60825

Расчёт на прочность рамной стержневой конструкции

Курсовая

Архитектура, проектирование и строительство

Под действием вертикальной нагрузки балки рамы получаем изгиб в вертикальной плоскости и кручение. Для упрощения будем пренебрегать сопротивлению балок кручению, что равносильно введению шарнирных связей между балками

Русский

2014-12-21

390.5 KB

8 чел.

Расчёт на прочность рамной стержневой конструкции

Содержание

[1]

[2] Введение

[3] 1  Расчет на прочность рамной стержневой конструкции методом сил.

[4] 1.1  Упрощение исходной расчетной схемы

[5] 1.2 Определение геометрических характеристик сечений рассчитываемых элементов.

[6] 1.3 Установление степени статической неопределимости и выбор основной системы.

[7] 1.4 Определение внутренних усилий.

[8] 1.5  Определение расчетных напряжений и оценка прочности конструкции

[9] Литература


Введение 

Для обеспечения эффективности и безопасности эксплуатации вагонов на железных дорогах требуется единый подход к оценке проектных решений и обоснованию соответствия их требованиям нормативной документации. Прогноз качества и целесообразности применения проектных решений может быть обеспечен посредством реализации системной технологии и наполняющих ее средств оценки конструкций. Одним из важных элементов конструирования вагонов является его рама. В курсовой работе выполнен расчет стержневой рамы методом сил. При расчете вагонных конструкций методом сил расчетную схему представим в виде плоских стержневых систем. Расчетные схемы образуются проекцией на горизонтальную плоскость совокупности линий, проходящих через центры тяжести поперечных сечений балок рамы.

Под действием вертикальной нагрузки балки рамы получаем изгиб в вертикальной плоскости и кручение. Для упрощения будем пренебрегать сопротивлению балок кручению, что равносильно введению шарнирных связей между балками. Ввиду симметричности конструкции и действующей нагрузки относительно двух осей исходная расчетная схема может быть упрощена путем замены ее схемой 1/4 части.


1  Расчет на прочность рамной стержневой конструкции методом сил.

1.1  Упрощение исходной расчетной схемы 

Исходная расчетная схема рамы установлена заданием на проектирование и показана на рисунке 1. Она образуется линиями, проходящими через центры тяжести поперечных сечений балок рамы. Рама загружена вертикальной нагрузкой и поэтому представляет собой плоскопространственную стержневую систему.

                          Рисунок 1 –  Исходная расчетная схема рамы

Ввиду симметричности конструкции и действующей нагрузки относительно двух осей исходная расчетная схема может быть упрощена путем замены ее схемой 1/4 части (рисунок 2). Действие отброшенной части учитывается введением соответствующих связей. На расчётной схеме 1/4 части рамы квадратными скобками обозначены связи, закрепляющие сечения от поворотов в вертикальной плоскости.

Рисунок 2 –  Расчетная схема 1/4 части рамы


Поскольку на расчетной схеме 1/4 части рамы хребтовая балка – стержни 1 – 2 и  2 – 3 разрезана вдоль по оси симметрии пополам, то силы, действующие на нее, и  геометрические  характеристики  также  уменьшаются  в  два  раза, то есть 0,5Р
1, I х1 = 0,5I х, сила в узле 3 уменьшится в 4 раза и равна 0,25Р 2, так как она режется как вдоль, так и поперек стержня.

1.2 Определение геометрических характеристик сечений рассчитываемых элементов. 

Рассмотрим расчет характеристик сечения стержней  1 – 2,  2 – 3 (рисунок 3).

Рисунок 3 – Сечение стержней   1 – 2,  2 – 3.

Сложное сечение разбиваем на простые части – прямоугольники 1,  2  и 3. Проводим через центры их тяжести центральные оси Х 1,  Х 2,  Х 3  (рисунок 4). По нижней кромке сечения проведем координатную ось Х 0.

Расчет геометрических характеристик выполняем в сантиметрах.

По каждому выделенному прямоугольнику определяем:

площади поперечных сечений:

моменты инерции относительно центральных осей:


   

Рисунок 4 – Расчетное сечение стержней   1 – 2,  2 – 3.

Расчет выполним в табличной форме (таблица 1).

Таблица 1 –  Расчет геометрических  характеристик сечения стержней  1 – 2,  2 – 3  относительно нейтральной оси Х (рисунок 4)

Используя итоговые данные таблицы 1 определяем  геометрические характеристики сложного сечения стержней  1 – 2,  2 – 3.

Координата центра тяжести

Момент инерции относительно нейтральной оси Х сложного сечения:

I x =  I 12  = I 23  = 6225,79 + 77048,6 – 22,15 . 2604,4 = 25587 см 4 =

                     = 25587 . 10 -8 м 4.


Моменты сопротивления изгибу относительно нейтральной оси Х сложного сечения:

Рассмотрим расчет характеристик сечения стержней  4 – 5,  5 – 6 (рисунок 5).

Рисунок 5 – Сечение стержней  4 – 5,  5 – 6.

Сложное сечение разбиваем на простые части – прямоугольники 1,  2  и 3. Проводим через центры их тяжести центральные оси Х 1,  Х 2,  Х 3  (рисунок 6). По нижней кромке сечения проведем координатную ось Х 0.

