6043

Оцінка рівня емісії авіадвигунів

Лабораторная работа

Астрономия и авиация

Оцінка рівня емісії авіадвигунів. Мета: Ознайомитися з проблемою забруднення навколишнього середовища авіатранспортом засвоїти методики оцінки рівня емісії авіадвигунів та еколого-економічної оцінки збитків, спричинених емісією Теоретична частина А...

Украинкский

2012-12-27

133.5 KB

20 чел.

Оцінка рівня емісії авіадвигунів.

Мета: Ознайомитися з проблемою забруднення навколишнього середовища авіатранспортом; засвоїти методики оцінки рівня емісії авіадвигунів та еколого-економічної оцінки збитків, спричинених емісією

Теоретична частина

Авіація – це екологічно небезпечна галузь господарювання країни (оскільки в процесі діяльності цієї галузі відбувається забруднення навколишнього середовища та шкідливий вплив на людей).

Повітряні судна забруднюють атмосферу викидами шкідливих речовин з відпрацьованими газами авіаційних двигунів. Гази викидаються в атмосферне повітря соплами і вихлопними патрубками двигунів. Цей процес називають емісією авіаційних двигунів.

Склад відпрацьованих газів (інгредієнтів), які забруднюють атмосферу, сучасних авіаційних двигунів (пальне – гас):

  1.  Монооксид вуглецю – CO (чадний газ);
  2.  Вуглеводні, які не повністю згоріли – СxНy (метан СН4, ацетилен С2Н2, етан С2Н6, бензол С6Н6 та ін.)
  3.  Альдегіди (формальдегід НСНО, акролін СН2=СН=СНО, оцтовий альдегід СН3СНО та ін.) (виділяється у невеликих кількостях).
  4.  Оксиди азоту NOx.
  5.  Оксиди сірки SOx (виділяється невелика кількість).

Бенз<а>пірен (канцерогенна речовина) виділяється у кількості 2...4 мг за 1 хв роботи двигуна ( при тому, що допустимий рівень забруднення 0,0001 мг на 100 м2 площі).

Сажа (дрібнодисперсні частинки чистого вуглецю) – виділяється у вигляді шлейфу за соплами двигунів під час зльоту літака, (сажі виділяється загалом небагато).

Оскільки літаки в процесі роботи переміщуються з одного місця в інше (з аеропорту в аеропорт), то атмосфера забруднюється в глобальних масштабах, тобто забруднення має місце як в зонах аеропортів, так і на трасах польоту.

За 1 рік сучасний трансконтинентальний лайнер може виконувати до 300 зльотів і посадок. При цьому тільки за 1 добу (в середньому) двигунами авіалайнера в атмосферне повітря викидається близько 3,7 т  CO, 2 т  СxНy і 1,7 т  NOx .

Тобто, має місце значне забруднення атмосфери. Причому, якщо на трасах польоту ( на висоті 8-12 км) шкода від цього забруднення невелика, то в зоні аеропорту не рахуватися з таким забрудненням не можна. Дослідження в деяких аеропортах світу показали, що забруднення атмосферного повітря значно перевищувало допустимий рівень. Наприклад:

Аеропорт Лос-Анджелес, забруднення CO (чадним газом):

45% на рік концентрація CO складала 14,5 мг/м3 ;

1 день в місяць концентрація CO сягала 25 мг/м3 ;

1 день в рік концентрація CO складала 35,5 мг/м3.

При тому, що допустимий рівень забруднення (тобто, такий, що не має шкідливого впливу на організм людини) чадним газом складає 5 мг/м3.

Аеропорт Шереметьєво, забруднення NOx (оксидами азоту):

Зимово-весняний період - 3,1 мг/м;

Літній період - 4,0 мг/м .

При тому, що допустимий рівень забруднення оксидами азоту складає 0,085 мг/м3.

Оскільки кожний розроблений двигун (для літаків) перед запуском у серійне виробництво проходить серію випробувань (сертифікацію), серед яких є дослідження на екологічну безпечність, тому Міжнародна організація цивільної авіації (ІКАО) розробила жорсткі норми на емісію авіаційних двигунів.

