6161

Дослідження автогенератора

Лабораторная работа

Производство и промышленные технологии

Дослідження автогенератора У даній роботі досліджується RC-автогенератор, який, звичайно, використовується для генерації коливань низької частоти. 1. Складові частини RC-автогенератора У загальному випадку автогенератор складається з підсилювача та ...

Украинкский

2012-12-30

48.2 KB

17 чел.

Дослідження автогенератора

У даній роботі досліджується RC-автогенератор, який, звичайно, використовується для генерації коливань низької частоти.

1. Складові частини RC-автогенератора

У загальному випадку автогенератор складається з підсилювача та кола зворотного зв’язку,  причому для сигналу, який обійшов повне коло зворотного зв’язку, мають виконуватися амплітудна (1) та фазова (2) умови самозбудження:

k>1         (1)

k+=2n         (2)

де k та k – коефіцієнт передачі та фазовий зсув для підсилювача,  та  - відповідні величини для кола зворотного зв’язку, n – ціле число.

Як підсилювач, у даному генераторі буде використовуватися каскад, що був досліджений у лабораторній роботі № 2 (рис.1).

Рис.1

Для зручності роботи, коефіцієнт підсилення такого каскаду k має складати порядку 20-100. Фазовий зсув k на середніх частотах буде складати  внаслідок інверсії сигналу транзистором, увімкненим із спільним емітером.

Як коло зворотного зв’язку застосовується фазовообертальне коло, складене з кількох RC-фільтрів нижніх частот (рис.2).

Рис.2

Якщо кожен фільтр – ланка даного ланцюжка на якійсь частоті буде забезпечувати фазовий зсув  = /3, то на цій частоті виконається амплітудна умова самозбудження. Якщо на цій частоті коефіцієнт передачі  буде більшим за 1/k, автогенератор, складений з такого підсилювача та кола зворотного зв’язку, почне генерувати коливання.

2. Схема RC-автогенератора із фазовообертальним колом

На рис.3 зображено схему RC-автогенератора, що складається з підсилювача та фазовообертального кола, про які йшлося вище.

Рис.3

У даній схемі резистори зворотного зв’язку Rz повинні мати невеликий опір (близько 10 Ом) для забезпечення виконання  амплітудної умови самозбудження. Кількість ланок може становити 3 або більше. Роздільна ємність С1 повинна бути досить великою, щоб вона становила малий опір для сигналу на частоті самозбудження автогенератора. Імпульсне джерело V1 грає роль початкової флуктуації, від якої починається зростання автоколивань. Його частоту слід обрати дуже малою (щоб півперіод був більший за час моделювання).

3. Вимушена синхронізація автогенератора

Якщо на автогенератор діє зовнішній періодичний ЕРС., він може перейти в режим вимушеної синхронізації, коли частота автоколивань буде рівною частоті джерела ЕРС. Такий режим буде забезпечуватися у випадку, коливання напруги на базі транзистора за рахунок зовнішнього джерела зменшують його середній коефіцієнт підсилення настільки, що перестає виконуватися амплітудна умова самозбудження (1). На рис.4 зображений RC-автогенератор, який розглядався вище, із джерелом ЕРС V3. У випадку досить значної амплітуди напруги джерела V3 відбувається вимушена синхронізація автогенератора. Ємність С2 потрібна для розв’язки колектора транзистора та джерела V3 за постійною складовою.

Рис.4

4. Конкуренція мод, генерованих автогенераторами

У випадку, коли два автогенератори із різними частотами автоколивань впливають один на одного, кожен з них може стати джерелом вимушеної синхронізації для іншого. На рис.5 показано два RC- автогенератори, пов’язаних між собою через ємність С3. Автогенератори побудовані відповідно на 3 та 4  однакових фазовообертальних ланках. Оскільки кожен генератор тут впливає на інший, має місце взаємний зв’язок. У випадку слабкого взаємного зв’язку кожен генератор генерує коливання на своїй частоті, і між цими коливаннями має місце суперпозиція. У випадку сильного взаємного зв’язку Коливання в одному з автогенераторів зростають настільки швидко, що встигають зменшити середній коефіцієнт підсилення транзистора іншого автогенератора раніше, ніж у ньому встигнуть істотно зрости свої автоколивання. У цьому випадку обидва автогенератори генерують одну і ту саму частоту.

Рис.5

Лабораторне завдання.

  1. Для свого варіанту транзистора зібрати схему, подібну до рис.1 і забезпечити коефіцієнт підсилення каскаду порядку 20-100 (слід використати результати лабораторної роботи №2).
  2.  Зібрати схему, зображену на рис.2. Розрахувати теоретично та визначити шляхом моделювання (AC Analysis) граничну частоту фільтра. Розрахувати, на якій частоті буде самозбуджуватися автогенератор із 3 та 4 такими ланками в колі зворотного зв’язку.
  3.  Зібрати схему RC-автогенератора, зображену на рис.3. Провести аналіз часових залежностей (Transient Analysis) для сигналу на колекторі транзистора. Для свого варіанту транзистора (шляхом зміни R та C в кожній ланці таким чином, щоб гранична частота не змінювалася) забезпечити самозбудження автогенератора. Визначити шляхом моделювання (Transient Analysis) частоту автоколивань, інкремент їхнього зростання та амплітуду встановлених коливань.
  4.  Повторити п.3 для випадку 4 ланок у фазовообертальному колі.
  5.  Зібрати схему, зображену на рис.4. Провести аналіз часових залежностей (Transient Analysis) для сигналу на колекторі транзистора. Шляхом зміни амплітуди джерела ЕРС V3 та ємності розв’язки С2 отримати режими наявності та відсутності вимушеної синхронізації. Визначити мінімальне (порогове) значення амплітуди джерела ЕРС V3, при якому відбувається вимушена синхронізація.
  6.  Зібрати схему, зображену на рис.5. Провести аналіз часових залежностей (Transient Analysis) для сигналів на колекторах транзисторів. Змінюючи ємність зв’язку С3, отримати режими сильного та слабкого взаємного зв’язку.
  7.  Зменшуючи інкремент автоколивань (цього можна досягти шляхом зміни R та C в кожній ланці зворотного зв’язку відповідного генератора таким чином, щоб гранична частота не змінювалася) у автогенераторі, що встановлював свою частоту в режимі сильного взаємного зв’язку в п.6, добитися, щоб свою частоту встановлював інший автогенератор.

