62136

ИНТЕГРАЛ ЛЕБЕГА, ТЕОРЕМЫ О ПРЕДЕЛЬНОМ ПЕРЕХОДЕ

Лекция

Математика и математический анализ

Определение. Назовём функцию f интегрируемой (суммируемой) на X, если существует последовательность простых интегрируемых на X функций, сходящаяся равномерно к f. Интегралом Лебега функции f на множестве X называется предел интегралов от функций

Русский

2014-09-21

627 KB

20 чел.

Тема 4. ИНТЕГРАЛ ЛЕБЕГА, ТЕОРЕМЫ О ПРЕДЕЛЬНОМ ПЕРЕХОДЕ

1. Интеграл Лебега от простой функции

Числовая функция , заданная на измеримом пространстве  с конечной мерой , называется простой, если она принимает конечное или счётное число различных значений и является измеримой.

Теорема 1. Функция f является простой тогда и только тогда, когда , где множества  измеримы и  принимает постоянное значение  на множестве , k=1,2,.

Теорема 2. Для любой измеримой функции , заданной на измеримом пространстве (X,,) существует последовательность  простых функций, сходящаяся к  в каждой точке x. Если функция f ограничена на X, то последовательность  можно выбрать равномерно сходящейся. Если , то можно выбрать  так, чтобы последовательность  была неубывающей.

Пусть  – простая функция, принимающая значения ,  при . Обозначим через , тогда .

Функция f называется интегрируемой по Лебегу, если ряд  сходится абсолютно. Если функция f интегрируема, то сумма этого ряда называется интегралом Лебега функции f, т.е.

.

Теорема. Пусть  и пусть на каждом Bi функция f принимает значение . Тогда

,

причём функция f интегрируема на X тогда и только тогда, когда ряд сходится абсолютно.

Свойства интеграла Лебега от простой функции.

  1.  ,

причём из существование интегралов в правой части следует существование интеграла в левой;

  1.   для всех ,

причём из существование интеграла в правой части следует существование интеграла в левой части;

3) ограниченная на X простая функция f интегрируема на X, причём, если  на X, то

.

2. Интеграл Лебега на множестве конечной меры.

Пусть задано (X,,) – пространство с конечной мерой и f : XR измеримая функция.

Определение. Назовём функцию f интегрируемой (суммируемой) на X, если существует последовательность простых интегрируемых на X функций , сходящаяся равномерно к f. Интегралом Лебега функции f на множестве X называется предел интегралов от функций :

.

Различие в определениях интеграла Римана и интеграла Лебега заключается в том, что при составлении интегральных сумм Римана разбиение производится по признаку близости точек на оси OX, а при составлении интегральных сумм Лебега – по признаку близости значений функции.

Основные свойства интеграла Лебега по множеству конечной меры:

1) для любого измеримого множества

;

2) если  – интегрируемы по Лебегу, то функция , где , интегрируема по Лебегу и справедливо равенство

;

3) если f – измеримая ограниченная функция, то она интегрируема по Лебегу;

4) если f – интегрируемая функция и , то

;

5) если f – интегрируемая функция и , то

;

6) если  – интегрируемые функции и , то

;

7) если , где  – интегрируемая, а  – измеримая, то f интегрируема по Лебегу;

8) если , где  – интегрируемые, а f – измеримая функция, то f – интегрируема.

9) если f – интегрируемая функция, а g – ограниченная  измеримая функция, то  – интегрируема, причём

.

10) если f интегрируема на X, то f интегрируема на любом измеримом подмножестве из X и

,

(это свойство называется аддитивностью интеграла Лебега);

11) функции f и  интегрируемы или неинтегрируемы одновременно, причём справедлива оценка

;

12) если , то ;

13) если  почти всюду на X, то ;

14) если  почти всюду, то ;

15) если , то  почти всюду на X.

