606

Процесса адиабатного истечения газа через суживающееся сопло

Лабораторная работа

Физика

Снять опытные характеристики процесса истечения при различных давлениях газа за сопловым каналом. Провести обработку экспериментальных данных и определить области докритического и критического истечения. Построить опытную и теоретическую характеристики суживающегося сопла в координатах.

Русский

2013-01-06

75.5 KB

94 чел.

Министерство по образованию и науке РФ

Государственное образовательное учреждение высшего

профессионального образования

«Ивановский государственный энергетический университет

имени В.И. Ленина»

Кафедра теоретических основ теплотехники

Отчет по лабораторной работе

Процесса адиабатного истечения газа через суживающееся сопло.

Выполнил:  студент гр. 2-2хх

А.Х. Мухтаров

Принял: доц. каф. ТОТ

И.М. Чухин

Оценка  ___________

Иваново 2012


1. Цель работы

Изучение процесса адиабатного истечения газа через суживающееся сопло при различных давлениях за сопловым каналом.

2. Задание

1. Снять опытные характеристики процесса истечения при различных давлениях газа за сопловым каналом.

2. Провести обработку экспериментальных данных и определить области докритического и критического истечения.

3. Построить опытную и теоретическую характеристики суживающегося сопла в координатах:

G=f(Pк) - расходная характеристика;

Р1=F(Pк) - изменение давления в минимальном сечении сопла.

4. Построить зависимость коэффициента расхода сопла μ=Gоп/Gтеор от давления за соплом Pк.

5. Провести анализ процесса истечения через сопловой канал на основании построенных зависимостей G, P1, μ от давления Рк.

6. Определить для одного из режимов истечения коэффициент потерь сопла ζ и скоростной коэффициент сопла φ. Данный пункт выполняется по указанию преподавателя.


3. Экспериментальная установка

Исследование процесса истечения воздуха через сопло проводится на имитационной установке. В состав установки входят: макет рабочего участка, блоки приборов управления установкой и индикации основных параметров процесса истечения, управляющая ЭВМ с монитором. Схема установки изображена на рис.1. Эта схема с фиксацией изменения основных характеристик процесса истечения отображается на мониторе ЭВМ.

Рис.1. Схема экспериментальной установки:

1 – расходомерная диафрагма, 2 – суживающееся сопло, 3 – вакуумный насос, 4 – регулировочный вентиль, 5 – индикаторный прибор перепада давления на расходомерной диафрагме, 6 – индикаторный прибор определения давления в выходном сечении сопла, 7 – индикаторный прибор определения давления за соплом

Газ при атмосферном давлении В и комнатной температуре to поступает через расходомерную диафрагму 1 по газопроводу постоянного сечения к суживающемуся соплу 2. Сопло имеет диаметр выходного сечения d1=1,55 мм. Движение газа через установку обеспечивает вакуумный насос 3, работающий на откачку газа из установки (в газопроводе вакуум, т.е. давление меньше атмосферного). Регулировочным вентилем 4, открывая или закрывая его, можно установить различные давления (разряжения) в газопроводе за соплом. Расход газа через установку, в том числе и через сопло, определяется по показаниям индикаторного прибора 5, измеряющего перепад давлений ΔH до и после расходомерной диафрагмы 1. Зная показания прибора 5, по тарировочной таблице расходомерной диафрагмы определяется массовый расход газа через установку. Давление воздуха в самом узком сечении сопла ΔР2 и за соплом ΔР3 измеряются индикаторными приборами 6 и 7. Температура газа на входе в установку to измеряется лабораторным ртутным термометром с ценой деления 0,1 оС, а давление В - ртутным барометром (оба прибора находятся в помещении лаборатории).

6. Расчет процесса истечения

6.1. Давления

Первоначально рассчитывается давление газа на входе в сопло PО'. Оно меньше атмосферного PО на величину потерь давления в расходомерной диафрагме (в диафрагме идет процесс дросселирования 1-2 см. рис.3)

PО' = PО - ΔH, Па,

Например,

-для докритического истечения:

PО' = PО – ΔH=

-для критического истечения:

PО' = PО – ΔH=

где PО =(В/750)105, – атмосферное давление в Па, при барометрическом давлении В в мм рт. ст.,

ΔH - потеря давления в расходомерной диафрагме в Па.