Кількісною характеристикою викидів шкідливих речовин авіаційними двигунами є індекс емісії ЕІ, який показує, скільки грамів даної шкідливої речовини викидається в повітря при спалюванні 1 кг пального в двигуні. Тобто, [ЕІ=г/кг] і існують ЕІСО, ЕІСхНy, EINOx і т. ін.

Надалі, як приклад, будемо розглядати тільки ці три інгредієнти, оскільки вони найбільше забруднюють атмосферу, тому що викиди їх найвищі.

ЕІ характеризує якість організації процесу згорання в камері згорання кожного зразка двигуна і тому пов’язаний з конструктивними і експлуатаційними характеристиками камери. Тому ЕІ часто називають емісійною характеристикою двигуна.

Індекси емісії визначаються в процесі їх сертифікаційних випробувань. Вміст інгредієнтів CO та СХНУ у відпрацьованих газах авіадвигунів обумовлений неповним згоранням палива в двигуні, а цей процес, в свою чергу, залежить від характеристики його параметрів згорання, тобто, величини коефіцієнта повноти згорання ή та режиму роботи двигуна.

Максимальна повнота згорання палива в двигуні має місце на розрахунковому режимі - злітному (режимі максимальної тяги двигуна). На цьому режимі сучасні двигуни мають ή=0,97...0,99, ( ή=1,0 при абсолютно повному згоранні, чого в дійсності досягнути неможливо). На всіх інших режимах ή нижча, тобто, повнота згорання менша, (ή=0,75.. .0,85), у двигуна в атмосферу викидається більше продуктів неповного згорання (CO, CxHy та інших), і, відповідно, забруднення повітря збільшується.

Вміст інгредієнта NOx у відпрацьованих газах авіадвигуна залежить від:

величини температури суміші в камері згорання (чим вона вища, тим більше утворюється NOx), а вона максимальна (2500...3000 К) на злітному режимі;

часу перебування суміші в камері згорання (чим він більший, тим більше утворюється NOx), а це має місце на невеликих швидкостях літака.

Тобто, максимальний викид NOx має місце на злітному режимі двигуна і режимах, близьких до нього (при здійсненні зльоту літака і при наборі ним висоти польоту).

Під зоною аеропорту розуміють простір, обмежений висотою 1000 м і розмірами аеродрому.

Очевидно, що викид шкідливих речовин (тобто, емісія авіадвигуна) залежить від режиму його роботи і тривалості роботи на цьому режимі.

Таблиця 1

Середньо-статистичні значення деяких параметрів сучасних авіадвигунів

залежно від режимів роботи та їх тривалості (для великих аеропортів світу)

режиму

Назва режиму роботи двигуна

Відносна тяга

Тривалість режиму t, хв

1

Режим малого газу (холостий хід) при рулінні перед зльотом

0,07

15

2

Злітний режим

1

0,7

3

Режим набору висоти 1000м

0,85

2,2

4

Режим заходу на посадку

0,3

4

5

Режим малого газу (холостий хід) при рулінні після посадки

0,07

7

де R - тяга двигуна при заданому режимі; Ro - тяга двигуна при злітному режимі (максимальна тяга).

З таблиці ми бачимо, що найбільш тривалим і небезпечним з екологічної точки зору є режим малого газу (відносна тяга складає 3...9% від її максимального значення). Такі мінімальні значення відносної тяги двигуна мають місце при рулінні перед зльотом і після посадки, а також під час прогрівання двигуна після запуску.

Визначаючи під час сертифікаційних випробувань індекси емісії шкідливих речовин на відповідних режимах роботи двигуна, знаходять контрольний  параметр  емісії  випробуваного двигуна, по якому встановлені норми ІКАО. Цей параметр характеризує "ступінь шкідливості" двигуна.

МІ – маса в грамах і-тої шкідливої речовини (інгредієнта) за деякий визначений час роботи двигуна; R0 – злітна тяга двигуна в кілоньютонах.

Злітна тяга двигуна - це тяга, що забезпечує підйом в повітря необхідної та встановленої для даного типу судна ваги.