3. Абсолютная непрерывность и σ-аддитивность интеграла Лебега

Теорема 1 (абсолютная непрерывность интеграла Лебега).

Пусть  – интегрируемая на множестве A функция. Тогда для всех  существует , что  для всякого измеримого множества  такого, что .

Теорема 2 (σ-аддитивность интеграла Лебега).

Пусть f – измеримая функция по множеству A и пусть ,  – измеримые множества. Тогда f интегрируема по каждому  и , причём ряд сходится абсолютно.

Теорема 3. Если , f интегрируема на каждом  и ряд  сходится, то функция f интегрируема на A и .

4. Предельный переход под знаком интеграла Лебега

Особенно заметны преимущества интеграла Лебега над интегралом Римана, когда мы имеем дело с предельным переходом. В случае интеграла Римана перемена порядка операций интегрирования и перехода к пределу требует установить факт равномерной сходимости последовательности подынтегральных функций. В случае интеграла Лебега подобных трудностей нет. Это вытекает из трёх следующих результатов, играющих центральную роль в теории интегрирования.

Теорема (Лебега о мажорированной сходимости).

Пусть (X,,) – пространство с мерой,  и  – последовательность измеримых функций, сходящаяся почти всюду к . Если существует интегрируемая функция  такая, что  (для всех ), то f – интегрируема и

.

Теорема (Беппо-Леви о монотонной сходимости).

Пусть (X,,) – пространство с мерой и ,  – монотонно возрастающая последовательность интегрируемых функций и пусть существует , что  для всех . Тогда почти всюду существует конечный предел , функция f интегрируема и .

Следствие 1. Пусть  – последовательность неотрицательных интегрируемых функций и пусть числовой ряд  сходится. Тогда почти всюду сходится ряд  и

.

Следствие 2. Пусть  и пусть f – измеримая функция такая, что  существует и ряд  сходится. Тогда f интегрируема и .

Теорема (Фату). Пусть (X,,) – пространство с мерой и  – последовательность неотрицательных интегрируемых функций, , обладающая свойствами:

  1.   на X,
  2.   для всех n.

Тогда функция  интегрируема и .

5. Интегрирование по множеству бесконечной меры

Пусть (X,,) – пространство с σ-конечной мерой. В силу определения σ-конечности существует неубывающая последовательность измеримых множеств , для которых  для всех k и .

Введём сначала понятие интеграла Лебега по множеству бесконечной меры в случае неотрицательной функции.

Пусть  на X и f – измеримая. Поскольку все  – измеримы, то имеют смысл и конечны , причём , поэтому существует предел .

Пусть  существует и конечен, тогда функция f называется интегрируемой по Лебегу на множестве с σ-конечной мерой и .

Данное определение корректно и не зависит от выбора расширяющейся системы .

Пусть теперь f – измеримая функция произвольного знака. Рассмотрим функции  и , тогда , . Функция f называется интегрируемой по Лебегу на X, если на X интегрируемы обе функции  и . При этом, по определению .

Нетрудно показать, что для интегрируемости измеримой функции f необходимо и достаточно, чтобы  была интегрируема.

Множество X с σ-конечной мерой  может быть представлено в виде счётного объединения попарно непересекающихся множеств , т.е. , . В этом случае измеримая функция f называется интегрируемой на X, если сходится ряд . Интегралом Лебега интегрируемой функции f называется число .

Все свойства, установленные для интегралов Лебега по множеству конечной меры, остаются справедливыми и по множеству σ-конечной меры, включая теоремы о предельном переходе.

6. Сравнение интеграла Лебега с интегралом Римана

Для простоты рассмотрим эту связь в одномерном случае.

Теорема 1. Если для функции, заданной на [a,b], существует собственный интеграл Римана , то она интегрируема и по Лебегу и её интеграл Лебега  равен интегралу Римана.

Теорема 2. Для того, чтобы ограниченная на отрезке [a,b] функция, была интегрируема по Риману на этом отрезке, необходимо и достаточно, чтобы множестве её точек разрыва имело меру нуль.