 

А также другие работы, которые могут Вас заинтересовать

39977. Различия между семействами операционных систем Windows для рабочих станций 200.82 KB
  Различия между семействами операционных систем Windows для рабочих станций Рабочая станция Рабо́чая ста́нция англ. Microsoft Windows Все версии традиционно делятся на 4 группы: 16ти разрядные расширения MSDOS 1.0 windows 2.11 с 1986 по 1997 Windows9x с остатками MSDOS win95 98 ME с 1995 по 2003 WindowsNT современная линейка для ПК NT3.
39978. Методы увеличения вычислительной производительности 92.37 KB
  Однако процесс обработки команд и данных нельзя нашинковать в произвольных местах на любое число кусков хотя авторы последних модификаций Pentium 4 сделали такую попытку получив в результате очень горячий и высокочастотный но умеренно производительный процессор. При возникновении в программе любого ветвления что по статистике происходит каждые 710 команд специальная схема предсказатель переходов первая стадия конвейера должна за 1 такт сообразить сработает ли этот переход и если да то куда при том что данные для...
39979. Сервер (аппаратное обеспечение) 56.21 KB
  Консоль обычно монитор клавиатура мышь и участие человека необходимы серверам только на стадии первичной настройки при аппаратнотехническом обслуживании и управлении в нештатных ситуациях штатно большинство серверов управляются удаленно. Надёжность Серверное оборудование зачастую предназначено для обеспечения работы сервисов в режиме 24 7 поэтому часто комплектуется дублирующими элементами позволяющими обеспечить пять девяток 99999 ; время недоступности сервера или простой системы составляет менее 6 минут в год. Повышение...
39980. Общие средства повышения надежности 22.51 KB
  Общие средства повышения надежности Надежность это вероятность безотказной работы какоголибо устройства в течение заданного срока службы. Эту вероятность они называют надежностью. Для оценки важности понятия надежность нам придется вести довольно тривиальный разговор о сложности мира машин и приборов. Надежность машин зависит от множества причин: и от материалов используемых для их изготовления и от станочного оборудования и от условий эксплуатации и от заводского контроля и от мастерства рабочих и конечно от конструкторских идей...
39981. Многопроцессорные системы 31.16 KB
  Термин также относится к способности системы поддержать больше чем один процессор и или способность распределить задачи между ними. Комбинация конструктивных соображений программного обеспечения аппаратной и операционной системы определяет симметрию или отсутствие её в данной системе. Часто многопроцессорные системы проще проектировать если введены такие ограничения но они имеют тенденцию быть менее эффективными чем системы в которых используются все центральные процессоры.
39982. Наиболее востребованные уровни RAID (0,1,5,10) 221.4 KB
  Наиболее востребованные уровни RID 01510. RID 0 надежность с увеличением дисков снижается. RID 1 вся информация которая хранится на основном диск дублируется на резервный. RID 01 совмещение 1 и 0 уровней.
39983. Закон Мура в применении к СКС 47.01 KB
  Gigbit Ethernet возник в ответ на потребность во все больших и больших скоростях передачи данных. Gigbit Ethernet является дальнейшим развитием стандартов Ethernet и Fst Ethernet которые уже хорошо зарекомендовали себя за почти двадцатилетнюю историю. Он быстрее в первого из них в 100 и второго в 10 раз соответственно а теоретическая пропускная способность gigbit Ethernet достигает 1000 Мбит сек что приблизительно равно 120 МБайтам в секунду то есть вплотную приближается к скорости 32битной шины PCI 33 МГц. Технология обладает обратной...
39984. Кластер (группа компьютеров) 74.59 KB
  Обычно различают следующие основные виды кластеров: отказоустойчивые кластеры Highvilbility clusters H кластеры высокой доступности кластеры с балансировкой нагрузки Lod blncing clusters вычислительные кластеры High perfomnce computing clusters Гридвычисления Содержание 1 Классификация кластеров 1.1 Кластеры высокой доступности 1.2 Кластеры распределения нагрузки 1.3 Вычислительные кластеры 1.
39985. Функции шифрования пароля в Unix и Windows 24.56 KB
  Поле пароль x будет содержать либо реальный зашифрованный пароль либо его обозначение как в данном примере. При регистрации в системе UNIX программа getty требует ввести имя пользователя и запускает программу входа в систему а та в свою очередь запрашивает пароль но не декодирует его. Фактически программа bin login шифрует пароль введенный пользователем а затем сравнивает полученное значение с тем которое хранится в etc psswd. Если данные совпадают то пароль был введен правильно.