608

Исследование показателей надежности и рисков нерезервированной технической системы

Лабораторная работа

Информатика, кибернетика и программирование

Определить показатели надежности и риск нерезервированной технической системы. Исследовать функцию риска: представить функцию риска в виде таблицы и графика. Дать качественный и количественный анализ соотношения риска, вычисленного по точной и приближенной зависимостям в MathCAD или табличном процессоре Microsoft Excel.

Русский

2015-01-14

93 KB

62 чел.

Лабораторная работа

Коваленко С.В., 441-э гр.

"Исследование надежности и риска нерезервированной технической системы"

1 Задание к лабораторной работе

Определить показатели надежности и риск нерезервированной технической системы. Исследовать функцию риска: представить функцию риска в виде таблицы и графика. Определить критическое время работы системы. Дать качественный и количественный анализ соотношения риска, вычисленного по точной и приближенной зависимостям. Все вычисления, а также построение графиков выполнить с использованием интегрированной системы MathCAD или табличного процессора Microsoft Excel.

2 Справочный материал к лабораторной работе

2.1 Постановка задачи

Дано:

  •  структурная схема системы в виде основного (последовательного в смысле надежности) соединения элементов;
  •  nчисло элементов системы;
  •  λi – интенсивность отказа i -го элемента системы, i=1,2,…, ;
  •   ri – риск отказа из-за i -го элемента системы, i=1,2,…,;
  •   R допустимый риск;
  •   T – суммарное время работы системы.

Определить:

  •  Tср – среднее время безотказной работы системы;
  •  Pс(t) – вероятность безотказной работы системы в течение времени t, а также ее значения при t = T и t = Tср;
  •  Rс(t) – риск системы как функцию времени; значение риска при t = T и t = Tср;
  •  критическое время работы системы;
  •  исследовать зависимость GR(t,n).

2.2. Сведения из теории

Основными показателями надежности нерезервированной невосстанавливаемой системы являются: Pс(t) – вероятность безотказной работы системы в течение времени t, Tср – среднее время безотказной работы системы. При постоянных интенсивностях отказов элементов

, ,

где  - интенсивность отказа системы.

Отказы являются событиями случайными. При этом потери зависят от вида отказа. Риск является неизбежным атрибутом эксплуатации техники. Риск, возникающий в результате отказов техники, называется техногенным.

 Техногенным риском называется возможность потерь из-за отказа техники. В большинстве случаев риск оценивается денежными единицами. Из определения следует, что риск является случайной величиной, вызванной двумя величинами: случайностью события “отказ” и случайностью величины потерь.

Риск системы  и  вычисляются по приближенной формуле:

или по точной формуле:

,

где qi(t)=1-Pi(t) – вероятность отказа i –го элемента системы в течение времени t; Qc(t)=1-Pc(t) – вероятность отказа системы в течение времени t.

Так как возрастает с ростом t , то представляет интерес предельное время, выше которого риск будет превышать допустимое. Определение критического времени работы системы сводится к определению корня последнего уравнения. Если вещественного корня нет, то при любом t риск системы не превосходит допустимого значения.

Если элементы системы равнонадежны, то соотношения  и имеет вид

.

является убывающей функцией времени, при этом с увеличением длительности времени работы системы, погрешность приближенной формулы увеличивается.

2.3. Последовательность выполнения работы

Лабораторную работу следует выполнить в такой последова-тельности:

  1.  Вычислить показатели надежности системы Pс(t) и Tср. Значения вероятности безотказной работы системы Pс(t) вычислить при t=T и t=Tср.
  2.  Исследовать функцию риска системы по точной формуле, для чего:
  •  получить формулу риска для заданных данных n, λi, ri;
  •  исследовать зависимость Rc(t) представив функцию в виде графика и таблицы;
  •  вычислить значение риска для исходных данных своего варианта при t = T и t = Tср.
  1.  Исследовать GR(t,n) при допущении, что элементы системы равнонадежны и интенсивность отказа каждого элемента равна их средней интенсивности отказов, т.е.
  2.  Сделать выводы.