Из этой теоремы, в частности, следует теорема об интегрируемости по Риману монотонной функции (так как множество точек разрыва монотонной функции не более чем счётно).

Пусть функция f неограничена на полуинтервале [a,b[ и интегрируема по Риману на любом промежутке [a,b-]. В этом случае речь идёт о несобственном интеграле Римана

,

если предел существует и конечен. Несобственный интеграл Римана называют абсолютно сходящимся, если сходится интеграл .

Теорема 3. Для абсолютной сходимости несобственного интеграла  необходимо и достаточно, чтобы f была интегрируемой по Лебегу на [a,b]. При выполнении любого из этих условий имеет место равенство .

Рассмотрим интегрирование по множеству бесконечной меры. Пусть функция определена на промежутке [a,+[ и интегрируема по Риману на любом отрезке [a,b]. Тогда несобственный интеграл Римана по промежутку [a,+[ определяется как предел

.

Если предел конечен, то несобственный интеграл называют сходящимся; его называют абсолютно сходящимся, если сходится интеграл .

Теорема 4. Для абсолютной сходимости несобственного интеграла Римана необходимо и достаточно, чтобы функция f была интегрируема по Лебегу на [a,+[. При выполнении любого из этих условий имеет место равенство .

Примеры решения задач

Задача 1. Выяснить, интегрируемы ли по Лебегу на отрезке [0; 1] следующие функции:

  1.  , если , ;
  2.  , .

Решение. 1) Функция  является неограниченной, поэтому по Риману она не интегрируема. f измерима, так как принимает счётное число значений на измеримых множествах , и является простой. Для интегрируемости функции f необходимо, чтобы ряд

сходился абсолютно. Но ряд  расходится, поэтому f не интегрируема по Лебегу.

2) Рассматриваемая функция  также является простой, принимающей три значения: 1, -1 и 0. А именно:  на множестве ,  на  и  на . Множества  открыты, а поэтому измеримы. Кроме того

,

.

Счётное множество  также измеримо и . Поэтому

.

Задача 2. Интегрируема ли по Риману, по Лебегу функция , если да, то вычислить интеграл.

Решение. Функция  не интегрируема по Риману, так как она разрывна в каждой точке, за исключением точек , , то есть мера её точек разрыва не меньше 1. Действительно, для   Q и  такие, что  и , но , а , при этом , то есть интервал ]0,1[ – подмножество множества точек разрыва функции.

Выясним, интегрируема ли функция по Лебегу. Так как эквивалентные функции интегрируемы или неинтегрируемы одновременно и их интегралы совпадают, заменим f на эквивалентную функцию

, ,

(, так как ).

Функция  непрерывна и интегрируема по Риману, а значит и по Лебегу и имеет место равенство

.

Задача 3. Вычислить интеграл Лебега от функции ,

где  – канторово множество,  – его дополнение.

Решение. Функция  эквивалентна на отрезке [0; 1] функции

так как . Поэтому

.

Задача 4. Вычислить интеграл Лебега от функции  на отрезке [0; 1], если  в точках канторова множества, а на смежных интервалах графиком функции служат треугольники, опирающиеся на эти интервалы, как на основания, высоты 1.

Решение. Воспользуемся аддитивностью интеграла Лебега и представим интеграл в виде суммы двух интегралов: первый по канторову множеству, он будет равен нулю, так как , а второй – по его дополнению.

; , ;  ;

и так далее.

Следовательно, .

На каждом  функция непрерывна и поэтому интегрируема по Риману. Интеграл Римана равен площади треугольника значит,

.

Задача 5. При каких значениях параметров  и  функция , x]0,1[

  1.  интегрируема по Лебегу,
  2.  несобственно интегрируема по Риману.

Решение. Неограниченная на отрезке [a;b] функция интегрируема по Лебегу в том случае, когда она абсолютно интегрируема по Риману в несобственном смысле.

