60825

Расчёт на прочность рамной стержневой конструкции

Курсовая

Архитектура, проектирование и строительство

Под действием вертикальной нагрузки балки рамы получаем изгиб в вертикальной плоскости и кручение. Для упрощения будем пренебрегать сопротивлению балок кручению, что равносильно введению шарнирных связей между балками

Русский

2014-12-21

390.5 KB

4 чел.

Расчёт на прочность рамной стержневой конструкции

Содержание

[1]

[2] Введение

[3] 1  Расчет на прочность рамной стержневой конструкции методом сил.

[4] 1.1  Упрощение исходной расчетной схемы

[5] 1.2 Определение геометрических характеристик сечений рассчитываемых элементов.

[6] 1.3 Установление степени статической неопределимости и выбор основной системы.

[7] 1.4 Определение внутренних усилий.

[8] 1.5  Определение расчетных напряжений и оценка прочности конструкции

[9] Литература


Введение 

Для обеспечения эффективности и безопасности эксплуатации вагонов на железных дорогах требуется единый подход к оценке проектных решений и обоснованию соответствия их требованиям нормативной документации. Прогноз качества и целесообразности применения проектных решений может быть обеспечен посредством реализации системной технологии и наполняющих ее средств оценки конструкций. Одним из важных элементов конструирования вагонов является его рама. В курсовой работе выполнен расчет стержневой рамы методом сил. При расчете вагонных конструкций методом сил расчетную схему представим в виде плоских стержневых систем. Расчетные схемы образуются проекцией на горизонтальную плоскость совокупности линий, проходящих через центры тяжести поперечных сечений балок рамы.

Под действием вертикальной нагрузки балки рамы получаем изгиб в вертикальной плоскости и кручение. Для упрощения будем пренебрегать сопротивлению балок кручению, что равносильно введению шарнирных связей между балками. Ввиду симметричности конструкции и действующей нагрузки относительно двух осей исходная расчетная схема может быть упрощена путем замены ее схемой 1/4 части.


1  Расчет на прочность рамной стержневой конструкции методом сил.

1.1  Упрощение исходной расчетной схемы 

Исходная расчетная схема рамы установлена заданием на проектирование и показана на рисунке 1. Она образуется линиями, проходящими через центры тяжести поперечных сечений балок рамы. Рама загружена вертикальной нагрузкой и поэтому представляет собой плоскопространственную стержневую систему.

                          Рисунок 1 –  Исходная расчетная схема рамы

Ввиду симметричности конструкции и действующей нагрузки относительно двух осей исходная расчетная схема может быть упрощена путем замены ее схемой 1/4 части (рисунок 2). Действие отброшенной части учитывается введением соответствующих связей. На расчётной схеме 1/4 части рамы квадратными скобками обозначены связи, закрепляющие сечения от поворотов в вертикальной плоскости.

Рисунок 2 –  Расчетная схема 1/4 части рамы


Поскольку на расчетной схеме 1/4 части рамы хребтовая балка – стержни 1 – 2 и  2 – 3 разрезана вдоль по оси симметрии пополам, то силы, действующие на нее, и  геометрические  характеристики  также  уменьшаются  в  два  раза, то есть 0,5Р
1, I х1 = 0,5I х, сила в узле 3 уменьшится в 4 раза и равна 0,25Р 2, так как она режется как вдоль, так и поперек стержня.

1.2 Определение геометрических характеристик сечений рассчитываемых элементов. 

Рассмотрим расчет характеристик сечения стержней  1 – 2,  2 – 3 (рисунок 3).

Рисунок 3 – Сечение стержней   1 – 2,  2 – 3.

Сложное сечение разбиваем на простые части – прямоугольники 1,  2  и 3. Проводим через центры их тяжести центральные оси Х 1,  Х 2,  Х 3  (рисунок 4). По нижней кромке сечения проведем координатную ось Х 0.

Расчет геометрических характеристик выполняем в сантиметрах.

По каждому выделенному прямоугольнику определяем:

площади поперечных сечений:

моменты инерции относительно центральных осей:


   

Рисунок 4 – Расчетное сечение стержней   1 – 2,  2 – 3.

Расчет выполним в табличной форме (таблица 1).

