6079

Геометрические характеристики плоских сечений

Реферат

Архитектура, проектирование и строительство

Геометрические характеристики плоских сечений Прочность бруса не всегда зависит только от площади поперечного сечения, как это имеет место при растяжении, сжатии. Как бы вы ни поворачивали стержень относительно продольной оси, условие прочности буде...

Русский

2012-12-28

71 KB

53 чел.

Геометрические характеристики плоских сечений

Прочность бруса не всегда зависит только от площади поперечного сечения, как это имеет место при растяжении, сжатии. Как бы вы ни поворачивали стержень относительно продольной оси, условие прочности будет всегда иметь вид .

Другую картину мы имеем при изгибе. Так, при изгибе относительно одной из осей в поперечном сечении мы имеем при одном и том же действующем изгибающем моменте один эффект с точки зрения прогибов и прочности, а относительно другой, перпендикулярной оси, отличающийся от первого. Следовательно, при изгибе условие прочности зависит не только от площади поперечного сечения, но и от какого-то другого геометрического параметра (формы).

Для плоской фигуры (рис.3.1) наиболее часто рассматриваются следующие геометрические характеристики, кроме известных (площадь – F, длина - ):

                            Статические моменты 

;   .

Статические моменты могут быть положительными, отрицательными и равными нулю. Они измеряются в единицах длины в кубе [м3, см3, мм3].

Оси, относительно которых статические моменты равны нулю, называются центральными. Они всегда проходят через центр тяжести фигуры. На основании теоремы о моменте равнодействующей:

;  .

Из этих соотношений может быть определен центр тяжести для простой фигуры.

;   .

Координаты центра тяжести сложных фигур будут соответственно равны:

;

.

Осевые моменты инерции

;  .

Полярный момент инерции

.

Центробежный момент инерции

.

Моменты инерции всегда больше нуля. Центробежный момент инерции может быть отрицательным, положительным и равным нулю.

Моменты инерции относительно центральных осей называются центральными моментами инерции.

Оси, относительно которых центробежный момент инерции равен нулю, называют главными. Осевые моменты инерции относительно главных осей называются главными моментами инерции. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями.

Изменение моментов инерции при параллельном переносе осей

Если оси х, у параллельны центральным осям хс, ус (рис.3.2), то справедливы следующие соотношения:

;

;

.

Здесь, a и b – координаты точки О (с учётом знаков), т.е. нового начала координат в старой системе координат хс, ус.

Первые слагаемые в правых частях являются собственными моментами инерции фигуры, а вторые слагаемые переносными моментами инерции. Моменты инерции относительно осей параллельных центральным всегда увеличиваются, по отношению к центральным на величину равную произведению площади сечения на квадрат расстояния между рассматриваемыми осями.

Для сложных сечений моменты инерции связаны следующими соотношениями:

;  ;  .

Изменение моментов инерции при повороте осей координат

При повороте осей (х1; у1) на какой-либо угол по отношению к исходным (рис.3.3а) моменты инерции изменяются:

,

,

.

Эти зависимости справедливы только для осей с общим началом координат. Положительный угол отсчитывается от оси х в направлении кратчайшего поворота ее до совмещения с осью у.

Определение положения главных осей и главных моментов инерции

Положение главных осей находится по формуле:

,

где 0 – угол, на который нужно повернуть оси х и у, чтобы получить положение главных осей. При 0>0 поворот оси х до совмещения с главной осью производится против часовой стрелки.

Главные моменты инерции вычисляются по формуле (3.9), если в них положить =0, или по формулам:

,

.

В формулах верхние знаки следует брать при , а нижние при .

Правило инварианта: . При повороте осей, сумма  осевых моментов инерции относительно перпендикулярных осей остается величиной постоянной.

Понятие о радиусе инерции

Момент инерции фигуры относительно какой-либо оси можно записать в виде произведения площади фигуры на квадрат некоторой величины, которую называют радиусом инерции:

,

где ix – радиус инерции относительно оси х.

Тогда

, .

Относительно главных осей радиусы инерции будут равны соответственно:

,   .


o

x

x

y

ис.3.1.

dF

 C

xc

yc

y

b

Х

Хс

0

С

Ус

У

Рис.3.2.

а

Х1

Х

У1

У

F

у

х

у1

х1

0

а)

V

U

У

Х

0

0

б)

Рис.3.3.


 

А также другие работы, которые могут Вас заинтересовать

11127. Теории прочности. Чистый сдвиг 786 KB
  Теории прочности. Чистый сдвиг Теории прочности. Важнейшей задачей инженерного расчета является оценка прочности элемента конструкции по известному напряженному состоянию. Для простых видов деформаций в частности для одноосных напряженных состояний определение з...
11128. Кручение. Кручение бруса некруглого сечения 911.5 KB
  Кручение. Кручение бруса некруглого сечения. Кручение прямого круглого бруса. Деформация кручения вызывается парами сил плоскости действия которых перпендикулярны к оси стержня. Поэтому при кручении в произвольном поперечном сечении стержня из шести внутренних сил
11129. Чистый изгиб. Поперечный изгиб 623 KB
  Чистый изгиб. Поперечный изгиб. Общие понятия. Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня рис. 6.1. Ознакомимся с основными понятиями которые используются при рассмотрении деформации изгиба. С
11130. Полный расчет балок на прочность при изгибе. Дифференциальное уравнение изогнутой оси 704 KB
  Полный расчет балок на прочность при изгибе. Дифференциальное уравнение изогнутой оси Касательные напряжения при изгибе. Присутствие поперечных сил при поперечном изгибе свидетельствует о наличии в поперечном сечении касательных напряжений. ...
11131. Определение перемещений при изгибе методом начальных параметров. Определение перемещений в балках переменного сечения 396 KB
  Определение перемещений при изгибе методом начальных параметров. Определение перемещений в балках переменного сечения Определение перемещений при изгибе методом начальных параметров Определение перемещений методом непосредственного интегрирования дифференциаль...
11132. Определение перемещений в упругих системах. Общие понятия 632 KB
  Определение перемещений в упругих системах. Общие понятия Обобщенные силы и перемещения Ранее нами были рассмотрены некоторые частные способы определения перемещений удобные при решении простейших задач. Начало возможных перемещений и закон сохранения энергии по...
11133. Определение перемещений в упругих системах. Метод мора. Способ верещагина 518 KB
  Определение перемещений в упругих системах. Метод мора. Способ верещагина. Метод Мора Рассмотрим произвольную плоскую стержневую систему нагруженную заданными силами рис. 2.3.1. Усилия в произвольном сечении обозначим через . Пусть требуется определить перемещени
11134. Статическая неопределимость. Построение внутренних силовых факторов для плоских рам 606.5 KB
  Статическая неопределимость. Построение внутренних силовых факторов для плоских рам. Статическая неопределимость. С простыми статически неопределимыми системами мы уже сталкивались при расчете статически неопределимых стержней работающими на чистое растяжение–с
11135. Статическая неопределимость. Канонические уравнения метода сил 617.5 KB
  Статическая неопределимость. Канонические уравнения метода сил. Канонические уравнения метода сил. Дополнительные уравнения перемещения удобно составлять в так называемой канонической форме т. е. по определенной закономерности. На рисунке 2.5.1 а показана один раз с...