1 случай: .

Данный интеграл сходится абсолютно, если . Действительно, подынтегральная функция по модулю эквивалентна , следовательно , то есть .

Итак, при  функция интегрируема по Лебегу при .

Для интегрируемости по Риману необходимо, чтобы интеграл сходился условно. Используя признак Дирихле, получаем

, следовательно .

2 случай: .

.

Интеграл сходится абсолютно, если , то есть . Следовательно, при  функция интегрируема по Лебегу, если . Для интегрируемости по Риману необходимо, чтобы , следовательно .

Итак, функция  интегрируема по Лебегу при  () и  (); по Риману при .

Задача 6. Вычислить интеграл Лебега по интервалу ]0,+[ от функции .

Решение. Интервал ]0,+[ – пространство с -конечной мерой, так как  и  [k, k+1[ = 1 < +. На каждом полуинтервале [k, k+1[ функция  является простой, так как  при x  [k, k+1[.

.

Задача 7. Исходя из определения интеграла Лебега, вычислить

,

где  – характеристическая функция множества .

Решение. Построим для измеримой функции ,  последовательность простых интегрируемых функций, равномерно сходящуюся на [0; 1] к . А именно, для  положим  на множестве , . Тогда последовательность  является искомой. Кроме того, поскольку , то  для . Следовательно, последовательность равномерно сходится к .

,

так как  и поскольку множество  рациональных чисел имеет меру нуль.

Задача 8. Найти предел

.

Решение. Рассмотрим функциональную последовательность

, , .

Для каждого

.

Кроме того, эта функциональная последовательность имеет мажоранту

, .

Неотрицательная функция g интегрируема по Риману в несобственном смысле, поэтому она интегрируема по Лебегу. Следовательно, по теореме Лебега f также интегрируема по Лебегу на R и справедливо равенство

.

Задание 1. Выяснить, интегрируема ли по Риману, по Лебегу на отрезке [0; 1] функция f, если да, то вычислить интеграл Лебега.

  1.   
    1.   
    2.   
    3.   
    4.   
    5.   
    6.   
    7.   
    8.   

1.10.

1.11.

1.12.

1.13.

1.14.

Задание 2. Для заданной функции  на отрезке [-1; 2]

  1.  выяснить, является ли она ограниченной;
  2.  найти множество точек разрыва;
  3.   выяснить, существует ли для неё собственный или несобственный интеграл Римана;
  4.  вычислить интеграл Лебега, если он существует, воспользовавшись подходящей заменой на эквивалентную, имеющую меньшее множество точек разрыва.

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

Задание 3. Для заданной последовательности функций , определённых на множестве X, выяснить, какие из теорем о предельном переходе применимы. Найти и сравнить:

и , если:

3.1. ,

3.2.

3.3. ,

3.4.

3.5. ,

3.6. , x[0,+[

3.7. ,

3.8.

3.9.

3.10.

3.11.

3.12.

3.13. ,

3.14.


 