Давления в минимальном сечении сопла P1 и за соплом Pк рассчитываются по показаниям индикаторных приборов ΔP2 и ΔP3, исходя из того, что их размерность соответствует кГс/см2:

P1 = PО – ΔР2·0,981·105 , Па,

PК = PО – ΔР3·0,981·105, Па.

Например,

-для докритического истечения:

P1 = PО – ΔР2·0,981·105, Па

PК = PО – ΔР3·0,981·105, Па.

-для критического истечения:

P1 = PО – ΔР2·0,981·105, Па

PК = PО – ΔР3·0,981·105, Па.

Теоретическое давление в минимальном сечении сопла заносится в журнал наблюдений после анализа экспериментальных данных процесса истечения.

6.2. Анализ процесса истечения

Характер процесса истечения газа через сопловый канал определяется степенью изменения давления ε и давлением за сопловым каналом РК:

, она сравнивается с ;

где к = сР/cv (для  к = 1,333; εКР = 0,54).

PКР = PО’εКР;

при PК > PКР и ε > εКР - истечение докритическое: P1 = PК;

при PК ≤ PКР и ε ≤ εКР - истечение критическое: P1 = PКР.

Таким образом, теоретическое давление в минимальном сечении сопла будет равно давлению за соплом P1теор = Pк в режимах докритического истечения, когда Pк>Pкр. Во всех режимах критического истечения Pк≤Pкр, теоретическое давление в минимальном сечении сопла остается неизменным и равным критическому давлению P1теор=Pкр=Po' εКР.

Исходя из вышеизложенного, заполняется графа P1теор журнала наблюдений.

6.3. Определение расхода при докритическом истечении (Pк > Pкр)

а) Теоретический расход воздуха, кг/с, через суживающееся сопло в этом режиме истечения соответствует обратимому процессу истечения 1-3 (см. рис.3,а) и определяется по формуле (6)

,

где PК = P1теор.  При заполнении таблицы расчетных данных P1теор берется таким же, как PК вплоть до PК = PКР;

f1 - площадь минимального сечения сопла, м2,  при его диаметре d1=1,55 мм:

;

vO - удельный объем воздуха, м3/кг, на входе в сопло:

;

Po' – усредненное давление перед соплом:

,

берется как средняя арифметическая величина для упрощения расчетов vo. Поскольку Po' изменяется очень незначительно, можно принять Po' и vo постоянными для расчета теоретического расхода воздуха через сопло.

Например:

б) Опытный расход Gоп определяется по тарировочной таблице расходомерной диафрагмы Gоп=f(ΔН) как функция от перепада давлений на диафрагме.

Например:

Тарировочная таблица расходомерной диафрагмы приведена в приложении.

6.4. Определение расхода при критическом истечении (Pк ≤ Pкр)

а) Теоретический расход воздуха, кг/с, через сопло в этом режиме истечения соответствует процессу 1-3 (см. рис.3,б) и определяется по формуле

,                       (20)

где εКР рассчитывается для соответствующего газа по формуле(7).

Например:

б) Определение действительного расхода воздуха через сопло при критическом истечении ведется по зависимости G = f(ΔН) (см. приложение). Поскольку в этом режиме ΔН=const, то и Gоп.кр = const.

Например:

6.5. Определение коэффициента расхода сопла

Коэффициент расхода сопла рассчитывается по формуле (13)

.

Например:

-для докритического истечения

-для критического истечения  


Библиографический список

1. Коновалов В.И. Техническая термодинамика / Иван. гос. энерг. ун-т.- Иваново, 1995. - 464 с.

2. Коновалов В.И. Термодинамический анализ процессов в теплоэнергетических установках: Учеб. пособие / Иван.энерг.ин-т.- Иваново, 1980.-64 с.

