратическая абсолютная погрешность

d7_linear=sqrt(sum(sum((P-IR2).^2)))

IR3=iradon(R,theta,'spline','Ram-Lak',1,256);

%Среднеквадратическая относительная погрешность

d1_spline=((abs(sum(sum((P-IR3).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_spline=((abs(sum(sum((P-IR3).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_spline=max(max(abs(P-IR3)))

%Максимальная относительная погрешность

d4_spline=((max(max(abs(P-IR3))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_spline=((sum(sum(abs(P-IR3))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_spline=(sum(sum(abs(P-IR3))))

%Среднеквадратическая абсолютная погрешность

d7_spline=sqrt(sum(sum((P-IR3).^2)))

figure(1)

subplot(1,3,1)

imagesc(theta,xp,IR1)

title('Интерполяция по ближайшей окрестности');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(1,3,2)

imagesc(theta,xp,IR2)

title('Линейная интерполяция');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(1,3,3)

imagesc(theta,xp,IR3)

title('Сплайновая интерполяция');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');


Погрешность

Тип интерполяции

nearest

linear

spline

d1 %

32.4182

31.2885

31.6798

d2 %

37.3945

36.0914

36.5428

d3

0.9206

0.8663

0.9012

d4 %

92.0633

86.6276

90.1225

d5 %

20.0611

15.4540

15.1226

d6

1.6137e+003

1.2431e+003

1.2165e+003

d7

20.4365

19.7244

19.9711


%Вычисление обратного преобразования Радона с различными типами фильтра

close all; clear all; clc;

P=phantom(256);

theta = 0:0.5:179;

[R,xp] = radon(P,theta);

IR1=iradon(R,theta,'linear','Ram-Lak',1,256);

%Среднеквадратическая относительная погрешность

d1_Ram=((abs(sum(sum((P-IR1).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_Ram=((abs(sum(sum((P-IR1).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_Ram=max(max(abs(P-IR1)))

%Максимальная относительная погрешность

d4_Ram=((max(max(abs(P-IR1))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_Ram=((sum(sum(abs(P-IR1))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_Ram=(sum(sum(abs(P-IR1))))

%Среднеквадратическая абсолютная погрешность

d7_Ram=sqrt(sum(sum((P-IR1).^2)))

IR2=iradon(R,theta,'linear','Shepp-Logan',1,256);

%Среднеквадратическая относительная погрешность

d1_Shepp=((abs(sum(sum((P-IR2).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_Shepp=((abs(sum(sum((P-IR2).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_Shepp=max(max(abs(P-IR2)))

%Максимальная относительная погрешность

d4_Shepp=((max(max(abs(P-IR2))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_Shepp=((sum(sum(abs(P-IR2))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_Shepp=(sum(sum(abs(P-IR2))))

%Среднеквадратическая абсолютная погрешность

d7_Shepp=sqrt(sum(sum((P-IR2).^2)))

IR3=iradon(R,theta,'linear','Cosine',1,256);

%Среднеквадратическая относительная погрешность

d1_Cosine=((abs(sum(sum((P-IR3).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_Cosine=((abs(sum(sum((P-IR3).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_Cosine=max(max(abs(P-IR3)))

%Максимальная относительная погрешность

d4_Cosine=((max(max(abs(P-IR3))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_Cosine=((sum(sum(abs(P-IR3))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_Cosine=(sum(sum(abs(P-IR3))))

%Среднеквадратическая абсолютная погрешность

d7_Cosine=sqrt(sum(sum((P-IR3).^2)))

IR4=iradon(R,theta,'linear','Hamming',1,256);

%Среднеквадратическая относительная погрешность

d1_Hamming=((abs(sum(sum((P-IR4).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_Hamming=((abs(sum(sum((P-IR4).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_Hamming=max(max(abs(P-IR4)))

%Максимальная относительная погрешность

d4_Hamming=((max(max(abs(P-IR4))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_Hamming=((sum(sum(abs(P-IR4))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_Hamming=(sum(sum(abs(P-IR4))))

%Среднеквадратическая абсолютная погрешность

d7_Hamming=sqrt(sum(sum((P-IR4).^2)))

IR5=iradon(R,theta,'linear','Hann',1,256);

%Среднеквадратическая относительная погрешность

d1_Hann=((abs(sum(sum((P-IR5).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_Hann=((abs(sum(sum((P-IR5).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_Hann=max(max(abs(P-IR5)))

%Максимальная относительная погрешность

d4_Hann=((max(max(abs(P-IR5))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_Hann=((sum(sum(abs(P-IR5))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_Hann=(sum(sum(abs(P-IR5))))

