608

Исследование показателей надежности и рисков нерезервированной технической системы

Лабораторная работа

Информатика, кибернетика и программирование

Определить показатели надежности и риск нерезервированной технической системы. Исследовать функцию риска: представить функцию риска в виде таблицы и графика. Дать качественный и количественный анализ соотношения риска, вычисленного по точной и приближенной зависимостям в MathCAD или табличном процессоре Microsoft Excel.

Русский

2015-01-14

93 KB

59 чел.

Лабораторная работа

Коваленко С.В., 441-э гр.

"Исследование надежности и риска нерезервированной технической системы"

1 Задание к лабораторной работе

Определить показатели надежности и риск нерезервированной технической системы. Исследовать функцию риска: представить функцию риска в виде таблицы и графика. Определить критическое время работы системы. Дать качественный и количественный анализ соотношения риска, вычисленного по точной и приближенной зависимостям. Все вычисления, а также построение графиков выполнить с использованием интегрированной системы MathCAD или табличного процессора Microsoft Excel.

2 Справочный материал к лабораторной работе

2.1 Постановка задачи

Дано:

  •  структурная схема системы в виде основного (последовательного в смысле надежности) соединения элементов;
  •  nчисло элементов системы;
  •  λi – интенсивность отказа i -го элемента системы, i=1,2,…, ;
  •   ri – риск отказа из-за i -го элемента системы, i=1,2,…,;
  •   R допустимый риск;
  •   T – суммарное время работы системы.

Определить:

  •  Tср – среднее время безотказной работы системы;
  •  Pс(t) – вероятность безотказной работы системы в течение времени t, а также ее значения при t = T и t = Tср;
  •  Rс(t) – риск системы как функцию времени; значение риска при t = T и t = Tср;
  •  критическое время работы системы;
  •  исследовать зависимость GR(t,n).

2.2. Сведения из теории

Основными показателями надежности нерезервированной невосстанавливаемой системы являются: Pс(t) – вероятность безотказной работы системы в течение времени t, Tср – среднее время безотказной работы системы. При постоянных интенсивностях отказов элементов

, ,

где  - интенсивность отказа системы.

Отказы являются событиями случайными. При этом потери зависят от вида отказа. Риск является неизбежным атрибутом эксплуатации техники. Риск, возникающий в результате отказов техники, называется техногенным.

 Техногенным риском называется возможность потерь из-за отказа техники. В большинстве случаев риск оценивается денежными единицами. Из определения следует, что риск является случайной величиной, вызванной двумя величинами: случайностью события “отказ” и случайностью величины потерь.

Риск системы  и  вычисляются по приближенной формуле:

или по точной формуле:

,

где qi(t)=1-Pi(t) – вероятность отказа i –го элемента системы в течение времени t; Qc(t)=1-Pc(t) – вероятность отказа системы в течение времени t.

Так как возрастает с ростом t , то представляет интерес предельное время, выше которого риск будет превышать допустимое. Определение критического времени работы системы сводится к определению корня последнего уравнения. Если вещественного корня нет, то при любом t риск системы не превосходит допустимого значения.

Если элементы системы равнонадежны, то соотношения  и имеет вид

.

является убывающей функцией времени, при этом с увеличением длительности времени работы системы, погрешность приближенной формулы увеличивается.

2.3. Последовательность выполнения работы

Лабораторную работу следует выполнить в такой последова-тельности:

  1.  Вычислить показатели надежности системы Pс(t) и Tср. Значения вероятности безотказной работы системы Pс(t) вычислить при t=T и t=Tср.
  2.  Исследовать функцию риска системы по точной формуле, для чего:
  •  получить формулу риска для заданных данных n, λi, ri;
  •  исследовать зависимость Rc(t) представив функцию в виде графика и таблицы;
  •  вычислить значение риска для исходных данных своего варианта при t = T и t = Tср.
  1.  Исследовать GR(t,n) при допущении, что элементы системы равнонадежны и интенсивность отказа каждого элемента равна их средней интенсивности отказов, т.е.
  2.  Сделать выводы.

Ход работы

Исходные данные:

 

Риск исследуемой системы ниже допустимого допустимого значения, равного 5000 условных единиц

Вещественного корня нет. Это значит, что при любом t риск системы не превосходит допустимого значения

Техногенный риск функционирования системы возрастает с увеличением времени работы системы t и при t =? стремится к постоянной величине, равной среднему значению риска

Предельное значение погрешности приближенной формулы равно 1/n.

