6028

Кореляційний аналіз сигналів

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Кореляційний аналіз сигналів Метароботи: набути навичок кореляційного аналізу сигналів у середовищі MatLAB. Порядокроботи 1. Сформувати вектор відліків часу тривалістю 1 с для частоти дискретизації 256 Гц. Сформувати сигнал випадкового б...

Украинкский

2012-12-27

289 KB

17 чел.

Кореляційний аналіз сигналів

Мета роботи: набути навичок кореляційного аналізу сигналів у середовищі MatLAB.

Короткі теоретичні відомості

Див.: стор. 281 – 347,     Айфичер, Э. Цифровая обработка сигналов. Практический подход /

Э. Айфичер, Б. Джервис. – М. : Издательский дом «Вильямс», 2008. – 992 с. – ISBN 978-5-8459-

0710-3.

Порядок роботи

1. Сформувати вектор відліків часу тривалістю 1 с для частоти дискретизації 256 Гц.

Сформувати сигнал випадкового білого гаусівського шуму  (функція randn). Розрахувати та

побудувати графік автокореляційної функції за формулою (5.1).

2. Сформувати вектор відліків часу тривалістю 1 с для частоти дискретизації 256 Гц. Сформувати дискретний аналог сигналу X(t)=5cos(2pi50t)+2cos(2pi100t). Побудувати графік автокореляційної функції.

3. Сформувати вектор відліків часу тривалістю 1 с для частоти дискретизації 256 Гц. Сформувати послідовність прямокутних імпульсів частотою 10 Гц. Побудувати графік автокореляційної функції.

4. Розрахувати та побудувати графік коефіцієнту взаємної кореляції (формула 5.8) сигналів

п. 2 та 3.

5. Розрахувати та побудувати графіки взаємнокореляційних функцій для пар сигналів: ЕКГ

та плетизмограма, ЕКГ з різних каналів.  

6. Розрахувати та побудувати графіки автокореляційних функцій для оцифрованих сигналів

електрокардіограми, електроенцефалограми, прочитаної з файлу, а також ЕЕГ здорової та хворої людини, сигналів артеріального та внутрішньочерепного тиску та плетизмограми.

7*. Побудувати функцію, яка за допомогою кореляційного аналізу знаходить час затримки

відносно початку координат появи в шумовому сигналі зашумленного прямокутного імпульса з відомою шириною.


1.

x1=0:1/256:1;

x2=randn(1,257);

x3=zeros(1,10);

x2=[x2, x3];

k=10;

for n=1:k

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n-1);

end

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('З сигналом випадкового білого гаусівського шуму');

xlabel('j+1');

ylabel('r12');

2.

x1=0:1/256:1;

t=0:1/256:1;

for i=1:257

X(i)=5*cos(2*pi*50*t(i))+2*cos(2*pi*100*t(i));

end

x2=X;

x3=zeros(1,10);

x2=[x2, x3];

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('З сигналом X(t)=5cos(2pi50t)+2cos(2pi100t)');

xlabel('j+1');

ylabel('r12');

3.

x1=0:1/256:1;

t = 0:.004:1;

x2= SQUARE(2*pi*10*t);

x3=zeros(1,20);

x2=[x2, x3];

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('З послідовністю прямокутних імпульсів частотою 10 Гц ');

xlabel('j+1');

ylabel('r12');

4.

t1=0:1/256:1;

for i=1:257

X(i)=5*cos(2*pi*50*t1(i))+2*cos(2*pi*100*t1(i));

end

x1=X;

t2 = 0:.004:1;

x2= SQUARE(2*pi*10*t2);

x3=zeros(1,20);

x2=[x2, x3];

k=10;

m=0;

while (m<k)

summa=0;

for l=1:257

  summa=summa+x1(l)*x2(l+m);

end

m=m+1;

r12(m)=summa/257;

end

r12;

summa1=0;

summa2=0;

for n=1:257

 summa1=summa1+x1(n)*x1(n);

 summa2=summa2+x2(n)*x2(n);

end

znam=(1/257)*sqrt(summa1*summa2);

for j=1:10

ro12(j)=r12(j)/znam;

end

ro12

plot(ro12)

grid;

title(' графік коефіцієнту взаємної кореляції (формула 5.8) сигналів п. 2 та 3');

xlabel('j+1');

ylabel('ro12');

