6207

Диагностика. Системы технического диагностирования

Реферат

Логика и философия

Диагностика Основные понятия и термины Техническая диагностика - область знании, охватывающая теорию, методы и средства определения технического состояния объекта. Объект технического диагностирования - изделие и (или) его составные части, подлежащи...

Русский

2012-12-30

31.01 KB

154 чел.

Диагностика

Основные понятия и термины

Техническая диагностика - область знании, охватывающая теорию, методы и средства определения технического состояния объекта.

Объект технического диагностирования - изделие и (или) его составные части, подлежащие (подвергаемые) диагностированию.

Приспособленность объекта к диагностированию - свойство объекта, характеризующее его пригодность к проведению диагностирования заданными средствами диагностирования.

Средство технического диагностирования - аппаратура и программы, с помощью которых осуществляется диагностирование.

Следует иметь в виду, что понятия "техническая диагностика" и "техническое диагностирование" не идентичны:

техническое диагностирование - определение технического состояния объекта.

Техническое состояние объекта - состояние, которое характеризуется в определенный момент времени, при определенных условиях внешней среды, значениями параметров, установленных технической документацией на объект.

Термин "техническое диагностирование" применяют в определениях понятий, когда основной задачей является поиск места и анализ причин отказа. Основное назначение диагностирования состоит в повышении надежности объектов за счет эффективной проверки работоспособности и правильности функционирования, а также прогнозирования технического состояния.

В основе решения диагностических задач лежит, прежде всего, оптимальный выбор физического явления, дающего наиболее объективную информацию о параметре диагностирования:

диагностический параметр - параметр объекта, используемый при его диагностировании.

Важнейшей проблемой становится не фиксация дефекта как возникающего отклонения от нормирующего параметра, а исследование и регистрация физических и других эффектов, предшествующих времени перехода материала или изделия в "дефектное" состояние.

Для условий эксплуатации важным является понятие исправного технического состояния объекта. Правильно функционирующим является объект, значения параметров которого в момент применения объекта по назначению находятся в требуемых пределах.

Обнаружение и поиск дефектов являются процессами определения технического состояния объекта и объединяются общим термином "диагностирования". Результатом диагностирования является заключение о техническом состоянии объекта - технический диагноз.

Диагностирование технического состояния объекта проводится с помощью технических средств диагностики. Средства могут быть аппаратурными или программными; в качестве средств диагностирования может также выступать непосредственно оператор или наладчик.

Диагностическое обеспечение - комплекс взаимоувязанных правил, методов, алгоритмов и средств, необходимых для осуществления диагностирования на всех этапах жизненного цикла объекта.  Это позволяет повышать достоверность правильного функционирования объектов и увеличить срок их службы.

СИСТЕМА ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ

Система технического диагностирования - совокупность средств объекта и исполнителей, необходимых для проведения диагностирования по правилам, установленным в технической документации.

Различают системы тестового и функционального диагностирования:

системы первого вида - системы управления, применяемые при изготовлении объектов, на которые подаются специально организуемые целенаправленные тестовые воздействия;

системы второго вида - типичные системы контроля, которые работают в процессе применения объекта по назначению при поступлении только рабочих воздействий.

В зависимости от назначения сложных комплексных технических устройств диагностированию подвергают как основное изделие, включая конструкцию и её составляющие (встроенные системы), так и состояние функционально объединённых комплектующих (внешние системы). Основные функции систем диагностирования технических изделий приведены в таблице 7.

ТАБЛИЦА 7    ОСНОВНЫЕ ФУНКЦИИ СИСТЕМ ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ

Область 

применения 

Системы диагностирования 

Встроенные

Мобильные

Стационарные 

Изготовление 

+

+

(+)

Выявление дефектов  конструкции 

Контроль функцио- 

нирования 

(+)

-

-

Защита от аварий 

(+)

-

-

Эксплуатация 

-

-

Адаптация к измене- 

нию технологии 

(+)

Адаптация к измене- 

нию внешней среды 

-

         +                        -

-

Обнаружение неис- 

правных элементов 

+

+

-

Контроль параметров 

+

+

-

Регулировка по ди- 

намическим парамет 

+

(+)

-

рам 

Накопление данных о 

параметрах и видах отказа 

(+)

+

-

Прогнозирование 

+

(+)

-

Потребление 

Контроль качества 

+

+

-


Примечание. Знак «+» соответствует примечанию системы;

знак «(+)» - предпочтительному применению;

знак «--» - отсутствию применения системы диагностирования.

