6028

Кореляційний аналіз сигналів

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Кореляційний аналіз сигналів Метароботи: набути навичок кореляційного аналізу сигналів у середовищі MatLAB. Порядокроботи 1. Сформувати вектор відліків часу тривалістю 1 с для частоти дискретизації 256 Гц. Сформувати сигнал випадкового б...

Украинкский

2012-12-27

289 KB

17 чел.

Кореляційний аналіз сигналів

Мета роботи: набути навичок кореляційного аналізу сигналів у середовищі MatLAB.

Короткі теоретичні відомості

Див.: стор. 281 – 347,     Айфичер, Э. Цифровая обработка сигналов. Практический подход /

Э. Айфичер, Б. Джервис. – М. : Издательский дом «Вильямс», 2008. – 992 с. – ISBN 978-5-8459-

0710-3.

Порядок роботи

1. Сформувати вектор відліків часу тривалістю 1 с для частоти дискретизації 256 Гц.

Сформувати сигнал випадкового білого гаусівського шуму  (функція randn). Розрахувати та

побудувати графік автокореляційної функції за формулою (5.1).

2. Сформувати вектор відліків часу тривалістю 1 с для частоти дискретизації 256 Гц. Сформувати дискретний аналог сигналу X(t)=5cos(2pi50t)+2cos(2pi100t). Побудувати графік автокореляційної функції.

3. Сформувати вектор відліків часу тривалістю 1 с для частоти дискретизації 256 Гц. Сформувати послідовність прямокутних імпульсів частотою 10 Гц. Побудувати графік автокореляційної функції.

4. Розрахувати та побудувати графік коефіцієнту взаємної кореляції (формула 5.8) сигналів

п. 2 та 3.

5. Розрахувати та побудувати графіки взаємнокореляційних функцій для пар сигналів: ЕКГ

та плетизмограма, ЕКГ з різних каналів.  

6. Розрахувати та побудувати графіки автокореляційних функцій для оцифрованих сигналів

електрокардіограми, електроенцефалограми, прочитаної з файлу, а також ЕЕГ здорової та хворої людини, сигналів артеріального та внутрішньочерепного тиску та плетизмограми.

7*. Побудувати функцію, яка за допомогою кореляційного аналізу знаходить час затримки

відносно початку координат появи в шумовому сигналі зашумленного прямокутного імпульса з відомою шириною.


1.

x1=0:1/256:1;

x2=randn(1,257);

x3=zeros(1,10);

x2=[x2, x3];

k=10;

for n=1:k

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n-1);

end

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('З сигналом випадкового білого гаусівського шуму');

xlabel('j+1');

ylabel('r12');

2.

x1=0:1/256:1;

t=0:1/256:1;

for i=1:257

X(i)=5*cos(2*pi*50*t(i))+2*cos(2*pi*100*t(i));

end

x2=X;

x3=zeros(1,10);

x2=[x2, x3];

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('З сигналом X(t)=5cos(2pi50t)+2cos(2pi100t)');

xlabel('j+1');

ylabel('r12');

3.

x1=0:1/256:1;

t = 0:.004:1;

x2= SQUARE(2*pi*10*t);

x3=zeros(1,20);

x2=[x2, x3];

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('З послідовністю прямокутних імпульсів частотою 10 Гц ');

xlabel('j+1');

ylabel('r12');

4.

t1=0:1/256:1;

for i=1:257

X(i)=5*cos(2*pi*50*t1(i))+2*cos(2*pi*100*t1(i));

end

x1=X;

t2 = 0:.004:1;

x2= SQUARE(2*pi*10*t2);

x3=zeros(1,20);

x2=[x2, x3];

k=10;

m=0;

while (m<k)

summa=0;

for l=1:257

  summa=summa+x1(l)*x2(l+m);

end

m=m+1;

r12(m)=summa/257;

end

r12;

summa1=0;

summa2=0;

for n=1:257

 summa1=summa1+x1(n)*x1(n);

 summa2=summa2+x2(n)*x2(n);

end

znam=(1/257)*sqrt(summa1*summa2);

for j=1:10

ro12(j)=r12(j)/znam;

end

ro12

plot(ro12)

grid;

title(' графік коефіцієнту взаємної кореляції (формула 5.8) сигналів п. 2 та 3');

xlabel('j+1');

ylabel('ro12');

5.

load ('D:\flash 11-11-2009\ECG_rec\ecg_2.mat');

x1=d;

clear d;

load ('D:\flash 11-11-2009\ECG_rec\ecg_16.mat');

x2=d;

clear d;

x3=zeros(1,10);

x2=[x2, x3];

k=10;

m=0;

while (m<k)

summa=0;

for l=1:4096

  summa=summa+x1(l)*x2(l+m);

end

m=m+1;

r12(m)=summa/4096;

end

r12;

summa1=0;

summa2=0;

for n=1:4096

 summa1=summa1+x1(n)*x1(n);

 summa2=summa2+x2(n)*x2(n);

end

znam=(1/4096)*sqrt(summa1*summa2);

for j=1:10

ro12(j)=r12(j)/znam;

end

ro12

plot(ro12)

grid;

title('Графік взаємнокореляційної функції для пари сигналів ЕКГ з різних каналів');

xlabel('j+1');

ylabel('ro12');

6.