Норми ІКАО по контрольному параметру емісії для сучасних авіаційних двигунів:

   .

Залежність емісії шкідливих речовин від режиму роботи типового сучасного авіадвигуна

Практична частина

1. Оцінка рівня емісії  авіадвигунів

Емісія, тобто викиди забруднюючих речовин авіадвигунами, буде неоднаковою в зоні аеропорту і під час польоту по маршруту, так як двигуни в цих випадках працюють на принципово різних режимах.

Як видно з наведених таблиці і графіка, забруднення в зоні аеропорту є більш шкідливим (на маршруті значення відносної тяги лежить в межах 0,6-0,8). Крім того, локальне забруднення приземного шару повітря в зоні аеропорту, де працює багато людей, є більш концентрованим і стійким, ніж загальне забруднення верхніх шарів тропосфери на маршруті польоту, оскільки робота двигунів є стабільною на великих швидкостях, а забруднюючі речовини швидко розсіюються.

Тому розрахунок емісії (рівня забруднення) двигунами авіалайнерів в зоні аеропорту є більш важливим і ми приділимо йому більше уваги.

"Ступінь шкідливості" кожного авіадвигуна характеризується його контрольними параметрами емісії за різними інгредієнтами –

Тобто, задача розрахунку емісії двигуна зводиться до визначення маси кожного інгредієнта, викинутого з двигуна за деякий визначений час його роботи, - (бо R0 – тяга двигуна на злітному режимі - величина, відома з документації, зокрема, з формуляра двигуна).

Будемо розраховувати величини  для зони аеропорту, тобто , на тих режимах роботи і за той період часу його роботи, поки повітряне судно знаходиться в цій зоні з працюючими двигунами.

В зоні аеропорту повітряне судно здійснює злітно-посадковий цикл, який складається з таких етапів:

  1.  Запуск і прогрівання двигунів.
  2.  Руління на виконавчий старт.
  3.  Зліт.
  4.  Набирання висоти (1000 м).

Зниження з висоти (1000 м).

Пробіг.

Руління до зупинки двигунів.

Проте двигуни на кожному з цих етапів працюють також на принципово різних режимах. Тому, для зручності розрахунку, розділимо злітно-посадковий цикл повітряного судна на два види операцій:

наземні операції (Мін);

злітно-посадкові операції (MіЗ-П). Тобто

Наземні операції – це запуск двигунів, їх прогрівання, руління корабля перед зльотом і після посадки.

Головною характеристикою цих операцій (з точки зору розрахунку емісії авіадвигунів) є те, що двигуни повітряного корабля працюють на одному режимі - режимі малого газу (холостого ходу) – і за часом це самі тривалі операції в зоні аеропорту.

Визначення Міап (маси шкідливих інгредієнтів, які утворюються внаслідок викиду авіадвигунами в зоні аеропорту), ведеться за формулою:

,

де Кін –  коефіцієнт викиду і-того інгредієнта під час наземних операцій,

Очевидно, що Кін=10-3*ЕІіН. Тобто, це той же індекс емісії (за визначенням). Як і ЕІіН, Кі визначається під час сертифікаційних випробувань двигунів (див. табл. 2).

GПн – маса пального (кг), витраченого двигуном повітряного судна під час наземних операцій злітно-посадкового циклу.

GПнпитМГRМГ tМГ,

СпитМГ – питома витрата пального під час роботи двигуна на режимі малого газу (наводиться в формулярі двигуна як одна із його важливих технічних характеристик),  

RMГ =Ro·– тяга двигуна на режимі малого газу, Н.

tMГ – напрацювання двигуна на режимі малого газу за злітно-посадковий цикл, год (режими 1,5 в табл. 1);

N – річна кількість зльотів-посадок усіх повітряних кораблів даного типу в аеропорту;

n – кількість двигунів на даному типі ПК.

Операції зліт-посадка – це зліт, набирання висоти 1000 м, зниження з висоти 1000 м і посадка.