1. Чем больше элементов n и чем больше время работы системы, тем больше погрешность приближенной формулы.

2. Приближенной формулой можно пользоваться в том случае, когда время работы системы мало и риск, вычисленный по приближенной формуле, не превышает допустимого значения.

С увеличением t с 1000 до 10000 часов

риск увеличивается примерно с 100 до 700 условных единиц;

погрешность приближеннй формулы увеличивается в 1.4 раза.


 

А также другие работы, которые могут Вас заинтересовать

64357. ПОРУШЕННЯ СИСТЕМ ГОМЕОСТАЗУ ТА ШЛЯХИ ЙОГО КОРЕКЦІЇ НА ЕТАПАХ КОМПЛЕКСНОГО ЛІКУВАННЯ ХВОРИХ НА ГЕНЕРАЛІЗОВАНИЙ ПАРОДОНТИТ 344.5 KB
  Мета дослідження обгрунтування концепції комплексного індивідуального лікування хворих на генералізований пародонтит на підставі визначення ролі систем гомеостазу в патогенезі пародонтиту вивчення дизбіотичних...
64358. Розвиток методів розрахунку систем охолоджування роторів газових турбін 2.57 MB
  В найближчому майбутньому освоєння високих температур газу відбуватиметься головним чином за рахунок вдосконалення систем охолоджування зокрема шляхом вдосконалення охолодження роторів турбін.
64359. Сформованість готовості майбутніх учителів до організації міжособистісних взаємин в учнівському колективі підлітків 435.5 KB
  Національна освіта переживає критичне та конструктивне переосмислення дійсності, пов’язане з глибоким перетворенням усіх сфер суспільного життя. Сьогодні пріоритетними у навчально-виховному процесі є: гуманізація, становлення сучасних засад морально-етичного виховання...
64360. Оптимізація процесу фізичного виховання студентів транспортних спеціальностей на основі поглибленого курсу професійно-прикладної фізичної підготовки 263.5 KB
  Дотепер накопичений досить великий арсенал наукових досліджень щодо застосування ППФП в освітньому процесі студентів майбутніх фахівців різних галузей господарства Сущенко Л. Недостатньо досліджено питання обґрунтованості вибору вправ професійноприкладної...
64361. УСВІДОМЛЕННЯ ПРОФЕСІЙНОГО ВИБОРУ МАЙБУТНІМИ ВЧИТЕЛЯМИ ЯК ЧИННИК САМОЗДІЙСНЕННЯ ОСОБИСТОСТІ 186.5 KB
  Процес вибору професії доволі складний тривалий і суперечливий. Професійне становлення особистості що починається з вибору професії не закінчується ним.
64362. ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ЗАХОДІВ ЗІ ЗМЕНШЕННЯ ОБМЕЖЕНЬ ШВИДКОСТІ РУХУ ПОЇЗДІВ, ЗУМОВЛЕНИХ СТАНОМ ЗАЛІЗНИЧНОЇ КОЛІЇ 440.5 KB
  Актуальність теми визначається необхідністю забезпечення безперебійного перевізного процесу на залізницях України підвищення швидкості руху поїздів зниження питомих витрат енергоресурсів зменшення строку доставки вантажів.
64363. ОБГРУНТУВАННЯ СХЕМИ ТА ПАРАМЕТРІВ ПОСІВНОГО АГРЕГАТУ НА БАЗІ ОРНО-ПРОСАПНОГО ТРАКТОРА 2.19 MB
  Мета дисертаційної роботи полягає в підвищенні експлуатаційної ефективності використання орнопросапного трактора шляхом обґрунтування схеми параметрів і режиму його агрегатування з сівалкою для сівби просапних культур.
64364. КОНСТИТУЦІЙНІ ЗАСАДИ ПРАВОГО РЕГУЛЮВАННЯ ІНФОРМАЦІЙНОЇ СФЕРИ 150 KB
  У сучасному демократичному суспільстві інформаційна сфера є важливою складовою суспільного устрою та його прогресивного розвитку. Еволюційне значення інформаційної складової полягає в тому, що сьогодні людство активно формує інформаційне суспільство...
64365. Регулювання інтегральних параметрів напірних потоків рідин гідродинамічно активними додатками 17.91 MB
  Мета роботи науково обґрунтувати та розробити засоби енергоощадного керування напірними потоками рідин у трубопроводах за допомогою гідродинамічноактивних додатків включаючи рух рідини змінної витрати встановити закономірності впливу цих додатків на інтегральні параметри потоків рідин.