а)

x1=0:1/256:1;

load ('D:\flash 11-11-2009\ECG_rec\ecg_2.mat');

x2=d;

clear d;

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12;

plot(r12)

grid;

title('Графік автокореляційної функції для сигналу електрокардіограми ');

xlabel('j+1');

ylabel('r12');

б)

x1=0:1/256:1;

load ('D:\flash 11-11-2009\EEG_healthy\eeg_healthy_2.mat');

x2=sig;

clear sig;

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('Графік автокореляційної функції для ЕЕГ здорової людини ');

xlabel('j+1');

ylabel('r12');

в)

x1=0:1/256:1;

load ('D:\flash 11-11-2009\EEG_sick\eeg_sick_7.mat');

x2=sig;

clear sig;

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('Графік автокореляційної функції для ЕЕГ хворої людини ');

xlabel('j+1');

ylabel('r12');

г)

x1=0:1/256:1;

fid=fopen('D:\flash 11-11-2009\TBI_ICP.txt');

x2=fscanf(fid,'%f');

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('Графік автокореляційної функції для сигналу артеріального тиску');

xlabel('j+1');

ylabel('r12');

д)

x1=0:1/256:1;

x2 = textread('D:\flash 11-11-2009\TBI_ABP.txt');

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('Графік автокореляційної функції для сигналу внутрішньочерепного тиску');

xlabel('j+1');

ylabel('r12');


 

А также другие работы, которые могут Вас заинтересовать

18420. Организационная и функциональная структура АСУ. Методика формализации систем 61.5 KB
  Лекция 5. Организационная и функциональная структура АСУ. Методика формализации систем. Структура АСУ и ее анализ. Организация протекающих внутри системы информационных и управляющих процессов основана на принятой для этого внутренней структуре. При изучении хара
18421. Последовательность разработки автоматизированных систем 48.5 KB
  Лекция 6. Последовательность разработки автоматизированных систем. Разработка автоматизированных систем включает в себя проектирование внедрение опытную эксплуатацию и нормальную работу АСУ. Большой объем и известная сложность разработки и внедрения АСУ опр
18422. Технология проектирования автоматизированных систем 76 KB
  Лекция 7. Технология проектирования автоматизированных систем. Предпроектной стадия создания АСУ. Предпроектной стадии предшествует ознакомление организацииразработчика с объектом автоматизации и создание организационных предпосылок для начала работ по создан...
18423. Техническое обеспечение автоматизированных систем. Государственная система приборов и средств автоматизации (ГСП). Состав и структура ГСП, характеристика элементов ГСП 185.5 KB
  Лекция 8. Техническое обеспечение автоматизированных систем. Государственная система приборов и средств автоматизации ГСП. Состав и структура ГСП характеристика элементов ГСП. Техническое обеспечение автоматизированных систем. Техническое обеспечение АСУ опре...
18424. Классификация и общая характеристика средств получения информации 36.5 KB
  Лекция 9. Классификация и общая характеристика средств получения информации. Надежная и эффективная работа систем автоматизации в первую очередь определяется достоверностью получаемой об объекте управления информации. Получение в АСУТП точной своевременной полн...
18425. Измерительные преобразователи (датчики) 80 KB
  Лекция 10. Измерительные преобразователи датчики. Как Вам уже известно техническое средство для измерения той или иной величины включающее в себя конструктивную совокупность ряда измерительных преобразователей и размещенное непосредственно у объекта измерения...
18426. Классификация средств измерения давления. Общепромышленные измерительные преобразователи давления 116 KB
  Лекция 11. Классификация средств измерения давления. Общепромышленные измерительные преобразователи давления. Классификация средств измерения давления. Для прямого измерения давления жидкой или газообразной среды с отображением его значения непосредственно н...
18427. Автоматическое измерение расхода жидких и газообразных продуктов и сыпучих сред 237 KB
  Лекция 12. Автоматическое измерение расхода жидких и газообразных продуктов и сыпучих сред. Расход вещества характеризуется количеством вещества объемным или массовым проходящим через определенное сечение канала трубопровода потока водослива и т. д. в единицу вре