61195

Числовые промежутки

Конспект урока

Педагогика и дидактика

Формировать мыслительные умения; развивать интеллектуальные умения: делать выводы, выявлять закономерности, анализировать; устанавливать связи ранее изученного с новым.

Русский

2014-06-06

1.04 MB

3 чел.

Конспект урока по алгебре в 8б классе

28.02.2011г

Тема урока: «Числовые промежутки».

Тип урока: изучение нового материала.

Вид урока: традиционный

Цели урока:

  1.  Образовательные:

Совершенствование навыков работы со множествами на примере числовых множеств; постановка знака неравенства; работа на числовой оси.

  1.  Развивающие:

Формировать мыслительные умения; развивать интеллектуальные умения: делать выводы, выявлять закономерности, анализировать;  устанавливать связи ранее изученного с новым.

  1.  Воспитательные:

Формировать мировоззрение (правильные представления), связанное с ролью математики в науке, исследовании закономерностей реального мира, общностью математических абстракций, общностью отражения материального мира в математических понятиях.

Оборудование урока: доска с меловыми записями, рабочие тетради, учебник «Алгебра»

8 кл. сред. шк. / Ю.Н. Макарычев, Н.Г. Миндюк и др.

Ход урока:

  Ι.Организационное начало урока.

  ΙΙ. Проверка домашнего задания.

  ΙΙΙ. Актуализация знаний. (Фронтальная работа в классе)
     - Опрос по предыдущему материалу. 
     - Что такое множество?
     - Что такое подмножество?

     -  Какие действия можно проводить над множествами.

     - Какие числовые множества вы знаете? Дайте определения.

  ΙV. Работа по новой теме.

     - Пусть а и b – некоторые числа, причем,  а < b. Отметим на координатной прямой точки с координатами а и b (рис. 28).

     - Если точка расположена между ними, то ей соответствует число х, которое больше а и меньше  b.

     - Верно и обратное: если число х больше а и меньше b, то оно изображается точкой, лежащей между точками с координатами а и b.

     - Множество всех чисел, удовлетворяющих условию, а ≤  х ≤ b, изображается на координатной прямой отрезком, ограниченным точками с координатами а и b (рис. 29).

     - Это множество называют числовым отрезком или просто отрезком и обозначают так: [а; b] (читают отрезок от а до b).

     - Множество чисел, удовлетворяющее условию а < х < b, называют интервалом и обозначают так: (а; b) (читают: интервал от а до b). На рисунке 30 это множество показано штриховкой.

     - Светлые кружки означают, что числа а и b не принадлежат этому множеству.

     - Множества чисел х, для которых выполняются двойные неравенства,  а ≤ х < b или    а < х ≤ b, называют полуинтервалами и обозначают соответственно [а, b) и (а, b] (читают: полуинтервал от а до b, включая а; полуинтервал от а до b, включая b). Эти полуинтервалы изображены на рисунках 31 и 32.

 

     - Числовые отрезки, интервалы и полуинтервалы называют числовыми промежутками. Приведем другие примеры числовых промежутков.

     - Множество чисел, удовлетворяющих неравенству х ≥ а, изображается лучом с началом в точке а, расположенным вправо от нее (рис.33).

 

     - Это множество называют числовым лучом и обозначают так: [а, +∞) (читается: числовой луч от а до плюс бесконечности).

     - Множество чисел, удовлетворяющих условию х > а, изображается тем же лучом, исключая точку а (рис.34).

 

     - Его называют открытым числовым лучом и обозначают так: (а, +∞).

     - На рисунках 35 и 36 изображены множества чисел х, для которых выполняются неравенства х ≤ а и х < а.

     - Обозначения числовых промежутков, их названия и изображение на координатной прямой показаны в таблице.

Задание 1.

     - Изобразите на числовой прямой.

     а) (-2; 3);    

     б) (-1; 4];

     в) (-1/2; 3);

     г) [-2; 2]

     д) (-∞; 3)

     е) (-∞; 1].

Задание 2.

     - Записать промежутки, изображенные на координатных прямых.

Задание 3.

     - Найдите пересечение промежутков:

  1.  (-2; 3] и (1; 5)
  2.  [- 4; 5) и (5; 7)
  3.  ( -11 ; 4] и [4; 7)
  4.  [0; 7] и (7; 19)
  5.  (-∞; -8) и (-9; 9)
  6.  (-∞; 1,5] и (0; +∞)

     - Найдите объединение промежутков

  1.  (-∞; 3) и (0; + ∞)
  2.  [-4; 0] и [-1; 5]
  3.  (-∞; 5) и (-∞; 10)
  4.  (0; 3) и (5; 7)
  5.  (-∞; 4) и [6; +∞)
  6.  (0;2) и ( 1; 2).

V. Домашнее задание.

№ 461 и 468 (найти объединение и пересечение).

VΙ. Подведение итогов.

     - Какие неравенства называются строгими ? Приведите пример.

     - Какие неравенства называются нестрогими? Приведите пример.

     - Перечислите числовые промежутки.


 

А также другие работы, которые могут Вас заинтересовать

62464. Социальная структура личности и ее элементы 26.09 KB
  Человек индивид личность Социальная структура личности и её элементы Типы личности Социализация личности и ее этапы Первый вопрос: Человек индивид личность Как только человек осознал что он значительно отличается от других живых существ он пытается ответить на ряд вопросов...
62468. Позначення мякості приголосних на письмі буквами ь, і, є, ю, я 17.75 KB
  Мета: поглибити й систематизувати знання пятикласників щодо позначення мякості приголосних на письмі буквами ь, і, є, ю, я; формувати загальнопізнавальні вміння правильно визначати приголосні звуки щодо твердості і мякості.
62470. Як громадяни беруть участь у житті демократичної держави? 45.24 KB
  Можливість обирати та бути обраними до представницьких органів державної влади та місцевого самоврядування; рівний доступ громадян до державної служби. Що таке самоврядування Громадяни України це народ держави.
62472. Социальное поведение. Девиантное поведение и его основные формы 21.47 KB
  Сущность социального поведения и его виды Сущность субъекты и разновидности массового социального поведения Социальное поведение личности Понятие девиантного поведения Первый вопрос: Сущность социального поведения...