Для количественной и качественной оценки свойств систем технического диагностирования применяют следующие характеристики и показатели качества:

  1.  оперативность     характеризует возможность своевременного и обоснованного выбора управляющих воздействий в процессе функционирования системы с целью учёта изменений в ситуации;
  2.  гибкость - определяет возможность системы перепрограммирования на различные условия и режимы работы;
  3.  мобильность    определяет быстроту перестройки системы
    с изменением состояния внешней среды;
  4.  живучесть - характеризует возможность временного продолжения функционирования в случае повреждения отдельных деталей и узлов.

К диагностическим системам приемлемы общие принципы системного анализа:

принцип целеобусловленности создания системы (совокупности технических средств и обслуживающего персонала);

принцип относительности (совокупность элементов системы, рассматриваемая как часть большей системы);

принцип управляемости (определения возможности изменения структуры системы и иерархичности её построения);

принцип модулируемости (обеспечение возможности прогнозирования состояния объекта, диагностирования или развития самой системы).

При разработке систем диагностирования должны решаться задачи изучения объекта, его возможных дефектов и признаков проявления, выбора или построения модели поведения исправного объекта и его неисправных модификаций.

Изучение объектов предусматривает их классификацию но различным признакам, например, по характеру изменения значений параметров и по условиям работы. Анализ характера работы объектов осуществляется построением диагностической модели:

диагностическая модель - формализованное описание объекта, необходимое для решения задач диагностирования. Описание объекта может быть представлено в аналитической, табличной, векторной, графической и других формах.

Формализованные модели объектов диагностирования могут быть явными или неявными, функциональными или структурными, детерминированными или вероятностными:

  1.  функциональные модели отражают выполняющие функции, определённые относительно рабочих входов и выходов объекта, и позволяют решать задачи проверки работоспособности;
  2.  структурные модели содержат информацию о внутренней
    организации объекта и его структуры, а также включают проверки исправности и поиска дефектов.

Параметры технического состояния объекта, которые контролируются в процессе диагностирования, делятся на:

выходные - непосредственно характеризуют работоспособность и связаны с целевым назначением объекта, а также, могут служить для его характеристик качества;

косвенные - функционально и стохастически связаны с выходными параметрами, характеризующими возможность их оценки в процессе работы.

При разработке систем диагностирования следует учитывать технические характеристики, изменяющиеся во времени до скорости протекания различных процессов:

измеряемую долями секунды, и заканчиваются в пределах цикла работы;

процессы средней скорости протекают за время непрерывной работы объекта и приводят к изменению исходных параметров;

медленные процессы развиваются в период непрерывной работы и приводят к постепенному изменению начальных параметров.

Модели объектов диагностирования с учётом параметров технического состояния необходимы для построения алгоритмов диагностирования формализованными методами, исходя из задач диагностирования.

Задачи диагностирования разделяются на следующие:

задачи технической генетики определение технического состояния объема к некоторый момент в прошлом;

задачи технической диагностики определения технического состояния объекта в текущий момент времени;

задачи технической прогностики - предсказание технического состояния объекта в некоторый будущий момент времени.

Для решения той или иной задачи диагностирования можно построить несколько алгоритмов, различающихся либо составом элементарных проверок, либо последовательностью их реализации.

Алгоритм технического диагностирования - совокупность предписания, определяющих последовательность действий при проведении диагностирования.

Выбор совокупности элементарных проверок зависит от задач определения технического состояния объекта:

алгоритм проверки - установление факта наличия дефектов, нарушающих правильность функционирования объекта и приводящих к появлению отказов;

алгоритм поиска дефекта - определение характера и местоположения возникновения отказа при подаче предусмотренных назначению рабочих воздействий.