Расчет геометрических характеристик выполняем в сантиметрах.

По каждому выделенному прямоугольнику определяем:

площади поперечных сечений:

моменты инерции относительно центральных осей:


Рисунок 6 – Расчетное сечение стержней  4 – 5,  5 – 6.

Расчет выполним в табличной форме (таблица 2).

Таблица 2 –  Расчет  геометрических характеристик сечения стержней  4 – 5,  5 – 6  относительно нейтральной оси Х (рисунок 6)

Используя итоговые данные таблицы 2 определяем  геометрические характеристики сложного сечения стержней  4 – 5,  5 – 6.

Координата центра тяжести

Момент инерции относительно нейтральной оси Х сложного сечения:

I x =  I 45  = I 56  = 914,36 + 12239,88 – 14,75 . 629,75 = 3865 см 4 =

                     = 3865 . 10 -8 м 4.


Моменты сопротивления изгибу относительно нейтральной оси Х сложного сечения:

Рассмотрим расчет характеристик сечения стержня  1 – 4 (рисунок 7).

Рисунок 7 – Сечение стержня  1 – 4.

Сложное сечение разбиваем на простые части – прямоугольники 1,  2,  3  и  4. Проводим через центры их тяжести центральные оси Х 1,  Х 2,  Х 3,  Х 4  (рисунок 8). По нижней кромке сечения проведем координатную ось Х 0.

Расчет геометрических характеристик выполняем в сантиметрах.

По каждому выделенному прямоугольнику определяем:

площади поперечных сечений:

моменты инерции относительно центральных осей:


Рисунок 8 – Расчетное сечение стержня  1 – 4.

Расчет выполним в табличной форме (таблица 3).

Таблица 3 – Расчет геометрических характеристик сечения стержня  1 – 4

относительно нейтральной оси Х (рисунок 8)

Используя итоговые данные таблицы 3 определяем  геометрические характеристики сложного сечения стержней  1 – 4.

Координата центра тяжести

Момент инерции относительно нейтральной оси Х сложного сечения:

I x =  I 14  = 2929,71 + 25595,48 – 16,05 . 1143,7 = 10169 см 4 =

                     = 10169 . 10 -8 м 4.


Моменты сопротивления изгибу относительно нейтральной оси Х сложного сечения:

Рассмотрим расчет характеристик сечения стержня  2 – 5 (рисунок 9).

Рисунок 9 – Сечение стержня  2 – 5.

Сложное сечение разбиваем на простые части – прямоугольники 1,  2,  и  3. Проводим через центры их тяжести центральные оси Х 1,  Х 2,  Х 3  (рисунок 10). По нижней кромке сечения проведем координатную ось Х 0.

Расчет геометрических характеристик выполняем в сантиметрах.

По каждому выделенному прямоугольнику определяем:

площади поперечных сечений:

моменты инерции относительно центральных осей:


Рисунок 10 – Расчетное сечение стержня  2 – 5.

Расчет выполним в табличной форме (таблица 4).

Таблица 4 – Расчет геометрических характеристик сечения стержня  2 – 5

относительно нейтральной оси Х (рисунок 10)

Используя итоговые данные таблицы 4 определяем  геометрические характеристики сложного сечения стержней  2 – 5.

Координата центра тяжести

Момент инерции относительно нейтральной оси Х сложного сечения:

I x =  I 25  = 9760,8 + 139993,7 – 21,55 . 4241,04 = 58360 см 4 =

                     = 58360 . 10 -8 м 4.


Моменты сопротивления изгибу относительно нейтральной оси Х сложного сечения:

Результаты расчета геометрических характеристик по всем сечениям рамы сводим в таблицу 5, учитывая, что геометрические характеристики сечений стержней 1 – 2,  2 – 3 равны половинам их действительных расчетных значений, так как сечения указанных стержней рассечены пополам по длине.

Таблица 5 – Результаты расчета геометрических характеристик сечений стержней расчетной схемы.

1.3 Установление степени статической неопределимости и выбор основной системы.

Степень статической неопределимости 1/4 части расчетной схемы определяется по формуле

где  d – число поперечных балок всей рамы,  d = 4.

Основную систему получим из заданной расчетной схемы  1/4  части рамы, удаляя связь в узле 4 между продольной балкой  4 – 5  и поперечной балкой  1 – 4 рисунок 11.

Рисунок 11 – Основная система


1.4 Определение внутренних усилий.

Составление канонического уравнения. Для определения неизвестного силового фактора  Х 1  составляется каноническое уравнение метода сил.

Вычисление коэффициента  δ 11  и свободного члена  Δ  канонического уравнения. Для их определения нагружаем основную систему поочередно единичными усилиями  Х 1 = 1 и внешней нагрузкой и от каждого из них отдельно строятся эпюры изгибающих моментов.

Строим единичную эпюру изгибающих моментов от действия  Х 1 = 1. Определим ординаты эпюры :

 

Строим единичную эпюру  рисунок 12.

Рисунок 12 – Единичная эпюра  .

