610

Однофакторные регрессионные модели

Лабораторная работа

Экономическая теория и математическое моделирование

Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации. Оценить статистическую значимость параметров регрессии и корреляции с помощью критерия Фишера и Стьюдента.

Русский

2013-01-06

339 KB

110 чел.

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Уральский федеральный университет

имени первого Президента России Б.Н.Ельцина»

Факультет информационных технологий и экономического моделирования

Кафедра анализа систем и принятия решений

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине «Эконометрика»

на тему “Однофакторные регрессионные модели”

Преподаватель:         Алферьева Т. И.

   

Cтуденты группы         ЭМ-391606к Пр

          

Фаридонов Глеб

                     Лисовенко Никита  

Екатеринбург – 2011


Задача 1. По территориям региона приводятся данные за 199X г. (см. таблицу своего варианта).

Требуется:

  1.  Построить линейное уравнение парной регрессии  от .
  2.  Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
  3.  Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.
  4.  Выполнить прогноз заработной платы  при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.
  5.  Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.
  6.  На одном графике построить исходные данные и теоретическую прямую.

Вариант 12

  1.  Ввод данных
  2.  Подготовка для расчета регрессии:

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

89

155

2

71

144

3

70

135

4

98

145

5

83

140

6

90

152

7

84

137

8

79

136

9

92

162

10

95

159

11

76

134

12

106

163

  1.  Расчет коэффициентов регрессии:

= 0,769925378

= 80,55559039

Построенную модель можно записать в данном виде:

y = 80,55559039+0,769925378x

Коэффициент регрессии  показывает, что повышение среднедушевого прожиточного минимума в день на одного трудоспособного приводит к увеличению среднедневной з/п на 0,769925378 руб.

  1.   Расчет коэффициента корелляции и детерминации

 

   = 10,52345264

   = 10,44695596

    r   = 0,775563071

    D = 60,14%

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб., х

Среднедневная заработная плата, руб., у

(y-)^2

1

89

155

149,0789

35,05884

2

71

144

135,2203

77,08327

3

70

135

134,4504

0,302097

4

98

145

156,0083

121,1822

5

83

140

144,4594

19,88622

6

90

152

149,8489

4,627341

7

84

137

145,2293

67,72174

8

79

136

141,3797

28,94112

9

92

162

151,3887

112,5992

10

95

159

153,6985

28,10589

11

76

134

139,0699

25,70408

12

106

163

162,1677

0,692756

сумма

521,9047

Коэффициент корелляции достаточно высокий, что показывает существенную зависимость среднесуточной з/п от среднедушевого прожиточного минимума на одного трудоспособного. Коэффициент детерминации показывает, что величина среднесуточной з/п объясняется величиной среднедушевого прожиточного минимума на одного трудоспособного только на 60,14%

  1.  Расчет дисперсионного отношения Фишера:

                  = 15,09398184

Сравнение расчетного значения F-критерия с табличным  = 4,96 для 95-ого уровня значимости позволяет сделать вывод об адекватности построенной модели.

  1.  Расчет стандартных ошибок по формулам, в которых используются средняя квадратическая ошибка

= = 52,1904

 = 7,224                    = = 17,186

 = 0,198

  1.  t-статистики Стьюдента

= = 4,687

= = 3,885

  1.  Расчет доверительных границ для коэффициентов уравнения регрессии

= 2,23*17,186 = 38,32584922

= 2,23*0,198 = 0,441928069

80,55559039-38,32584922  ≤  b0  ≤  80,55559039+38,3258492

42,22974119 ≤ b0 ≤ 118,8814396

         0,769925378-0,441928069 ≤ b1 ≤ 0,769925378+0,441928069

 

  0,327997309 ≤ b1 ≤ 1,211853447

  1.  Построение с помощью “Пакета анализа” табличного процессора Excel

Регрессионная

статистика

Множестве

нный R

0,775563

R-квадрат

0,601498

Нормированный R-квадрат

0,561648

Стандартная ошибка

7,224297

Наблюдения

12

Дисперсионный анализ

 

              df

SS

MS

F

Значимость F

Регрессия

1

787,762

787,762

15,09398

0,003034

Остаток

10

521,9047

52,19047

Итого

11

1309,667

 

 

 

 

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

80,55559

17,18648

4,687149

0,000858

42,26173

118,8495

42,26173

118,8495

Переменная X 1

0,769925

0,198174

3,885097

0,003034

0,328366

1,211485

0,328366

1,211485

ВЫВОД ИТОГОВ


 

А также другие работы, которые могут Вас заинтересовать

38771. ЧЕРНАЯ МЕТАЛЛУРГИЯ В ОБЬ-ТОМСКОМ МЕЖДУРЕЧЬЕ В ЭПОХУ СРЕДНЕВЕКОВЬЯ 190.5 KB
  За последние 10 лет получены новые уникальные археологические материалы по черной металлургии в ходе исследований Шайтанского археологического микрорайона крупнейшего комплекса средневековых памятников ОбьТомского междуречья находящегося на юге Томской области в Кожевниковском районе. По общему объему свидетельств черной металлургии Шайтанский археологический микрорайон значительно превышает все остальные известные источники ОбьТомского междуречья. С появлением массива новых данных возникла настоятельная потребность в обобщении и анализе...
38773. Практика в Черкаських магістральних електричних мереж 264.5 KB
  Загальна характеристика об’єкту ПС 330 кВ Черкаська здійснює прийом перетворення розподіл передачу електричної енергії і представляє собою сукупність силового комутаційного і вимірювального обладнання об’єднаного електричною схемою по класам напруги включаючи комплекс пристроїв захисту автоматики вимірювання і керування. ПС має три класи напруги 330 110 і 10 кВ і являється понижуючою підстанцією з двома вторинними напругами. За місцем у системі електропостачання ПС Черкаси відноситься до системних підстанцій – це найпотужніші...
38775. МЕТОДИЧЕСКИЕ УКАЗАНИЯ по подготовке и защите магистерских диссертаций 426.5 KB
  Тема объём и структура магистерской диссертации 7 4. Титульный лист магистерской диссертации 37 Приложение Б. Справка о результатах внедрения решений разработанных в магистерской диссертации 41 Приложение К. Примерная структура доклада на защите магистерской диссертации 43 Приложение Н.
38776. АРХЕОЛОГИЧЕСКИЙ ТЕКСТИЛЬ КАК ИСТОЧНИК ПО РЕКОНСТРУКЦИИ ДРЕВНЕГО ТКАЧЕСТВА ЗАПАДНОЙ СИБИРИ 303 KB
  Сибирские археологические ткани изучены очень фрагментарно в основном это древний текстиль с территории Южной Сибири и Алтая. Только в последние годы стали появляться работы содержащие технологическое описание найденных образцов текстиля из археологических памятников Западной Сибири а также первые попытки обобщения информации по отдельным районам или этносам. в результате археологических раскопок на территории Западной Сибири накоплено огромное количество текстильных образцов тканей плетений которые только сейчас вводятся в научный...