61520

Построение ТП изготовления деталей в условиях ГПС

Конспект урока

Педагогика и дидактика

Построение ТП изготовления деталей в условиях ГПС Общие сведения о ГПС назначение состав и структура ГПС классификация. Разновидности ГПС по видам обработки. Технологические возможности ГПС по изготовлению различных деталей.

Русский

2014-05-28

14.82 KB

4 чел.

Урок №54

Раздел 4—Основы обработки заготовок в условиях гибких производственных систем (ГПС) и на автоматических линиях (АЛ)

Тема 4.1—Построение ТП изготовления деталей в условиях ГПС

Общие сведения о ГПС назначение, состав и структура ГПС, классификация. Разновидности ГПС по видам обработки. Технологическая гибкость. Технологические возможности ГПС по изготовлению различных деталей.

В соответствии с общепринятым определением гибкая производственная система (ГПС) представляет собой совокупность в различных сочетаниях оборудования с ЧПУ, роботизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования и систем обеспечения их функционирования в автоматическом режиме в течение заданного интервала времени, обладающих возможностью автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах их характеристик.

Таким образом, данная система предназначена для обработки и сборки деталей и сочетает в себе высокую производительность, переналаживаемость, автоматизацию не только процессов обработки и сборки, но и межоперационного транспорта, загрузки заготовок и разгрузки деталей, контроля точности обработки, замены инструмента и контроля его износа, диагностики оборудования и других устройств системы.

Гибкие производственные системы характеризуются рядом признаков, определяющих их функциональное назначение. По данным признакам различают указанные ниже виды ГПС.

  1.  Гибкий производственный модуль (ГПМ) — единица технологического оборудования для производства изделий произвольной номенклатуры в установленных пределах их характеристик с программным управлением, автономно функционирующая, автоматически осуществляющая все функции, связанные с их изготовлением, имеющая возможность встраивания в ГПС. Средства автоматизации ГПМ могут включать накопители, спутники, устройства загрузки и выгрузки, замены технологической оснастки, удаления отходов, автоматизированного контроля, включая диагностирование;
  2.  Робототехнологический комплекс (РТК) — совокупность единиц технологического оборудования, промышленного робота и средств оснащения, автономно функционирующих и осуществляющих многократные циклы. РТК, предназначенные для работы в ГПС, должны иметь автоматизированную переналадку и возможность встраивания в систему. Средствами оснащения РТК могут быть устройства накопления, ориентации и другие устройства, обеспечивающие функционирование РТК.

Основные характеристики ГПМ и РТК — способность работать автономно или некоторое время без участия оператора; автоматически выполнять все основные и вспомогательные операции; гибкость, удовлетворяющая требованиям мелкосерийного производства; высокая степень завершенности обработки деталей с одного установа.

3. Гибкий автоматизированный участок (ГАУ) — производственная система, состоящая из одного или нескольких ГПМ, объединенных автоматизированной системой управления производством, и обеспечивающая автоматизированный переход на изготовление новых изделий.

Необходимость обновления автотракторной и автомобильной техники обусловливает переход автоматизации отдельных элементов производственного процесса к автоматизации его на всех уровнях. Базой для решения этой задачи стала особенность гибких производственных систем — их способность к быстрой перенастройке на выпуск новой продукции благодаря гибкости и мобильности применяемого оборудования с ЧПУ, автоматизированным средствам межоперационной транспортировки и накопления, системам автоматизированного управления.

Гибкие производственные системы с управлением от ЭВМ следует рассматривать как первый этап на пути создания комплексно-автоматизированных производств, а в перспективе — автоматизированных заводов, работающих и в ночное время, по безлюдной технологии


 