5.

load ('D:\flash 11-11-2009\ECG_rec\ecg_2.mat');

x1=d;

clear d;

load ('D:\flash 11-11-2009\ECG_rec\ecg_16.mat');

x2=d;

clear d;

x3=zeros(1,10);

x2=[x2, x3];

k=10;

m=0;

while (m<k)

summa=0;

for l=1:4096

  summa=summa+x1(l)*x2(l+m);

end

m=m+1;

r12(m)=summa/4096;

end

r12;

summa1=0;

summa2=0;

for n=1:4096

 summa1=summa1+x1(n)*x1(n);

 summa2=summa2+x2(n)*x2(n);

end

znam=(1/4096)*sqrt(summa1*summa2);

for j=1:10

ro12(j)=r12(j)/znam;

end

ro12

plot(ro12)

grid;

title('Графік взаємнокореляційної функції для пари сигналів ЕКГ з різних каналів');

xlabel('j+1');

ylabel('ro12');

6.

а)

x1=0:1/256:1;

load ('D:\flash 11-11-2009\ECG_rec\ecg_2.mat');

x2=d;

clear d;

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12;

plot(r12)

grid;

title('Графік автокореляційної функції для сигналу електрокардіограми ');

xlabel('j+1');

ylabel('r12');

б)

x1=0:1/256:1;

load ('D:\flash 11-11-2009\EEG_healthy\eeg_healthy_2.mat');

x2=sig;

clear sig;

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('Графік автокореляційної функції для ЕЕГ здорової людини ');

xlabel('j+1');

ylabel('r12');

в)

x1=0:1/256:1;

load ('D:\flash 11-11-2009\EEG_sick\eeg_sick_7.mat');

x2=sig;

clear sig;

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('Графік автокореляційної функції для ЕЕГ хворої людини ');

xlabel('j+1');

ylabel('r12');

г)

x1=0:1/256:1;

fid=fopen('D:\flash 11-11-2009\TBI_ICP.txt');

x2=fscanf(fid,'%f');

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('Графік автокореляційної функції для сигналу артеріального тиску');

xlabel('j+1');

ylabel('r12');

д)

x1=0:1/256:1;

x2 = textread('D:\flash 11-11-2009\TBI_ABP.txt');

k=10;

n=0;

while (n<k)

summa=0;

for i=1:257

  summa=summa+x1(i)*x2(i+n);

end

n=n+1;

r12(n)=summa/257;

end

r12

plot(r12)

grid;

title('Графік автокореляційної функції для сигналу внутрішньочерепного тиску');

xlabel('j+1');

ylabel('r12');


 