Таблица 1 –  Расчет геометрических  характеристик сечения стержней  1 – 2,  2 – 3  относительно нейтральной оси Х (рисунок 4)

Используя итоговые данные таблицы 1 определяем  геометрические характеристики сложного сечения стержней  1 – 2,  2 – 3.

Координата центра тяжести

Момент инерции относительно нейтральной оси Х сложного сечения:

I x =  I 12  = I 23  = 6225,79 + 77048,6 – 22,15 . 2604,4 = 25587 см 4 =

                     = 25587 . 10 -8 м 4.


Моменты сопротивления изгибу относительно нейтральной оси Х сложного сечения:

Рассмотрим расчет характеристик сечения стержней  4 – 5,  5 – 6 (рисунок 5).

Рисунок 5 – Сечение стержней  4 – 5,  5 – 6.

Сложное сечение разбиваем на простые части – прямоугольники 1,  2  и 3. Проводим через центры их тяжести центральные оси Х 1,  Х 2,  Х 3  (рисунок 6). По нижней кромке сечения проведем координатную ось Х 0.

Расчет геометрических характеристик выполняем в сантиметрах.

По каждому выделенному прямоугольнику определяем:

площади поперечных сечений:

моменты инерции относительно центральных осей:


Рисунок 6 – Расчетное сечение стержней  4 – 5,  5 – 6.

Расчет выполним в табличной форме (таблица 2).

Таблица 2 –  Расчет  геометрических характеристик сечения стержней  4 – 5,  5 – 6  относительно нейтральной оси Х (рисунок 6)

Используя итоговые данные таблицы 2 определяем  геометрические характеристики сложного сечения стержней  4 – 5,  5 – 6.

Координата центра тяжести

Момент инерции относительно нейтральной оси Х сложного сечения:

I x =  I 45  = I 56  = 914,36 + 12239,88 – 14,75 . 629,75 = 3865 см 4 =

                     = 3865 . 10 -8 м 4.


Моменты сопротивления изгибу относительно нейтральной оси Х сложного сечения:

Рассмотрим расчет характеристик сечения стержня  1 – 4 (рисунок 7).

Рисунок 7 – Сечение стержня  1 – 4.

Сложное сечение разбиваем на простые части – прямоугольники 1,  2,  3  и  4. Проводим через центры их тяжести центральные оси Х 1,  Х 2,  Х 3,  Х 4  (рисунок 8). По нижней кромке сечения проведем координатную ось Х 0.

Расчет геометрических характеристик выполняем в сантиметрах.

По каждому выделенному прямоугольнику определяем:

площади поперечных сечений:

моменты инерции относительно центральных осей:


Рисунок 8 – Расчетное сечение стержня  1 – 4.

Расчет выполним в табличной форме (таблица 3).

Таблица 3 – Расчет геометрических характеристик сечения стержня  1 – 4

относительно нейтральной оси Х (рисунок 8)

Используя итоговые данные таблицы 3 определяем  геометрические характеристики сложного сечения стержней  1 – 4.

Координата центра тяжести

Момент инерции относительно нейтральной оси Х сложного сечения:

I x =  I 14  = 2929,71 + 25595,48 – 16,05 . 1143,7 = 10169 см 4 =

                     = 10169 . 10 -8 м 4.


Моменты сопротивления изгибу относительно нейтральной оси Х сложного сечения:

Рассмотрим расчет характеристик сечения стержня  2 – 5 (рисунок 9).

Рисунок 9 – Сечение стержня  2 – 5.

Сложное сечение разбиваем на простые части – прямоугольники 1,  2,  и  3. Проводим через центры их тяжести центральные оси Х 1,  Х 2,  Х 3  (рисунок 10). По нижней кромке сечения проведем координатную ось Х 0.

Расчет геометрических характеристик выполняем в сантиметрах.

По каждому выделенному прямоугольнику определяем:

площади поперечных сечений:

моменты инерции относительно центральных осей:


Рисунок 10 – Расчетное сечение стержня  2 – 5.

Расчет выполним в табличной форме (таблица 4).

Таблица 4 – Расчет геометрических характеристик сечения стержня  2 – 5

относительно нейтральной оси Х (рисунок 10)

Используя итоговые данные таблицы 4 определяем  геометрические характеристики сложного сечения стержней  2 – 5.