Ход работы

Исходные данные:

 

Риск исследуемой системы ниже допустимого допустимого значения, равного 5000 условных единиц

Вещественного корня нет. Это значит, что при любом t риск системы не превосходит допустимого значения

Техногенный риск функционирования системы возрастает с увеличением времени работы системы t и при t =? стремится к постоянной величине, равной среднему значению риска

Предельное значение погрешности приближенной формулы равно 1/n.

1. Чем больше элементов n и чем больше время работы системы, тем больше погрешность приближенной формулы.

2. Приближенной формулой можно пользоваться в том случае, когда время работы системы мало и риск, вычисленный по приближенной формуле, не превышает допустимого значения.

С увеличением t с 1000 до 10000 часов

риск увеличивается примерно с 100 до 700 условных единиц;

погрешность приближеннй формулы увеличивается в 1.4 раза.


 

А также другие работы, которые могут Вас заинтересовать

388. Технологическая часть промышленного приборостроения. Характеристика типов производства 431 KB
  Характеристика типов производства бывает следующих видов. Сборка и монтаж печатной платы на непрерывно–поточной линии. Численность рабочих на поточной линии. Расчет стоимости основных производственных фондов.
389. Смоленские Евреи в период Великой Отечественной войне 2.79 MB
  Политика антисемитизма в советское время. Освящение массового уничтожения еврейской нации на территории Смоленской. Причины и последствия тактики замалчивания Холокоста и участия евреев в Великой Отечественной войне.
390. За что я люблю машины. История создания автомобиля 427 KB
  РАССКАЗАТЬ О СВОЕЙ ЛЮБВИ К АВТОМОБИЛЯМ. ПОДРОБНЕЕ УЗНАТЬ ИСТОРИЮ СОЗДАНИЯ АВТОМОБИЛЯ. ПОДТВЕРДИТЬ МЫСЛЬ О ТОМ, В СОВРЕМЕННОМ МИРЕ ЖИЗНЬ БЕЗ АВТОМОБИЛЕЙ УЖЕ НЕВОЗМОЖНА. ЧТО ПРИВОДИТ АВТОМОБИЛЬ В ДВИЖЕНИЕ.
391. Проблемы экономической безопасности России 128 KB
  Ключевые тенденции проблематики экономической безопасности. Прикладные аспекты экономической безопасности. Глобализация как угроза экономическому суверенитету государства. Методика определения ключевых проблем экономической безопасности.
392. Объекты промышленной интеллектуальной собственности 62.5 KB
  Объект интеллектуальной собственности, цели и задачи, на решение которых направлен объект. Сравненительный анализ разработанного объекта и прототипа. Разработка объекта промышленной собственности.
393. Коммуникативная компетенция учителя иностранного языка 96 KB
  Теоретические аспекты формирования коммуникативной компетенции в рамках педагогического процесса. Лингвистическая компетенция как одна из составляющих иноязычной коммуникативной компетенции. Коммуникативная компетенция как новый тип содержания образования в школе.
394. Теория дизайна 222 KB
  История понятие термина дизайн. Промышленный и транспортный дизайн. Колористика и суперграфика. Визуальная идентификация, товарные знаки, визуальные коммуникации и ландшафтный дизайн. Примеры дизайна квартир.
395. Денежная масса и скорость обращения денег 62 KB
  Деньги являются важнейшим атрибутом рыночной экономики. Налично-денежное обращение - движение наличных денег в сфере обращения и выполнение ими двух функций (средства платежа и средства обращения).
396. М.В. Исаковский на Смоленщине 297.56 KB
  Связь биографии поэта с историей народа и страны. Народность песенного творчества М.В. Исаковского. Отражение в лирике М. В. Исаковского черт русского национального характера.