В цьому випадку для розрахунку емісії авіадвигунів повітряного судна, яке знаходиться в повітрі, емісійною характеристикою є масова швидкість емісії Wі, , (а не індекс емісії), яка показує, скільки даної шкідливої речовини виділяється на даному режимі роботи двигуна за одиницю часу. Wі  також визначається під час сертифікаційних випробувань двигуна (див. табл. 3).

Визначення Мі З-П ведеться за формулою:

МіЗ-П =(Wі1Т1З-П В +Wі2Т2З-П+Wі3Т3З-ПN·n ,

де Wі123 – масова швидкість емісії інгредієнтів і при відповідних режимах роботи двигуна відповідно на зльоті, під час набору висоти 1000 м і під час зниження з висоти 1000 м, .

Т1,2,3 – режимне напрацювання двигуна відповідно на зльоті, під час набору висоти 1000 м та зниження з висоти 1000 м (див. табл. 1).

На основі отриманої маси забруднюючої речовини в зоні аеропорту  , розраховують контрольний параметр емісії двигуна   (де Mі маса забруднюючої речовини, що викидається одним двигуном ПК, г/год; Ro – злітна тяга двигуна, кН) і порівнюють його з нормами ІСАО, роблячи висновок про відповідність даного двигуна сучасним екологічним вимогам з емісії у відношенні даного інгредієнта.


Таблиця 2

Індекси емісій СО і NO2 під час наземних операцій авіадвигунів різних типів

(кілограм шкідливої речовини/кілограм палива)

№ варіанта

Тип ПК

Макси-мальна тяга двигуна R0, кН

Тип авіадвигуна

Кіль-кість двигу-нів, n

CПВИТМГ, кг/Н·год

k

СО

NOx

1

Ту-134

68

Д-30-П

2

0,059

0,0276

0,0067

2

Як-42

65

Д-36

3

0,037

0,0193

0,0084

3

Ту-154М

115

Д-30КУ

3

0,049

0,0546

0,0054

4

Іл-62М

115

Д-30КУ

4

0,049

0,0546

0,0054

5

Іл-76

115

Д-30КП

4

0,049

0,0546

0,0054

6

Ту-154А

105

НК-8-2У

3

0,061

0,0312

0,0049

7

Ту-154Б

105

НК-8-2У

3

0,061

0,0312

0,0049

8

Іл.-62

105

НК-8-4

4

0,046

0,0277

0,0055

9

Як-40

15

АІ-25

3

0,039

0,1457

0,0022

0

Як-40

15

АІ-25 з бездимною камерою згорання

3

0,039

0,0814

0,0146

Таблиця 3

Масові швидкості емісії СО і NOх двигунів

повітряних кораблів різних типів

варіанта

Тип повітряного корабля

Кількість рейсів на рік, N

Відносна тяга  відповідного режимів

(2, 3, 4)

Масові швидкості емісії Wі , кг/год

СО

NOх

1

Ту-134

40

1

0,85

0,3

5,5

5,5

6,0

80

50

10

2

Як-42

80

1

0,85

0,3

0,2

0,2

0,3

96

59

10

3

Ту-154

100

1

0,85

0,3

6,0

7,5

18,0

89

61

11

4

Іл.-62М

85

1

0,85

0,3

6,0

7,5

18,0

89

61

11

5

Іл.-76

85

1

0,85

0,3

6,5

7,5

18,0

95

61

11

6

Ту-154А

90

1

0,85

0,3

12,2

10,2

19,1

104

76

12

7

Ту-154Б

75

1

0,85

0,3

12,2

10,2

19,1

104

76

12

8

Іл.-62

120

1

0,85

0,3

12,5

11,0

20,5

110

65

10

9

Як-40

140

1

0,85

0,3

7,9

10,4

17,0

9,2

4,5

1,6

0

Як-40 (з бездимною камерою)

60

1

0,85

0,3

3,1

4,5

6,5

9,5

6,0

1,5


 