3. Иноземцева Е.Н. Михеев Ю.С. Изучение процесса адиабатного истечения газа через суживающееся сопло при имитационном моделировании. Метод. указания к лаб. работе /Московский авиационный институт – Москва, 1990. – 16 с.

4. Чухин И.М. Исследование процесса истечения воздуха через суживающееся сопло. Метод. указания к лаб. работе / Иван. энерг. ун-т. – Иваново, 1996. – 24 с.


 

А также другие работы, которые могут Вас заинтересовать

40594. Диаграммы вариантов использования 52.06 KB
  Суть диаграммы вариантов использования состоит в следующем. Проектируемая система представляется в виде множества сущностей или актеров взаимодействующих с системой с помощью вариантов использования. Вариант использования служит для описания сервисов которые система предоставляет актеру.
40595. Диаграммы классов 37.79 KB
  Диаграмма классов определяет типы объектов системы и различного рода статические связи которые существуют между ними.1 Диаграмма классов На диаграммах классов изображаются также атрибуты классов операции классов и ограничения которые накладываются на связи между объектами.1 изображена типичная диаграмма классов.
40596. Диаграммы состояний 39.47 KB
  Диаграмма состояний показывает автомат. Ее частной разновидностью является диаграмма деятельности в которой все или большая часть состояний это состояния деятельности а все или большая часть переходов инициируются в результате завершения деятельности в исходном состоянии. Таким образом при моделировании жизненного цикла объекта полезны как диаграммы деятельности так и диаграммы состояний.
40597. Диаграммы потоков данных DED. АИС 55 KB
  Вендрова Проектирование ПО Ход урока Организационный момент 24 мин: Приветствие оформление документов к занятию Повторение пройденного материала применяемая методика выводы1520 мин Устные ответы на вопросы занятие 10 п.5 Сообщение темы урока постановка цели и задачи:13 мин: Изучить и закрепить на примере понятие модели информационной системы; Изучить основные элементы DFD диаграмм Изложение нового материала применяемая методика: 5060 мин. лекция с опорой на презентацию понятие модели; цель...
40598. Отражательный фазовращатель 23.11 KB
  Отражательный фазовращатель является одноплечным устройством, которое в идеальном случае полностью отражает ЭМВ, поступающую на его вход. При этом фаза отраженной волны изменяется на по отношению к фазе падающей волны. Такой фазовращатель можно представить в виде эквивалентного двухполюсника, описываемого коэффициентом отражения на входе///
40599. Y-циркулятор 36.5 KB
  Y-циркулятор являє собою зєднання під кутом 120 трьох ліній передачі (хвилевідної, коаксіальної, смужкової). У центрі зчленовування ліній розміщується намагнічений уздовж осі феритовий стрижень або диск
40600. Формирование документа XML и его DTD 570.5 KB
  Язык XML – это язык разметки, описывающий целый класс объектов данных, называемых документами XML. Документы XML обычно хранятся в виде текстовых файлов с расширением
40601. Подход RАD. Стадии реализации и внедрения 19.83 KB
  На данной фазе разработчики производят итеративное построение реальной системы на основе полученных в предыдущей фазе моделей а также требований нефункционального характера. Тестирование системы осуществляется непосредственно в процессе разработки. После окончания работ каждой отдельной команды разработчиков производится постепенная интеграция данной части системы с остальными формируется полный программный код выполняется тестирование совместной работы данной части приложения с остальными а затем тестирование системы в целом. Завершается...
40602. Стандарты проектирования 26.29 KB
  Важнейшие шаги процесса BSP их последовательность получить поддержку высшего руководства определить процессы предприятия определить классы данных провести интервью обработать и организовать данные интервью можно встретить практически во всех формальных методиках а также в проектах реализуемых на практике. ISO IEC 12207:1995 стандарт на процессы и организацию жизненного цикла. В соответствии с базовым международным стандартом ISO IEC 12207 все процессы ЖЦ ПО делятся на три группы: 1.