Строим грузовую эпюру изгибающих моментов М от действия внешней нагрузки. Определим реакции и ординаты грузовой эпюры М (от внешней нагрузки рисунок 13):


Рисунок 13 – Внешняя нагрузка на раму.

Строим эпюру изгибающих моментов от внешней нагрузки рисунок 14.

Рисунок 14 – Эпюра изгибающих моментов от внешней нагрузки.

Коэффициент  δ 11  определяем умножением эпюры   саму на себя, а свободный член  Δ – перемножая эпюры  и М.

Для удобства вычисляем  δ 11  и  Δ, увеличенные в Е раз.


Решение канонического уравнения. Подставляя полученные значения коэффициента Еδ 11 и свободного члена  ЕΔ  в каноническое уравнение и сокращая на  Е  получим

Решая уравнение, находим

Построение суммарной эпюры изгибающих моментов. Вычисление ординат суммарной эпюры изгибающих моментов М с выполняем в табличной форме (таблица 6)

Таблица 6 – Вычисление ординат суммарной эпюры  М с


Рисунок 15 – Суммарная эпюра изгибающих моментов

1.5  Определение расчетных напряжений и оценка прочности конструкции

Вычисление нормальных напряжений в сечениях стержней рамы производим в табличной форме (таблица 7) с использованием формулы

где  – нормальные напряжения, обусловлено деформациями изгиба, для верхних (нижних) волокон  i – го расчетного сечения, МПа;

М сi  – ордината суммарной эпюры изгибающих моментов в  i – м расчетном сечении,  кН . м;

– момент сопротивления  i – го сечения изгибу относительно нейтральной оси  х  для верхних (нижних) волокон, м 3.

Таблица 7 – Напряжения в расчетных сечениях рамы


Вывод. Во всех сечениях рамы расчетные напряжения  σ i  не превышают допускаемые  [σ] = 335 МПа (материал сталь 10Г2БД) т.е. выполняется условие .  Поэтому можно сделать вывод о том, что прочность рамы обеспечивается.  


Литература

  1.  Дарков, А. В. Строительная механика: учеб. для вузов/ А. В. Дрков, В. Н. Шапошников. – М., Высш. шк., 1986. – 607 с.
  2.  Пигунов, В. В. Строительная механика и несущая способность вагонов/ А. В. Пигунов. – Гомель 2007. – 81 с.


 

А также другие работы, которые могут Вас заинтересовать

22406. Непрерывность функции в точке 383 KB
  Функция f называется непрерывной в точке a если она определена в точке a и ее некоторой окрестности и если существует предел этой функции f при x при x  a и он равен fa т. Функция f называется непрерывной слева в точке a если она определена в точке a и в левой половине некоторой окрестности точки a если левый предел этой функции f при x  a0 существует и равен fa т. Функция f называется непрерывной справа в точке a если она определена в точке a и в правой половине некоторой окрестности точки a если правый предел этой функции...
22407. Дифференцируемость и производные функции 291 KB
  Дифференцируемость и производные функции Приращение аргумента и приращение функции. Понятие функции дифференцируемой в точке. Дифференциал функции. Производная функции.
22408. Производные высших порядков. Формулы Тейлора. Применение производной. Производные и дифференциалы высших порядков 652 KB
  Линеаризация функции. Приближенное вычисление значений функции. Исследование функции с помощью производной. Возрастание и убывание функции на промежутке.
22409. Первообразная и неопределенный интеграл 454 KB
  Корни многочлена. Кратность корней многочлена. Разложение многочлена с действительными коэффициентами на множители. Если a0  0 то число n называется степенью многочлена fx.
22410. Определенный интеграл 635.5 KB
  Определенный интеграл План Определенный интеграл Определение определенного интеграла. Геометрический смысл и физический смысл определенного интеграла. Условия существования определенного интеграла. Свойства определенного интеграла.
22411. Дифференциальное исчисление функций нескольких переменных 860.5 KB
  Дифференциальное исчисление функций нескольких переменных План Функции нескольких переменных Пространство Rn. Функции нескольких переменных. Предел функции нескольких переменных. Непрерывность функции и их свойства.
22412. Кратные интегралы 1.14 MB
  Пусть функция z = fx y = fP задана dв замкнутой области D плоскости Oxy. Разобьем область D на n элементарных областей Di i = 1 2n площади которых обозначим через Si а диаметры наибольшие расстояния между точками области Di через di. Совокупность частичных областей Di назовем разбиением T области D. В каждой области Di разбиения T выберем точку Pixi yi для i = 1 2n.
22413. Множества. Числовые множества 256 KB
  Множества. Числовые множества План 1. Множества. Подмножества.
22414. Отображения. Числовые функции 326.5 KB
  Отображением f множества X в множество Y называется всякое правило которое любому элементу xX ставит единственный элемент y обозначаемый fx. Бинарным отношением f между множествами X и Y называется любое подмножество множества XY. Бинарное отношение f между множествами X и Y называется отображением множества X в множество Y если для любого элемента xX существует один и только один элемент yY такой что x yf . Отображение f множества X в Y называется также функцией определенной на множестве X со значениями в множестве Y.