А также другие работы, которые могут Вас заинтересовать

13385. РОЛЬ МАРКЕТИНГОВЫХ ИССЛЕДОВАНИЙ В РЕАЛИЗАЦИИ СТРАТЕГИЧЕСКИХ НАПРАВЛЕНИЙ РАЗВИТИЯ ПРЕДПРИЯТИЯ 876 KB
  Маркетинг представляет собой нечто большее, чем просто продвижение товаров и услуг на рынок. Заставить покупателя купить то, что может предложить компания задача сбыта. С помощью маркетинга заставляют предприятие делать то, что необходимо потребителю
13386. ДИФФЕРЕНЦИАЛЬНАЯ ДИАГНОСТИКА И ЛЕЧЕНИЕ ПРИ СИНДРОМЕ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ 168 KB
  Алгоритм дифференциальной диагностики заболеваний, сопровождающихся синдромом артериальной гипертензии. Этиологию, патогенез, клинику и диагностику заболеваний и состояний, сопровождающихся синдромом артериальной гипертензии.
13387. CORELDRAW. ПОСТРОЕНИЕ СЛОЖНЫХ ОБЪЕКТОВ 307.38 KB
  Лабораторная работа N 3 CORELDRAW. ПОСТРОЕНИЕ СЛОЖНЫХ ОБЪЕКТОВ Дополнительные приемы работы с объектами Программа CorelDraw предоставляет большие возможности по созданию и редактированию сложных объектов. Команды позволяющие выполнять различные операции над объектами с...
13388. CORELDRAW. ИНТЕРАКТИВНОЕ ПЕРЕТЕКАНИЕ. ИМИТАЦИЯ ОБЪЕМА 345.39 KB
  Лабораторная работа N 4 CORELDRAW. ИНТЕРАКТИВНОЕ ПЕРЕТЕКАНИЕ. ИМИТАЦИЯ ОБЪЕМА Эффект Интерактивное перетекание Инструмент Интерактивное перетекание относится к категории интерактивных инструментов находящихся на панели инструментов. При помощи данного инстр
13389. CORELDRAW. POWERCLIP. ОБРАБОТКА РАСТРОВЫХ ИЗОБРАЖЕНИЙ 267.4 KB
  Лабораторная работа N 5 CORELDRAW. POWERCLIP. ОБРАБОТКА РАСТРОВЫХ ИЗОБРАЖЕНИЙ Совокупность команд PowerClip Фигурная обрезка Команды находятся в меню Эффекты. Данное подменю содержит четыре команды: Place Inside Container Поместить в контейнер Extract Contents Извлечь содержимое Edit Contents Р...
13390. CORELDRAW. ИНТЕРАКТИВНЫЙ ОБЪЕМ 361.88 KB
  Лабораторная работа N 6 CORELDRAW. ИНТЕРАКТИВНЫЙ ОБЪЕМ Инструмент Интерактивный объем Данный инструмент позволяет создавать иллюзию объема для плоских объектов. Иллюзия возникает изза того что за объектом или перед ним достраивается дополнительная плоскость той же ...
13391. CORELDRAW. ИНТЕРАКТИВНОЕ ИСКАЖЕНИЕ. ИМИТАЦИЯ ОБЪЕМА 309.26 KB
  Лабораторная работа N 7 CORELDRAW. ИНТЕРАКТИВНОЕ ИСКАЖЕНИЕ. ИМИТАЦИЯ ОБЪЕМА Эффект Интерактивное искажение Инструмент Интерактивное искажение является инструментом категории интерактивных инструментов и предназначен для деформации формы объекта к которому он при
13392. CORELDRAW. ПРИМЕНЕНИЕ НАВЫКОВ 165.88 KB
  Лабораторная работа N 8 CORELDRAW. ПРИМЕНЕНИЕ НАВЫКОВ Порядок выполнения работы Выполнить построение изображения согласно индивидуальному заданию и предложенным рекомендациям. ВАРИАНТ 1. КОЛЛАЖ ТУПИК РЕКОМЕНДАЦИИ: Д
13393. Побудова плану котеджу 58 KB
  Лабораторна робота № 2 Тема: Побудова плану котеджу. Мета: закріпити практичні навички побудови плану методом напрямоквідстань та використання команд trim extend. Обладнання: ПК програмне забезпечення AutoCAD ...