А также другие работы, которые могут Вас заинтересовать

20759. Определение режима резания лезвийным инструментом 720.87 KB
  Обработка металлов резанием Практическая работа №4 Определение режима резания лезвийным инструментом Цель работы: ознакомиться с методикой определения режима резания для лезвийной обработки точение строгание сверление зенкерование развертывание фрезерование и т. Порядок проведения Необходимым условием для назначения режимов резания является наличие разработанного технологического процесса по операциям и переходам а также паспортных данных станков. Рекомендуется соблюдать определенную последовательность назначения режимов резания....
20760. Определение твердости металлов По Бринеллю и Роквеллу 237.6 KB
  Лабораторная работа № 1 Тема: Определение твердости металлов По Бринеллю и Роквеллу Выполнил: Учащийся гр. Цель работы: ознакомиться с методами и способами испытаний твердости металлов. Методы измерения твердости: статического и ударного вдавливания царапин отскока и другие. Таблица 1 Сравнительные значения твердости...
20761. Определение механических свойств металлов при испытании на растяжение 184.58 KB
  Диаграмма растяжения низкоуглеродистой стали и схемы определения характеристик прочности Для нагрузки Рпц удлинение образца пропорционально усилию растяжения и при его снятии образец восстанавливает свои первоначальные форму и размеры; Рт усилие предела текучести физического соответствует нагрузке когда деформация образца происходит без ее увеличения;т предел текучести физический. Эти показатели определяют когда пластическая деформация образца достигает 02 от его рабочей длины l0. Усилие Pk меньше P max что...
20762. Микроскопический анализ металлов и сплавов 138.25 KB
  Если в задачу изучения микроструктуры входит определение размера зерна то рекомендуется использовать метод визуального сравнения зерен изучаемой микроструктуры при увеличении х100 со стандартной шкалой размеров зерна по ГОСТ 653982 рис. Устанавливается номер балл зерна затем по номеру используя табл.10 определяется поперечный размер зерна мм его площадь мм2 и количество зерен на площади шлифа в 1 мм2.10 Характеристика оценки зерна в зависимости от его номера Продолжение таблицы 1.
20763. Испытание свойств формовочных смесей 146.22 KB
  Литейное производство Лабораторная работа №12 Испытание свойств формовочных смесей Цель работы: изучение методов определения газопроницаемости и прочности формовочных смесей и влияния состава смеси на ее свойства. Лабораторные бегуны; лабораторный копер; технические весы с разновесами; сушильный шкаф с термометром для измерения температуры до 300 С; приборы для определения пределов прочности смеси при растяжении и сжатии; металлическая гильза с поддоном; выталкиватель; стержневой ящик; мензурка; коробка для смесей; сухой песок; формовочная...
20764. Изучение процесса сварки плавлением. Выбор режима ручной дуговой сварки конструкций из стали 267.5 KB
  Сварка металлов Лабораторная работа №14 Изучение процесса сварки плавлением. Выбор режима ручной дуговой сварки конструкций из стали Цель работы: ознакомиться с процессом зажигания и строением электрической сварочной дуги обозначением покрытых электродов устройством и работой сварочного трансформатора и выпрямителя выбором режима и технологии дуговой сварки покрытыми электродами. Классификация и обозначение покрытых электродов для ручной дуговой сварки Покрытые электроды для ручной дуговой сварки классифицируют по назначению виду и толщине...
20765. Выбор режима полуавтоматической дуговой сварки в углекислом газе 181.34 KB
  Общие сведения 1 Cущность промесса дуговой сварки в углекислом газе Дуговая сварка в углекислом газе является одним из способов сварки в защитных газах. Зашита расплавленного металла сварочной ванны осуществляется струей углекислого газа подаваемого в зону дуги в зазор между мундштуком 2 и соплом 3 горелки для дуговой сварки. Для сварки используется техническая углекислота Рис.
20766. Анализ влияния режима автоматической дуговой сварки под флюсом на форму и размеры шва 179.25 KB
  Сущность процесса дуговой сварки под флюсом Сварка под флюсом выполняется электрической дугой горящей под толстым 3050 мм слоем гранулированного плавленного или керамического сварочного флюса. При автоматической сварке электродная проволока со скоростью равной скорости ее плавления подается в зону сварки осуществляется подача флюса в требуемом количестве и перемещение трактора вдоль кромок свариваемых заготовок с требуемой скоростью сварки рис. Схемы процесса сварки а и электрической дуги б под флюсом При горении дуги 3 рис.
20767. Определение остаточных деформаций при дуговой сварке 85.43 KB
  Для выполнения работы необходимы стальная пластинка размерами 135x22x5 мм марки СтЗ штангенциркуль два индикатора часового типа с приспособлениями для измерения длины и пригиба пластины электроды сварочный пост дуговой сварки с вольтметром и амперметром для регистрации сварочного тока весы с разновесами 0200 г секундомер. Для момента конца сварки заменяем действительное почти экспоненциальное распределение температуры по ширине образца рис. Часть I шириной b находится в состоянии повышенной пластичности часть II шириной h в течение...