Координата центра тяжести

Момент инерции относительно нейтральной оси Х сложного сечения:

I x =  I 25  = 9760,8 + 139993,7 – 21,55 . 4241,04 = 58360 см 4 =

                     = 58360 . 10 -8 м 4.


Моменты сопротивления изгибу относительно нейтральной оси Х сложного сечения:

Результаты расчета геометрических характеристик по всем сечениям рамы сводим в таблицу 5, учитывая, что геометрические характеристики сечений стержней 1 – 2,  2 – 3 равны половинам их действительных расчетных значений, так как сечения указанных стержней рассечены пополам по длине.

Таблица 5 – Результаты расчета геометрических характеристик сечений стержней расчетной схемы.

1.3 Установление степени статической неопределимости и выбор основной системы.

Степень статической неопределимости 1/4 части расчетной схемы определяется по формуле

где  d – число поперечных балок всей рамы,  d = 4.

Основную систему получим из заданной расчетной схемы  1/4  части рамы, удаляя связь в узле 4 между продольной балкой  4 – 5  и поперечной балкой  1 – 4 рисунок 11.

Рисунок 11 – Основная система


1.4 Определение внутренних усилий.

Составление канонического уравнения. Для определения неизвестного силового фактора  Х 1  составляется каноническое уравнение метода сил.

Вычисление коэффициента  δ 11  и свободного члена  Δ  канонического уравнения. Для их определения нагружаем основную систему поочередно единичными усилиями  Х 1 = 1 и внешней нагрузкой и от каждого из них отдельно строятся эпюры изгибающих моментов.

Строим единичную эпюру изгибающих моментов от действия  Х 1 = 1. Определим ординаты эпюры :

 

Строим единичную эпюру  рисунок 12.

Рисунок 12 – Единичная эпюра  .

Строим грузовую эпюру изгибающих моментов М от действия внешней нагрузки. Определим реакции и ординаты грузовой эпюры М (от внешней нагрузки рисунок 13):


Рисунок 13 – Внешняя нагрузка на раму.

Строим эпюру изгибающих моментов от внешней нагрузки рисунок 14.

Рисунок 14 – Эпюра изгибающих моментов от внешней нагрузки.

Коэффициент  δ 11  определяем умножением эпюры   саму на себя, а свободный член  Δ – перемножая эпюры  и М.

Для удобства вычисляем  δ 11  и  Δ, увеличенные в Е раз.


Решение канонического уравнения. Подставляя полученные значения коэффициента Еδ 11 и свободного члена  ЕΔ  в каноническое уравнение и сокращая на  Е  получим

Решая уравнение, находим

Построение суммарной эпюры изгибающих моментов. Вычисление ординат суммарной эпюры изгибающих моментов М с выполняем в табличной форме (таблица 6)

Таблица 6 – Вычисление ординат суммарной эпюры  М с


Рисунок 15 – Суммарная эпюра изгибающих моментов

1.5  Определение расчетных напряжений и оценка прочности конструкции

Вычисление нормальных напряжений в сечениях стержней рамы производим в табличной форме (таблица 7) с использованием формулы

где  – нормальные напряжения, обусловлено деформациями изгиба, для верхних (нижних) волокон  i – го расчетного сечения, МПа;

М сi  – ордината суммарной эпюры изгибающих моментов в  i – м расчетном сечении,  кН . м;

– момент сопротивления  i – го сечения изгибу относительно нейтральной оси  х  для верхних (нижних) волокон, м 3.

Таблица 7 – Напряжения в расчетных сечениях рамы


Вывод. Во всех сечениях рамы расчетные напряжения  σ i  не превышают допускаемые  [σ] = 335 МПа (материал сталь 10Г2БД) т.е. выполняется условие .  Поэтому можно сделать вывод о том, что прочность рамы обеспечивается.  


Литература

  1.  Дарков, А. В. Строительная механика: учеб. для вузов/ А. В. Дрков, В. Н. Шапошников. – М., Высш. шк., 1986. – 607 с.
  2.  Пигунов, В. В. Строительная механика и несущая способность вагонов/ А. В. Пигунов. – Гомель 2007. – 81 с.