%Среднеквадратическая абсолютная погрешность

d7_Hann=sqrt(sum(sum((P-IR5).^2)))

figure(1)

subplot(2,3,1)

imagesc(theta,xp,IR1)

title('Усеченный фильтр Рама-Лака');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,3,2)

imagesc(theta,xp,IR2)

title('Фильтр Шеппа-Логана');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,3,3)

imagesc(theta,xp,IR3)

title('Косинусный фильтр');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,3,4)

imagesc(theta,xp,IR4)

title('Фильтр Хэмминга');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(2,3,5)

imagesc(theta,xp,IR5)

title('Фильтр Ханна');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)'); 


Погрешность

Тип фильтра

Рама-Лака

Шеппа-Логана

Косинусный

Хэмминга

Ханна

d1 %

31.2885

31.1055

31.0972

31.5070

31.6213

d2 %

36.0914

35.8803

35.8707

36.3435

36.4753

d3

0.8663

0.8476

0.8124

0.7917

0.7852

d4 %

86.6276

84.7566

81.2392

79.1673

78.5186

d5 %

15.4540

15.3622

15.8115

16.9154

17.1456

d6

1.2431e+003

1.2357e+003

1.2719e+003

1.3607e+003

1.3792e+003

d7

19.7244

19.6090

19.6037

19.8621

19.9341


%Вычисление обратного преобразования Радона с различными параметрами d (сдвиг по частотной области)

close all; clear all; clc;

P=phantom(256);

theta = 0:0.5:179;

[R,xp] = radon(P,theta);

IR1=iradon(R,theta,'linear','Cosine',0.1,256);

%Среднеквадратическая относительная погрешность

d1_01=((abs(sum(sum((P-IR1).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_01=((abs(sum(sum((P-IR1).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_01=max(max(abs(P-IR1)))

%Максимальная относительная погрешность

d4_01=((max(max(abs(P-IR1))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_01=((sum(sum(abs(P-IR1))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_01=(sum(sum(abs(P-IR1))))

%Среднеквадратическая абсолютная погрешность

d7_01=sqrt(sum(sum((P-IR1).^2)))

IR2=iradon(R,theta,'linear','Cosine',0.5,256);

%Среднеквадратическая относительная погрешность

d1_05=((abs(sum(sum((P-IR2).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_05=((abs(sum(sum((P-IR2).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_05=max(max(abs(P-IR2)))

%Максимальная относительная погрешность

d4_05=((max(max(abs(P-IR2))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_05=((sum(sum(abs(P-IR2))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_05=(sum(sum(abs(P-IR2))))

%Среднеквадратическая абсолютная погрешность

d7_05=sqrt(sum(sum((P-IR2).^2)))

IR3=iradon(R,theta,'linear','Cosine',0.9,256);

%Среднеквадратическая относительная погрешность

d1_09=((abs(sum(sum((P-IR3).^2))/sum(sum(P.^2))))^0.5)*100

%Нормализованная среднеквадратическая погрешность

P_sr=(sum(sum(P)))/(size(P,1)*size(P,2));

d2_09=((abs(sum(sum((P-IR3).^2))/sum(sum((P-P_sr).^2))))^0.5)*100

%Максимальная погрешность

d3_09=max(max(abs(P-IR3)))

%Максимальная относительная погрешность

d4_09=((max(max(abs(P-IR3))))/(max(max(P))))*100

%Нормализированная абсолютная средняя погрешность

d5_09=((sum(sum(abs(P-IR3))))/(sum(sum(abs(P)))))*100

%Абсолютная средняя погрешность

d6_09=(sum(sum(abs(P-IR3))))

%Среднеквадратическая абсолютная погрешность

d7_09=sqrt(sum(sum((P-IR3).^2)))

figure(1)

subplot(1,3,1)

imagesc(theta,xp,IR1)

title('D=0.1');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(1,3,2)

imagesc(theta,xp,IR2)

title('D=0.5');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');

subplot(1,3,3)

imagesc(theta,xp,IR3)

title('D=0.9');

xlabel('x\prime (pixels)');

ylabel('y\prime (pixels)');


Погрешность

Сдвиг по частотной области (параметр D)

D=0.1

D=0.5

D=0.9

d1 %

61.8194

33.7143

31.2002

d2 %

71.3089

38.8895

35.9896

d3

0.7558

0.7386

0.8032

d4 %

75.5842

73.8645

80.3183

d5 %

53.7335

20.3204

16.1436

d6

4.3223e+003

1.6346e+003

1.2986e+003

d7

38.9711

21.2536

19.6687


  1.  Преобразование реального биомедицинского изображения

Выполнить прямое и обратное преобразование Радона, используя реальное биомедицинское изображение.

close all; clear all; clc;

Ima=rgb2gray(imread('C:\24','jpg'));

Im=double(Ima);

figure(1)

imshow(Ima)

theta = 0:0.5:179;

[R_Im, xp]=radon(Im,theta);

figure(5)

imagesc(theta,xp,R_Im)