Для обнаружения и регистрации отказов, выявления закономерностей их развития и причин возникновения, применяются различные методы диагностирования:

метод временных интервалов - сравнение экспериментально-определённых временных интервалов циклограммы объекта с их нормами, что даёт возможность локализации места неисправности;

метод эталонных модулей - сравнение экспериментально-определенных и расчётных значений параметров объекта и показателей качества с их паспортными данными;

программный метод испытаний - опенка качества объекта по его выходным параметрам во всём диапазоне условий с учётом вероятностной природы внешних воздействий.

Разработка методов построения оптимальных алгоритмов, требующих минимальных затрат на их реализацию, зависит от объёма и сложности средств диагностировании. Различают аппаратные или программные, внешние или встроенные, ручные или универсальные средства для проведения диагностирования.

Средства диагностирования должны быть обеспечены как датчиками (внутренней и внешней информации), построенными на основе различных физических явлений, так и компьютерами с использованием встроенных вычислительных устройств для обработки диагностической информации.

Концепция повышения надёжности изделий базируется на четырёх положениях:

бездефектность - отсутствие скрытых дефектов надёжности (в отличие от дефектов качества), не влияющих на качество изделий, но вызывающих отказ при эксплуатации или хранении;

воспроизводимость - степень физической повторяемости и взаимозаменяемости по всем значениям параметров, свойств и характеристик материалов, деталей, узлов, технологических процессов и готовых изделий;

стабильность - сохранение заданных или начальных свойств и характеристик воспроизводимости при эксплуатации и хранении;

устойчивость - предел внешних нарастающих силовых или энергетических воздействий на изделие в целом иди на его функциональные элементы, при превышении которых возникают необратимые изменения, вызывающие отказ.

Для выявления соответствия приборов этим требованиям целесообразно проводить диагностический анализ построения, проектирования, изготовления, хранения, использования и ремонта. В этом случае создаётся банк данных с учётом требований к приборам, показателей качества и результатов испытаний при моделировании и создании диагностических систем. Наибольший эффект достигается в случае осуществления диагностирования не по отдельным параметрам изделия приборов, а в случае комплексной оценки их работоспособности (рисунок  8)

Разделяют два основных вида диагностирования изделий электронной техники:

- предэксплуатационная диагностика, которая предусматривает:

выполнение требований технического задания и выявление области работоспособности приборов (на этапах проектирования и разработки);

оптимизация параметров проведения технологических операций и испытания для определения несовершенств технологии изготовления приборов (на этапе производства);

- эксплуатационная диагностика, которая обеспечивает: рекомендации  по неразрушающему контролю качества и правильности применения изделий (на этапе применения);

рассмотрение режимов и условий эксплуатации, а также анализ причин нарушения работоспособности и устранение их появления (на этане эксплуатации).


 