 

А также другие работы, которые могут Вас заинтересовать

34152. Спрос 17.46 KB
  Объем спроса это количество товара которое покупатели желают приобрести за некоторый период например день или год. Объем спроса зависит от цены данного товара цены других товаров товаровзаменителей доходов покупателей и их вкусов. Графическое выражение между ценой товара и величиной спроса предъявляемого покупателями на этот товар называется кривой спроса. Кривая спроса обычно является убывающей.
34153. Объем предложения товара 16.06 KB
  Объем предложения товара это количество товара которое продавцы желают продать за некоторый период например день или год. Объем предложения зависит от цены товаров от цены используемых в производстве ресурсов имеющихся в распоряжении товаропроизводителей и других факторов. Важно отличать объем предложения от объема производства: не все что создано производителем предлагается к продаже и не все что продается обязательно покупается. Объем предложения определяется только поведением продавцов тогда как объем продаж определяется и...
34154. Равновесная цена 14.49 KB
  Взаимодействие предложения и спроса приведет к установлению рыночной цены или равновесной цены. Равновесная цена это цена при которой объем спроса равен объему предложения и этот объем является соответственно равновесным. Возможны четыре варианта взаимодействия спроса и предложения: 1 возрастание спроса на товар кривая его двигается вправо; 2 уменьшение спроса на товар кривая его двигается влево; 3 возрастание предложения на товар кривая его двигается вправо; 4 уменьшение предложения на товар кривая его двигается влево.
34155. Главный фактор потребности выбора 16.57 KB
  Потребляя те или иные блага люди тем самым как бы оценивают их полезность для себя. Главный фактор потребности выбора полезность того или иного товара это категория применяемая для характеристики результатов эффективности экономических решений или деятельности. В более ограниченном смысле полезность определяется как субъективная польза извлекаемая индивидом из потребления товара или услуги. Полезность означает способность экономического блага товара услуги удовлетворять определенные потребности людей.
34156. ПОТРЕБИТЕЛЬСКИЙ ВЫБОР 22.98 KB
  Изменение цены какоголибо товара влияет на объем спроса через эффект дохода и эффект замещения. Эффект дохода возникает поскольку изменение цены данного товара увеличивает при снижении цены или уменьшает при повышении цены реальный доход или покупательную способность потребителя. Эффект замещения замены возникает в результате относительного изменения цен. Эффект замещения способствует росту потребления относительно подешевевшего товара тогда как эффект дохода может стимулировать и увеличение и сокращение потребления товара или быть...
34157. Инфраструктура рынка 15.91 KB
  Основные элементы инфраструктуры рынка. Условно рыночную инфраструктуру можно подразделить по видам объединений баз субъектов инфраструктуры главная задача которых обеспечение функционирования рынка. Среди таких объединений выделяют: 1 организационные объединения рыночной инфраструктуры биржи оптовые брокерские дилерские и другие посреднические организации коммерческие структуры крупных промышленных объединений комбинатов концернов предприятия мелкооптовой и розничной торговли; 2 материальную базу рыночной инфраструктуры...
34158. Фирма 14.37 KB
  Фирма может быть огромной и небольшой но в любом объеме обладает определенными преимуществами: а сокращение трансакционных издержек; б сокращение средних издержек производства; в эффект организованного процесса. В процессе производства товаров и услуг затрачивается живой и прошлый труд. издержки производства. Влиять на ход и результативность производства она может лишь путем изменения интенсивности использования своих мощностей.
34159. Издержки производства в долгосрочном периоде 21.87 KB
  Особенность изменения затрат и издержек производства в долгосрочном периоде рождает необходимость анализа этих затрат и издержек на основе долгосрочных средних и предельных издержек. Закономерностью изменения долгосрочных средних издержек является их первоначальное снижение с расширением производственных мощностей и ростом объема производства. Однако в итоге ввод все больших и больших мощностей приведет к увеличению долгосрочных средних издержек. Графическим выражением связи между издержками производства единицы продукции и объемом выпуска в...
34160. Монополистическая конкуренция 17.96 KB
  Понятие чистой монополии обычно является абстрактным. Цель монополии получение сверхприбыли посредством контроля за ценой и объемом производства на монополизированном рынке. Основные черты чистой монополии: 1 единственный продавецпроизводитель; 2 товарная дифференциация отсутствует отсутствие товаровзаменителей; 3 продавец осуществляет практически полный контроль над ценами; 4 очень трудные условия вхождения в отрасль новых предприятий. Искусственные монополии.