IR_Im=iradon(R_Im,theta,'linear','Cosine',1);

figure(6)

imagesc(theta,xp,IR_Im)

PAGE  2


 

А также другие работы, которые могут Вас заинтересовать

27551. Функции права: понятие, виды, характеристика 26.5 KB
  Функции права: понятие виды характеристика. Под функцией права понимают либо социальное назначение права либо направление правового воздействия на общественные отношения либо и то и другое вместе взятое. Можно выделить 5 групп функций: общеправовые свойственные всем отраслям; межотраслевые 2ум и более но не всем отраслям права; отраслевые одной отрасли права; правовых институтов конкретному институту права; норм права конкретному виду права. можно различать основные и неосновные юридические функции права.
27552. Функции теории государства и права 25 KB
  В юридической литературе в числе функций теории государства и права называются: онтологическая; методологическая; идеологическая; вводная; обобщающая. С онтологической точки зрения теория государства и права призвана констатировать что и как происходит в сфере государства и права а затем объяснять почему это происходит. 2 Методологическая функция заключается в следующем: права понятия и выводы являются предпосылкой отправным моментом для последующей научной деятельности например понятия €œнорма права€ €œправоотношение€ и т.
27553. Цивилизационные подходы к типологии государства 27 KB
  Тойнби пишет что €œкультурный элемент представляет собой душу кровь лимфу сущность цивилизации; в сравнении с ним экономический и тем более политический план кажется искусственным несущественным заурядным созданием природы и €œдвижущих сил цивилизации€. Понятие цивилизации им сформулировано как относительно замкнутое и локальное состояние социума отличающееся общностью религиозных психологических культурных географических и иных признаков два из которых остаются неизменными: религия и формы ее организации а также степень...
27554. Что такое пробелы в праве и как они устраняются в практике применения правовых норм 39.5 KB
  Точное определение этих границ сфер позволяет обнаружить: 1 отношения урегулированные правом; 2 отношения нуждающиеся в правовом опосредовании; 3 нормативные предписания подлежащие реализации; 4 пробелы и иные недостатки в праве; 5 пределы деятельности правоприменительных органов по осуществлению права. В зависимости от отрасти права в которой они установлены различают пробелы в конституционном государственном гражданском уголовном семейном и других отраслях права. Пробелы различают по форме права в которой они обнаружены.
27555. Экономика и право 27 KB
  Право – это система общеобязательных формально – определенных норм исходящих от государства им охраняемых и регулирующих общественные отношения Социальные последствия соотношения экономики и права: 1 позитивные право способствует развитию экономики тогда когда оно соответствует естественноисторическому ходу развития общества объективным экономическим законам; 2 негативные – право тормозит развитие экономики тогда когда оно противоречит объективным экономическим законам развития общества. Пределы государственноправового...
27556. Юридическая ответственность государства 30.5 KB
  Государство как субъект ответственности. Всякий раз когда государство становится участником какоголибо правоотношения оно может быть привлечено к ответственности за нарушение прав и охраняемых законом интересов другого участника этих отношений и наоборот. Это общее правило касающееся юридической ответственности. Однако говоря о государстве как субъекте ответственности нужно вести речь об ином об особых случаях внедоговорной ответственности государства за вред причиненный в определенных ситуациях.
27557. Юридическая техника. Понятие и основные приемы 31 KB
  Способы закрепления приёмов ЮТ: 1 НПА; 2 правовые обычаи; 3 научнометодические разработки. Юридическая технология – это боле широкое понятие – это основанная на определенных принципах планах прогнозах протекающих в определенно установленных процессуальных формах деятельность по созданию НПА и иных актов в ходе которой используются средства и способы ЮТ. 2 юридические способы – пути достижения намеченных целей с помощью конкретных юр. способы структуризации; способы логического изложения; способы языкового изложения; способы...
27558. Юридическая типология: основные правовые системы современности 35.5 KB
  Юридическая типология права это его специфическая классификация. Основополагающим объектом юридической типологии выступает категория правовая система тесно связанная с такими исходными концептуальными понятиями как правовая карта мира исторический тип права семья правовых систем национальная правовая система. При этом понятие правовая система не синоним понятия система права так как последнее понятие институционное раскрывающее взаимосвязь соотношение и строение отраслей права что предопределяется факторами как...
27559. Юридические факты 30.5 KB
  Юридические факты – конкретные жизненные обстоятельства события действия вызывающие в соответствии с нормами права наступление определенных правовых последствий – возникновение изменение или прекращение правовых отношений. Юридические факты имеют ряд признаков: по своему содержанию это реальные жизненные обстоятельства явления; данные жизненные обстоятельства предусмотрены нормами права; они вызывают наступление определенных юридических последствий; юридический факт несет в себе информацию о состоянии общественных отношений; ...