А также другие работы, которые могут Вас заинтересовать

36411. Поясните способы определения выходного сигнала в дискретной САУ 148.07 KB
  1 способ: Перейти от к можно несколькими способами 2 способ: представить zпреобразование выходного сигнала: по таблице Анализ: 1 Первый способ более простой однако он обладает двумя недостатками: При делении полиномов получаются бесконечные ряды. Для получения приемлемого резта необходимо рассчитать большое количество членов ряда Если интеграл дискретизации выбран неверно то произойдет наложение спектральных составляющих которые существенно исказит выходной сигнал 2Преимущество второго способа состоит в том что сразу получается...
36412. Системы подчиненного регулирования параметров электропривода 25.03 KB
  Системы подчиненного регулирования параметров электропривода. ‘’ возможность ограничить любой параметр на любом уровне Система с последовательной коррекцией или система подчиненного регулирования СПР удобны в расчетах и в настройках характерным является то что даже при существующих ошибках в определении параметров объекта системы остаются работоспособными и обладают запасом устойчивости и точности. Каждому регулируемому параметру соответствует свой датчик регулятор и контур регулирования. Контура регулирования вложены друг в друга...
36413. Приведите нелинейные модели САУ 16.25 KB
  Каждая СУ состоит их линейных и НЛЗ. Наличие одного НЛЗ делает всю САУ нелинейной. По матму описанию процессов НЛЗ делятся на статиче и динамиче. Описывся алгебраичми зависимочтями выхй величины от вхй Динамиче НЛЗ процессы котх описся НЛ ДУ например: Принципы нелинейности: а коэфты уря зависят от перх б степень произвх выше 1 и самой произвой в коэфт К зависит от самой производной ДУ будет НЛ если присутт хотя бы один из признаков нелинейности.
36414. Способы определения параметров динамических моделей 21.97 KB
  В зависимости от вида переходной характеристики кривой разгона задаются чаще всего одним из трех видов передаточной функции объекта управления: в виде передаточной функции инерционного звена первого порядкагде – K T и коэффициент усиления постоянная времени и запаздывание которые должны быть определены в окрестности номинального режима работы объекта.Для объекта управления без самовыравнивания передаточная функция имеет вид: Более точнее динамику объекта описывает модель второго порядка с запаздыванием Экспериментальные методы определения...
36415. Поясните методы анализа устойчивости равновесных режимов нелинейных САУ 16.92 KB
  методыне дают полн. Методы анализа динамики НС: 1.Точные методы исследия динамики: метод прова сост: фазовой плоскости; изоклин; метод припасовывания метод точечного преобразования 2.
36416. Типовые способы настройки контуров в системах подчиненного регулирования 17.06 KB
  Типовые способы настройки контуров в системах подчиненного регулирования. Оптимизация контура – выбор такого закона регулирования и параметров этого закона который в наибольшей степени соответствует требованиям статическим и динамическим характеристикам контура регулирования. Определение вида звена регулирования П И ПИ который обеспечивает наилучшие статические и динамические характеристики. Определение параметров регулирования постоянной времени коэффициента усиления и т.
36417. Критерий абсолютной устойчивости В.М.Попова 56.49 KB
  Критерий Попова в геометрическом варианте: для абсолютной устойчивости состояния равновесия НСАУ с устойчивой линейчатого и нелинейчатого характеристика которой лежит в секторе 0к достаточно чтобы модифицированный годограф Попова целиком лежал справа от прямой проходящей через точку 1 к j0с произвольным угловым коэффициентом 1 х. Обобщенный критерий Попова на случай нейтральной или неустойчивой линейной части: в этом случае корень характеристического уравнения линейной части имеет либо = 0 корень либо хотя бы 1 полис расположенный в...
36418. Физическая природа постоянных времени и времени запаздывания в моделях технологических объектов. Одноемкостные и многоемкостные объекты 12.92 KB
  Физическая природа постоянных времени и времени запаздывания в моделях технологических объектов. Физическая природа постоянных времени – электрическая индукция емкость; лампочка – идеальная нагрузка постоянная времени и временя запаздывания приближенно равны нулю и механическая: масса и момент инерции. Постоянная времени связана с теплоемкостью и с теплообменом. природа времени запаздывания – транспортная транспортер.
36419. Приведите классификацию и поясните сущность методов технической линеаризации 38.16 KB
  На выходе звена эта составляющая отфильтровывается низко частотной линейной частью системы.3 если А→∞ z0 x0 становится линейной во всем диапазоне изменения х. Для нелинейности типа зоны нечувствительности наложение на входной сигнал хn последованности импульсов прямоугольной формы с амплитудой А=n делает для постоянной составляющей х0 нелинейную характеристику линейной на участке шириной n12 посл. Она становится линейной уже при А=а.