А также другие работы, которые могут Вас заинтересовать

42231. ТЕХНОЛОГИЧЕСКИЙ КОНТРОЛЬ ФОРМЫ ПОЛИРОВАННЫХ ПОВЕРХНОСТЕЙ 945 KB
  Если контролируемую поверхность детали совместить с измерительной поверхностью эталона то при несоответствии их формы образуется воздушный промежуток который можно рассматривать как пластинку толщиной h с показателем преломления n=1. Число колец любого но одного цвета характеризует разность стрелок прогиба поверхности детали и эталона. Форма интерференционных колец в сечении параллельном их направлению воспроизводит профиль воздушного зазора между поверхностями детали и эталона. Если кривизна поверхности детали меняется плавно кольца...
42232. ИССЛЕДОВАНИЕ НАГРЕВА КАТУШЕК ЭЛЕКТРИЧЕСКИХ АППАРАТОВ 44 KB
  Предмет исследования В лабораторной работе исследуются четыре катушки N1. На передней панели стенда расположены исследуемые катушки N1 N4. Каждая катушка включена в соответствующую схему выключателем а в цепи катушки N1 имеется амперметр P1 тип М381 класс точности 15 по которому контролируют значение протекающего через обмотку катушки тока. Катушки N1 и N2 подключаются выключателем SF2 к источнику постоянного напряжения 110 В а катушки N3 и N4 выключателем SF1 к источнику переменного напряжения 220 В.
42233. Методы проведения фотоэлектроколориметрии двухкомпонентных систем 2.19 MB
  Фотоколориметрия основана на измерении поглощения света окрашенными растворами. Отличается от колориметрии тем, что интенсивность поглощения света оценивается не глазом исследователя, а специальными приборами – фотоэлектроколориметрами.
42234. Побудова лінійної моделі з допомогою псевдообернених операторів 63.5 KB
  На виході системи спостерігається сигнал у вигляді вектора розмірності . Постановка задачі: Для послідовності вхідних сигналів та вихідних сигналів знайти оператор перетворення вхідного сигналу у вихідний. Систему 1 запишемо у матричній формі або 2 де – матриця вхідних сигналів розмірності – матриця вихідних сигналів розмірності . Варіанти вхідних на вихідних сигналів для яких потрібно побудувати лінійний оператор перетворення вхідного сигналу у вихідний: 1 Вхідний сигнал – x1.
42235. Методи реалізації на мові Асемблера основних виконавчих операторів мови Паскаль. Методика включення текстів програм на мові Асемблера в програми на мові Паскаль 136.5 KB
  Робота виконується на двох заняттях. На першому занятті на базі програми на мові Паскаль студенти створюють файл, що містить результати трансляції кожного оператора Паскаль-програми на мові Асемблера, вивчають методи реалізації на мові Асемблера найуживаніших операторів мови Паскаль. На другому занятті оформляють у Паскаль-програмі асемблерну вставку, що оптимізує, по можливості, Паскаль-програму в обсязі і/або швидкодії.
42236. ПЗО побудувати на Intel 8255 39 KB
  Для керування використовувати розряд 4 каналу РС для сигналу Redy розряд 0 каналу РС. Очікування сигналу “Redy†РС0=1. Ввімкнення сигналу “Control†РС4=1. Вимкнення сигналу “Control†РС4=0.
42237. Создание изображений с помощью Adobe Photoshop 941 KB
  Основное меню расположенное в верхней части окна позволяет выбирать все команды программы Photoshop. Пункт Параметры в меню Окно Window позволяет включить или отключить вывод панели активных инструментов на экран. Состав палитр отображаемых в рабочем окне указывается с помощью команды Окно Window основного меню программы Photoshop. Инструментальная панель PhotoShop Можно выбрать нужный инструмент либо щелкнув мышью на его значке в панели инструментов либо перетащив курсор мыши на его значок в значке в панели инструментов либо...
42238. Работа с векторной графикой в Adobe Photoshop 448.5 KB
  Кнопка для вывода оглавления Этапы создания кнопки: Создание нового рисунка размером 25090 пикселей с прозрачным фоном. Установка для инструмента Карандаш Pencil размера 9 пикселей. Зеркальный Линейный Зеркальный Зеркальный Линейный Зеркальный Зеркальный Угол 90 90 90 90 95 90 90 0 90 90 Масштаб 130 130 130 90 110 80 100 100 100 110 Дополнительные эффекты Обводка Размер: 2 пикс. Цвет: RGB255 0 0 Тень Цвет: RGB137 11 5 Смещение: 9 пикс.
42239. Создание анимационных изображений в Adobe Photoshop 781.5 KB
  На панели этого инструмента можно задать следующие опции: вид гарнитуру шрифта – ; стиль шрифта Regulr – обычный Itlic – курсив Bold – жирный Bold Itlic – жирный курсив – ; размер шрифта в пунктах – ; режим сглаживания для границ символов – ; режим выравнивания – выравнивание влево по центру или вправо; цвет текста – при щелчке по этому прямоугольнику открывается окно Палитра цветов в котором можно задать цвет текста ; деформация текста вывод текста по заданной кривой – ; включение выключение палитры символов...