А также другие работы, которые могут Вас заинтересовать

32772. Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический КПД 52.5 KB
  производит положительную работу за счёт своей внутренней энергии и количеств теплоты Qn полученных от внешних источников а на др. системой или над системой работа А равна алгебраической сумме количеств теплоты Q полученных или отданных на каждом участке К. Отношение А Qn совершённой системой работы к количеству полученной ею теплоты называется коэффициентом полезного действия кпд К. называется прямым если его результатом является совершение работы над внешними телами и переход определённого количества теплоты от более нагретого...
32773. Цикл Карно и его КПД для идеального газа. Второе начало термодинамики. Независимость КПД цикла Карно от рабочего вещества. Лемма Карно 47 KB
  Второе начало термодинамики. Следовательно согласно I началу термодинамики работа совершаемая двигателем равна =Q1Q2 Коэффициентом полезного действия КПД теплового двигателя называется отношение работы совершаемой двигателем к количеству теплоты полученному от нагревателя η=Q1Q2 Q1 КПД тепловой машины всегда меньше единицы η=1Q2 Q1 Следовательно невозможно всю теплоту превратить в работу. Отсюда Q2 T2≥Q1 T1 На основании этого неравенства можно прийти к понятию энтропия и второму началу термодинамики. Второе начало термодинамики ...
32774. Энтропия идеального газа при обратимых и необратимых процессах 33.5 KB
  К определению энтропии S можно прийти на основе анализа работы тепловых машин. ∆S=∆Q T Для тепловой машины изменение энтропии нагревателя и холодильника равны: ∆S1=Q1 T1 и ∆S2=Q2 T2 Формула ∆S=∆Q T справедлива для изотермического процесса и представляет собой термодинамическое определение энтропии. Для любого процесса можно найти бесконечно малое изменение энтропии т. ее дифференциал dS=δQ T где δQ элементарная теплота В интегральной форме для любого процесса изменение энтропии равно Найдем изменение энтропии за один цикл для тепловой...
32775. Статистическое толкование энтропии 31 KB
  Рассматривая Вселенную как изолированную систему и распространяя на неё второй закон термодинамики Р. Из сказанного в предыдущем разделе следует что к Вселенной в целом как изолированной системе F = 0 второе начало термодинамики неприменимо по определению. При этом второй закон термодинамики формулируется следующим образом: природа стремится от состояния менее вероятного к состоянию более вероятному. Таким образом являясь статистическим законом второй закон классической термодинамики выражает закономерности хаотического движения большого...
32776. Термодинамические потенциалы. Направление течения процессов в неравновесных состояниях 33.5 KB
  Потенциалы термодинамические определённые функции объёма V давления р температуры Т энтропии S числа частиц системы N и др. К Потенциалы термодинамические относятся: внутренняя энергия U = U S V N xi; энтальпия Н = Н S р N xi; Гельмгольцева энергия свободная энергия или изохорноизотермический потенциал обозначается А или F F = F V T N xi Гиббсова энергия изобарноизотермический потенциал обозначается Ф или G G = G p Т N xi и др. Зная Потенциалы термодинамические как функцию указанных...
32777. Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения 48.5 KB
  Термодинамика необратимых процессов. ТЕРМОДИНАМИКА НЕОБРАТИМЫХ ПРОЦЕССОВ неравновесная термодинамика изучает общие закономерности поведения систем не находящихся в состоянии термодинамического равновесия. процессов изменение энтропии системы dS равно: где deS = Q T внешнее изменение энтропии связанное с обратимым теплообменом с окружающей средой Qбесконечно малое колво теплоты Tабс. тра diS внутреннее изменение энтропии обусловленное самопроизвольным протеканием в системе необратимых процессов.
32778. ИЗУЧЕНИЕ ЗАКОНОВ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ С ПОМОЩЬЮ МАЯТНИКА ОБЕРБЕКА 3.8 MB
  Определить момент инерции системы тел. Исследовать зависимость углового ускорения от величины момента приложенных сил с учётом сил трения. 2 Угловая скорость и угловое ускорение для всех точек тела одинаковы в данный момент времени однако для различных точек тела линейные скорости движения по окружности разные так как зависят от расстояния R точки до оси вращения. Сила – равнодействующая внешних и внутренних сил приложенных к iму элементарному объему телу создаёт относительно произвольно взятой точки на оси вращения момент силы ...
32779. Определение коэффициентов трения качения и скольжения методом наклонного маятника 201 KB
  Северодвинске ФАКУЛЬТЕТ: IV КАФЕДРА: ФИЗИКИ Лабораторная работа Определение коэффициентов трения качения и скольжения методом наклонного маятника Северодвинск 2007 Лабораторная работа ФМ 16 Наклонный маятник Ι. Цель работы Цель работы: определение коэффициентов трения качения и трения скольжения. Основные теоретические положения При относительном перемещении двух соприкасающихся тел или при попытке вызвать такое перемещение возникают силы трения. Различают три вида трения возникающего при контакте твердых тел: трение скольжения покоя и...
32780. Изучение законов сохранения импульса 538.5 KB
  Определить коэффициенты восстановления скорости и энергии для случая частично упругого удара. Существует два предельных вида удара: абсолютно упругий и абсолютно неупругий. Абсолютно упругим называется такой удар при котором механическая энергия тел не переходит в другие немеханические виды энергии а размеры и форма тел полностью восстанавливаются после удара. Абсолютно неупругим ударом называется такой удар при котором размеры и форма тел не восстанавливаются после удара.